mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
# Motivation This PR intends to extend `cuda_lazy_init` to `device_lazy_init` which is a device-agnostic API that can support any backend. And change `maybe_initialize_cuda` to `maybe_initialize_device` to support lazy initialization for CUDA while maintaining scalability. # Design We maintain a flag for each backend to manage the lazy initialization state separately. # Additional Context No need more UTs. This is a reland PR, the original PR is [refactor lazy init to device-agnostic](https://github.com/pytorch/pytorch/pull/118846). This is a common PR, and does not trigger xpu ciflow. Differential Revision: [D53478332](https://our.internmc.facebook.com/intern/diff/D53478332) Pull Request resolved: https://github.com/pytorch/pytorch/pull/119248 Approved by: https://github.com/EikanWang, https://github.com/gujinghui, https://github.com/jgong5, https://github.com/atalman
82 lines
2.0 KiB
C++
82 lines
2.0 KiB
C++
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
|
|
// ${generated_comment}
|
|
|
|
#include "torch/csrc/Device.h"
|
|
#include "torch/csrc/DynamicTypes.h"
|
|
#include "torch/csrc/Exceptions.h"
|
|
#include "torch/csrc/autograd/python_nested_functions.h"
|
|
#include "torch/csrc/autograd/generated/python_return_types.h"
|
|
#include "torch/csrc/autograd/python_variable.h"
|
|
#include "torch/csrc/autograd/utils/wrap_outputs.h"
|
|
#include "torch/csrc/autograd/utils/python_arg_parsing.h"
|
|
#include "torch/csrc/autograd/generated/variable_factories.h"
|
|
#include "torch/csrc/utils/out_types.h"
|
|
#include "torch/csrc/utils/pycfunction_helpers.h"
|
|
#include "torch/csrc/utils/python_arg_parser.h"
|
|
#include "torch/csrc/utils/structseq.h"
|
|
#include "torch/csrc/utils/device_lazy_init.h"
|
|
|
|
#ifndef AT_PER_OPERATOR_HEADERS
|
|
#include <ATen/Functions.h>
|
|
#else
|
|
$ops_headers
|
|
#endif
|
|
|
|
using at::Tensor;
|
|
using at::Device;
|
|
using at::Layout;
|
|
using at::Scalar;
|
|
using at::ScalarType;
|
|
using at::Backend;
|
|
using at::OptionalDeviceGuard;
|
|
using at::DeviceGuard;
|
|
using at::TensorOptions;
|
|
using at::IntArrayRef;
|
|
using at::OptionalIntArrayRef;
|
|
using at::Generator;
|
|
using at::TensorList;
|
|
using at::Dimname;
|
|
using at::DimnameList;
|
|
|
|
using namespace torch::autograd::utils;
|
|
|
|
namespace torch::autograd {
|
|
|
|
// generated forward declarations start here
|
|
|
|
${py_forwards}
|
|
|
|
static PyMethodDef nested_functions[] = {
|
|
{NULL, NULL, 0, NULL},
|
|
${py_method_defs}
|
|
{NULL}
|
|
};
|
|
|
|
static PyObject* THPNestedVariableFunctionsModule = NULL;
|
|
|
|
void initNestedFunctions(PyObject* module) {
|
|
nested_functions[0] = get_nested_functions_manual()[0];
|
|
static struct PyModuleDef def = {
|
|
PyModuleDef_HEAD_INIT,
|
|
"torch._C._nested",
|
|
NULL,
|
|
-1,
|
|
nested_functions
|
|
};
|
|
PyObject* nested = PyModule_Create(&def);
|
|
THPNestedVariableFunctionsModule = nested;
|
|
if (!nested) {
|
|
throw python_error();
|
|
}
|
|
// steals a reference to nested
|
|
if (PyModule_AddObject(module, "_nested", nested) != 0) {
|
|
throw python_error();
|
|
}
|
|
}
|
|
|
|
// generated methods start here
|
|
|
|
${py_methods}
|
|
|
|
} // namespace torch::autograd
|