mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95025 Approved by: https://github.com/fegin
227 lines
8.3 KiB
Python
227 lines
8.3 KiB
Python
# Owner(s): ["oncall: distributed"]
|
|
|
|
import random
|
|
import sys
|
|
import unittest
|
|
from collections import OrderedDict
|
|
from dataclasses import dataclass
|
|
from enum import auto, Enum
|
|
from typing import List
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch import distributed as dist
|
|
from torch.distributed.fsdp._wrap_utils import _get_fully_sharded_module_to_states
|
|
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
|
|
from torch.distributed.utils import _apply_to_tensors, _replace_by_prefix
|
|
from torch.testing._internal.common_utils import (
|
|
instantiate_parametrized_tests,
|
|
parametrize,
|
|
run_tests,
|
|
subtest,
|
|
TEST_WITH_DEV_DBG_ASAN,
|
|
TestCase,
|
|
)
|
|
|
|
if not dist.is_available():
|
|
print("Distributed not available, skipping tests", file=sys.stderr)
|
|
sys.exit(0)
|
|
|
|
if TEST_WITH_DEV_DBG_ASAN:
|
|
print(
|
|
"Skip dev-asan as torch + multiprocessing spawn have known issues",
|
|
file=sys.stderr,
|
|
)
|
|
sys.exit(0)
|
|
|
|
|
|
class TestUtils(TestCase):
|
|
@parametrize(
|
|
"devices", [["cpu"], ["cuda"], subtest(["cpu", "cuda"], name="cpu_cuda")]
|
|
)
|
|
def test_apply_to_tensors(self, devices):
|
|
if "cuda" in devices and (
|
|
not torch.cuda.is_available() or torch.cuda.device_count() < 1
|
|
):
|
|
raise unittest.SkipTest("Skipped due to lack of GPU")
|
|
|
|
expected = 0
|
|
|
|
def get_a_tensor():
|
|
"""Return a random tensor on random device."""
|
|
dev = random.choice(devices)
|
|
shape = random.choice(((1), (2, 3), (4, 5, 6), (7, 8, 9, 10)))
|
|
t = torch.rand(shape).to(dev)
|
|
nonlocal expected
|
|
expected += t.numel()
|
|
return t
|
|
|
|
@dataclass
|
|
class SomeDataClass:
|
|
some_key: str
|
|
some_float: float
|
|
some_tensor: List[torch.Tensor]
|
|
|
|
# create a mixed bag of data.
|
|
data = [1, "str"]
|
|
data.append({"key1": get_a_tensor(), "key2": {1: get_a_tensor()}, "key3": 3})
|
|
data.insert(0, {"x", get_a_tensor(), get_a_tensor()})
|
|
data.append(([1], get_a_tensor(), (1), [get_a_tensor()], {1, 2}))
|
|
data.append({"abc": SomeDataClass("some_key", 1.0, [get_a_tensor()])})
|
|
od = OrderedDict()
|
|
od["k"] = "value"
|
|
data.append(od)
|
|
|
|
total = 0
|
|
|
|
def fn(t):
|
|
nonlocal total
|
|
total += t.numel()
|
|
return t
|
|
|
|
new_data = _apply_to_tensors(fn, data)
|
|
self.assertEqual(total, expected)
|
|
for i, v in enumerate(data):
|
|
self.assertEqual(type(new_data[i]), type(v))
|
|
|
|
def test_replace_by_prefix(self):
|
|
state_dict = {
|
|
"layer.a": torch.tensor(1),
|
|
"abc.layer.def": torch.tensor(2),
|
|
"layer.b": torch.tensor(3),
|
|
}
|
|
original_state_dict = state_dict.copy()
|
|
_replace_by_prefix(state_dict, "layer.", "module.layer.")
|
|
assert state_dict == {
|
|
"module.layer.a": torch.tensor(1),
|
|
"abc.layer.def": torch.tensor(2),
|
|
"module.layer.b": torch.tensor(3),
|
|
}
|
|
_replace_by_prefix(state_dict, "module.layer.", "layer.")
|
|
assert state_dict == original_state_dict
|
|
|
|
def test_packed_sequence(self):
|
|
"""Test to ensure RNN packed sequences are modified correctly."""
|
|
rnn = nn.RNN(5, 5)
|
|
|
|
x = torch.rand((5, 1, 5), dtype=torch.float)
|
|
seq_length = torch.tensor([4], dtype=torch.int)
|
|
|
|
def fill_fn(x):
|
|
x.fill_(0)
|
|
|
|
x = nn.utils.rnn.pack_padded_sequence(x, seq_length)
|
|
x, h = rnn(x)
|
|
x = _apply_to_tensors(fill_fn, x)
|
|
x, _ = nn.utils.rnn.pad_packed_sequence(x)
|
|
self.assertEqual(torch.sum(x), 0)
|
|
|
|
|
|
class TestGetSubmoduleToStates(TestCase):
|
|
"""Tests the function ``_get_fully_sharded_module_to_states()``."""
|
|
|
|
class SharedParameterMode(Enum):
|
|
"""
|
|
- ``PARENT_CHILD``: A parent submodule shares a parameter with a child
|
|
submodule.
|
|
- ``SIBLING``: Two sibling submodules share a parameter.
|
|
"""
|
|
|
|
PARENT_CHILD = auto()
|
|
SIBLING = auto() # TODO: not yet supported
|
|
|
|
class Model(nn.Module):
|
|
"""Nested model with buffers and a shared parameter."""
|
|
|
|
def __init__(self, shared_parameter_mode) -> None:
|
|
super().__init__()
|
|
self.seq1 = nn.Sequential(
|
|
nn.Linear(5, 5, bias=False),
|
|
nn.Linear(5, 5, bias=False),
|
|
)
|
|
self.seq1.register_buffer("seq1_buffer", torch.randn((5,)))
|
|
self.lin = nn.Linear(5, 5, bias=False)
|
|
self.seq2 = nn.Sequential(
|
|
nn.Sequential(nn.Linear(5, 5, bias=False)), nn.Linear(5, 5, bias=False)
|
|
)
|
|
if (
|
|
shared_parameter_mode
|
|
== TestGetSubmoduleToStates.SharedParameterMode.PARENT_CHILD
|
|
):
|
|
self.seq2[0][0].weight = self.lin.weight
|
|
elif (
|
|
shared_parameter_mode
|
|
== TestGetSubmoduleToStates.SharedParameterMode.SIBLING
|
|
):
|
|
self.seq2[0][0].weight = self.seq1[0].weight
|
|
self.seq2[1].register_buffer("seq2_1_buffer", torch.randn((5,)))
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
return self.seq2(self.lin(self.seq1(x))) # equivalent to one matmul
|
|
|
|
def test_get_fully_sharded_module_to_states(self):
|
|
"""
|
|
Tests the helper function ``_get_fully_sharded_module_states()`` that
|
|
performs the pseudo-auto-wrapping for the non-wrapper path.
|
|
|
|
NOTE: This test is hard coded against ``Model``.
|
|
"""
|
|
model = self.Model(TestGetSubmoduleToStates.SharedParameterMode.PARENT_CHILD)
|
|
|
|
# Compute the mapping from fully sharded module to states according to
|
|
# a logical module wrap policy
|
|
module_classes = (nn.Sequential,)
|
|
auto_wrap_policy = ModuleWrapPolicy(set(module_classes))
|
|
fully_sharded_module_to_states = _get_fully_sharded_module_to_states(
|
|
model, auto_wrap_policy, set(), set()
|
|
)
|
|
# Check the number of submodules with states in the mapping
|
|
num_submodules_with_states = sum(
|
|
isinstance(submodule, module_classes) for submodule in model.modules()
|
|
) # explicitly show how to compute the expected number
|
|
if not isinstance(model, module_classes):
|
|
num_submodules_with_states += 1 # always include the root
|
|
assert num_submodules_with_states == 4, f"{num_submodules_with_states}"
|
|
self.assertEqual(
|
|
len(fully_sharded_module_to_states), num_submodules_with_states
|
|
)
|
|
|
|
# Check the mapping, i.e. that the dict order follows `model.modules()`
|
|
# order and that the contents are expected
|
|
fully_sharded_modules = list(fully_sharded_module_to_states.keys())
|
|
expected_fully_sharded_modules = [
|
|
module
|
|
for module in model.modules()
|
|
if isinstance(module, nn.Sequential) or module is model
|
|
]
|
|
self.assertEqual(expected_fully_sharded_modules, fully_sharded_modules)
|
|
# - Root module `model`
|
|
self.assertEqual(fully_sharded_modules[0], model)
|
|
root_states = fully_sharded_module_to_states[fully_sharded_modules[0]]
|
|
self.assertEqual(root_states.params, [model.lin.weight])
|
|
self.assertEqual(root_states.buffers, [])
|
|
# - `seq1`
|
|
self.assertEqual(fully_sharded_modules[1], model.seq1)
|
|
seq1_states = fully_sharded_module_to_states[fully_sharded_modules[1]]
|
|
self.assertEqual(
|
|
seq1_states.params, [model.seq1[0].weight, model.seq1[1].weight]
|
|
)
|
|
self.assertEqual(seq1_states.buffers, [model.seq1.seq1_buffer])
|
|
# - `seq2`
|
|
self.assertEqual(fully_sharded_modules[2], model.seq2)
|
|
seq2_states = fully_sharded_module_to_states[fully_sharded_modules[2]]
|
|
self.assertEqual(seq2_states.params, [model.seq2[1].weight])
|
|
self.assertEqual(seq2_states.buffers, [model.seq2[1].seq2_1_buffer])
|
|
# - `seq2[0]`
|
|
self.assertEqual(fully_sharded_modules[3], model.seq2[0])
|
|
seq2_0_states = fully_sharded_module_to_states[fully_sharded_modules[3]]
|
|
self.assertEqual(seq2_0_states.params, []) # shared parameter
|
|
self.assertEqual(seq2_0_states.buffers, [])
|
|
|
|
|
|
instantiate_parametrized_tests(TestUtils)
|
|
instantiate_parametrized_tests(TestGetSubmoduleToStates)
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|