mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Some disabled test runs weren't being uploaded as disabled tests because some dynamo tests are set to mark themselves as skipped if they are failing. This makes the script think that there are fewer retries than there are actually are and that the job is not a rerun disabled tests job. Instead, query for the job name to see if it contains rerun disabled tests and fall back to counting the number of retries if querying fails Alternate options: relax the check for the number of tests Pull Request resolved: https://github.com/pytorch/pytorch/pull/148027 Approved by: https://github.com/huydhn
321 lines
9.7 KiB
Python
321 lines
9.7 KiB
Python
from __future__ import annotations
|
|
|
|
import gzip
|
|
import io
|
|
import json
|
|
import math
|
|
import os
|
|
import time
|
|
import zipfile
|
|
from functools import lru_cache
|
|
from pathlib import Path
|
|
from typing import Any, Callable, cast, Optional
|
|
|
|
import boto3 # type: ignore[import]
|
|
import requests
|
|
|
|
|
|
PYTORCH_REPO = "https://api.github.com/repos/pytorch/pytorch"
|
|
|
|
|
|
@lru_cache
|
|
def get_s3_resource() -> Any:
|
|
return boto3.resource("s3")
|
|
|
|
|
|
GHA_ARTIFACTS_BUCKET = "gha-artifacts"
|
|
|
|
|
|
# NB: In CI, a flaky test is usually retried 3 times, then the test file would be rerun
|
|
# 2 more times
|
|
MAX_RETRY_IN_NON_DISABLED_MODE = 3 * 3
|
|
|
|
|
|
def _get_request_headers() -> dict[str, str]:
|
|
return {
|
|
"Accept": "application/vnd.github.v3+json",
|
|
"Authorization": "token " + os.environ["GITHUB_TOKEN"],
|
|
}
|
|
|
|
|
|
def _get_artifact_urls(prefix: str, workflow_run_id: int) -> dict[Path, str]:
|
|
"""Get all workflow artifacts with 'test-report' in the name."""
|
|
response = requests.get(
|
|
f"{PYTORCH_REPO}/actions/runs/{workflow_run_id}/artifacts?per_page=100",
|
|
headers=_get_request_headers(),
|
|
)
|
|
artifacts = response.json()["artifacts"]
|
|
while "next" in response.links.keys():
|
|
response = requests.get(
|
|
response.links["next"]["url"], headers=_get_request_headers()
|
|
)
|
|
artifacts.extend(response.json()["artifacts"])
|
|
|
|
artifact_urls = {}
|
|
for artifact in artifacts:
|
|
if artifact["name"].startswith(prefix):
|
|
artifact_urls[Path(artifact["name"])] = artifact["archive_download_url"]
|
|
return artifact_urls
|
|
|
|
|
|
def _download_artifact(
|
|
artifact_name: Path, artifact_url: str, workflow_run_attempt: int
|
|
) -> Path:
|
|
# [Artifact run attempt]
|
|
# All artifacts on a workflow share a single namespace. However, we can
|
|
# re-run a workflow and produce a new set of artifacts. To avoid name
|
|
# collisions, we add `-runattempt1<run #>-` somewhere in the artifact name.
|
|
#
|
|
# This code parses out the run attempt number from the artifact name. If it
|
|
# doesn't match the one specified on the command line, skip it.
|
|
atoms = str(artifact_name).split("-")
|
|
for atom in atoms:
|
|
if atom.startswith("runattempt"):
|
|
found_run_attempt = int(atom[len("runattempt") :])
|
|
if workflow_run_attempt != found_run_attempt:
|
|
print(
|
|
f"Skipping {artifact_name} as it is an invalid run attempt. "
|
|
f"Expected {workflow_run_attempt}, found {found_run_attempt}."
|
|
)
|
|
|
|
print(f"Downloading {artifact_name}")
|
|
|
|
response = requests.get(artifact_url, headers=_get_request_headers())
|
|
with open(artifact_name, "wb") as f:
|
|
f.write(response.content)
|
|
return artifact_name
|
|
|
|
|
|
def download_s3_artifacts(
|
|
prefix: str,
|
|
workflow_run_id: int,
|
|
workflow_run_attempt: int,
|
|
job_id: Optional[int] = None,
|
|
) -> list[Path]:
|
|
bucket = get_s3_resource().Bucket(GHA_ARTIFACTS_BUCKET)
|
|
objs = bucket.objects.filter(
|
|
Prefix=f"pytorch/pytorch/{workflow_run_id}/{workflow_run_attempt}/artifact/{prefix}"
|
|
)
|
|
found_one = False
|
|
paths = []
|
|
for obj in objs:
|
|
object_name = Path(obj.key).name
|
|
# target an artifact for a specific job_id if provided, otherwise skip the download.
|
|
if job_id is not None and str(job_id) not in object_name:
|
|
continue
|
|
found_one = True
|
|
p = Path(Path(obj.key).name)
|
|
print(f"Downloading {p}")
|
|
with open(p, "wb") as f:
|
|
f.write(obj.get()["Body"].read())
|
|
paths.append(p)
|
|
|
|
if not found_one:
|
|
print(
|
|
"::warning title=s3 artifacts not found::"
|
|
"Didn't find any test reports in s3, there might be a bug!"
|
|
)
|
|
return paths
|
|
|
|
|
|
def download_gha_artifacts(
|
|
prefix: str, workflow_run_id: int, workflow_run_attempt: int
|
|
) -> list[Path]:
|
|
artifact_urls = _get_artifact_urls(prefix, workflow_run_id)
|
|
paths = []
|
|
for name, url in artifact_urls.items():
|
|
paths.append(_download_artifact(Path(name), url, workflow_run_attempt))
|
|
return paths
|
|
|
|
|
|
def upload_to_dynamodb(
|
|
dynamodb_table: str,
|
|
repo: str,
|
|
docs: list[Any],
|
|
generate_partition_key: Optional[Callable[[str, dict[str, Any]], str]],
|
|
) -> None:
|
|
print(f"Writing {len(docs)} documents to DynamoDB {dynamodb_table}")
|
|
# https://boto3.amazonaws.com/v1/documentation/api/latest/guide/dynamodb.html#batch-writing
|
|
with boto3.resource("dynamodb").Table(dynamodb_table).batch_writer() as batch:
|
|
for doc in docs:
|
|
if generate_partition_key:
|
|
doc["dynamoKey"] = generate_partition_key(repo, doc)
|
|
# This is to move away the _event_time field from Rockset, which we cannot use when
|
|
# reimport the data
|
|
doc["timestamp"] = int(round(time.time() * 1000))
|
|
batch.put_item(Item=doc)
|
|
|
|
|
|
def upload_to_s3(
|
|
bucket_name: str,
|
|
key: str,
|
|
docs: list[dict[str, Any]],
|
|
) -> None:
|
|
print(f"Writing {len(docs)} documents to S3 {bucket_name}/{key}")
|
|
body = io.StringIO()
|
|
for doc in docs:
|
|
json.dump(doc, body)
|
|
body.write("\n")
|
|
|
|
get_s3_resource().Object(
|
|
f"{bucket_name}",
|
|
f"{key}",
|
|
).put(
|
|
Body=gzip.compress(body.getvalue().encode()),
|
|
ContentEncoding="gzip",
|
|
ContentType="application/json",
|
|
)
|
|
print(f"Done! Finish writing document to S3 {bucket_name}/{key} ")
|
|
|
|
|
|
def read_from_s3(
|
|
bucket_name: str,
|
|
key: str,
|
|
) -> list[dict[str, Any]]:
|
|
print(f"Reading from s3://{bucket_name}/{key}")
|
|
body = (
|
|
get_s3_resource()
|
|
.Object(
|
|
f"{bucket_name}",
|
|
f"{key}",
|
|
)
|
|
.get()["Body"]
|
|
.read()
|
|
)
|
|
results = gzip.decompress(body).decode().split("\n")
|
|
return [json.loads(result) for result in results if result]
|
|
|
|
|
|
def remove_nan_inf(old: Any) -> Any:
|
|
# Casta NaN, inf, -inf to string from float since json.dumps outputs invalid
|
|
# json with them
|
|
def _helper(o: Any) -> Any:
|
|
if isinstance(o, float) and (math.isinf(o) or math.isnan(o)):
|
|
return str(o)
|
|
if isinstance(o, list):
|
|
return [_helper(v) for v in o]
|
|
if isinstance(o, dict):
|
|
return {_helper(k): _helper(v) for k, v in o.items()}
|
|
if isinstance(o, tuple):
|
|
return tuple(_helper(v) for v in o)
|
|
return o
|
|
|
|
return _helper(old)
|
|
|
|
|
|
def upload_workflow_stats_to_s3(
|
|
workflow_run_id: int,
|
|
workflow_run_attempt: int,
|
|
collection: str,
|
|
docs: list[dict[str, Any]],
|
|
) -> None:
|
|
bucket_name = "ossci-raw-job-status"
|
|
key = f"{collection}/{workflow_run_id}/{workflow_run_attempt}"
|
|
upload_to_s3(bucket_name, key, docs)
|
|
|
|
|
|
def upload_file_to_s3(
|
|
file_name: str,
|
|
bucket: str,
|
|
key: str,
|
|
) -> None:
|
|
"""
|
|
Upload a local file to S3
|
|
"""
|
|
print(f"Upload {file_name} to s3://{bucket}/{key}")
|
|
boto3.client("s3").upload_file(
|
|
file_name,
|
|
bucket,
|
|
key,
|
|
)
|
|
|
|
|
|
def unzip(p: Path) -> None:
|
|
"""Unzip the provided zipfile to a similarly-named directory.
|
|
|
|
Returns None if `p` is not a zipfile.
|
|
|
|
Looks like: /tmp/test-reports.zip -> /tmp/unzipped-test-reports/
|
|
"""
|
|
assert p.is_file()
|
|
unzipped_dir = p.with_name("unzipped-" + p.stem)
|
|
print(f"Extracting {p} to {unzipped_dir}")
|
|
|
|
with zipfile.ZipFile(p, "r") as zip:
|
|
zip.extractall(unzipped_dir)
|
|
|
|
|
|
def is_rerun_disabled_tests(
|
|
report: Path,
|
|
workflow_run_id: int,
|
|
workflow_run_attempt: int,
|
|
tests: dict[str, dict[str, int]],
|
|
) -> bool:
|
|
"""
|
|
Check if the test report is coming from rerun_disabled_tests workflow where
|
|
each test is run multiple times
|
|
"""
|
|
if all(
|
|
t.get("num_green", 0) + t.get("num_red", 0) > MAX_RETRY_IN_NON_DISABLED_MODE
|
|
for t in tests.values()
|
|
):
|
|
return True
|
|
job_id = get_job_id(report)
|
|
job_name = get_job_name(job_id, workflow_run_id, workflow_run_attempt)
|
|
return job_name is not None and "rerun_disabled_tests" in job_name
|
|
|
|
|
|
def get_job_id(report: Path) -> int | None:
|
|
# [Job id in artifacts]
|
|
# Retrieve the job id from the report path. In our GHA workflows, we append
|
|
# the job id to the end of the report name, so `report` looks like:
|
|
# unzipped-test-reports-foo_5596745227/test/test-reports/foo/TEST-foo.xml
|
|
# and we want to get `5596745227` out of it.
|
|
try:
|
|
return int(report.parts[0].rpartition("_")[2])
|
|
except ValueError:
|
|
return None
|
|
|
|
|
|
@lru_cache
|
|
def get_job_name(
|
|
id: int | None, workflow_id: int | None, workflow_run_attempt: int | None
|
|
) -> str | None:
|
|
if id is None:
|
|
return None
|
|
try:
|
|
if workflow_id is None:
|
|
response = requests.get(
|
|
f"{PYTORCH_REPO}/actions/jobs/{id}",
|
|
headers=_get_request_headers(),
|
|
)
|
|
if response.status_code != 200:
|
|
return None
|
|
return cast(str, response.json()["name"])
|
|
else:
|
|
|
|
@lru_cache
|
|
def _get_jobs(workflow_id: int) -> dict[int, str]:
|
|
jobs: dict[int, str] = {}
|
|
# Paginate
|
|
page = 1
|
|
while True:
|
|
response = requests.get(
|
|
f"{PYTORCH_REPO}/actions/runs/{workflow_id}/attempts/{workflow_run_attempt}/jobs",
|
|
headers=_get_request_headers(),
|
|
params={"page": page, "per_page": 100},
|
|
)
|
|
if response.status_code != 200:
|
|
return jobs
|
|
for job in response.json()["jobs"]:
|
|
jobs[job["id"]] = job["name"]
|
|
if "next" not in response.links:
|
|
break
|
|
page += 1
|
|
return jobs
|
|
|
|
jobs = _get_jobs(workflow_id)
|
|
return jobs[id]
|
|
except Exception:
|
|
return None
|