pytorch/torch/csrc/jit/serialization/pickler.h
2025-09-04 19:43:17 +00:00

184 lines
6.2 KiB
C++

#pragma once
#include <string>
#include <string_view>
#include <utility>
#include <vector>
#include <ATen/Utils.h>
#include <ATen/core/ivalue.h>
#include <ATen/core/jit_type.h>
#include <ATen/core/qualified_name.h>
#include <c10/util/ArrayRef.h>
#include <c10/util/FbcodeMaps.h>
#include <c10/util/intrusive_ptr.h>
#include <torch/csrc/Export.h>
#include <torch/csrc/jit/serialization/pickler_helper.h>
namespace torch::jit {
using ::c10::IValue;
class TORCH_API Pickler {
AT_DISALLOW_COPY_AND_ASSIGN(Pickler);
public:
Pickler(std::function<void(const char*, size_t)> writer)
: Pickler(std::move(writer), nullptr, nullptr, nullptr) {}
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
Pickler(
std::function<void(const char*, size_t)> writer,
std::vector<at::Tensor>* tensor_table,
std::function<c10::QualifiedName(const c10::ClassTypePtr&)> type_renamer,
std::vector<c10::ClassTypePtr>* memoized_class_types,
std::function<std::string(const at::Tensor&)> get_tensor_id = nullptr,
bool tag_aggregates = true)
: writer_(std::move(writer)),
tensor_table_(tensor_table),
type_renamer_(std::move(type_renamer)),
memoized_class_types_(memoized_class_types),
get_tensor_id_(std::move(get_tensor_id)),
tag_aggregates_(tag_aggregates) {}
~Pickler();
// Push protocol onto the stack
void protocol();
// Push STOP PickleOpCode onto the stack
void stop();
void pushIValue(const IValue& ivalue);
void startTuple();
void endTuple();
const std::vector<at::Tensor>& tensorData() {
return tensor_data_;
}
void pushEmptyDict();
void pushDict(const IValue& ivalue);
void pushInt(int64_t value);
void pushLong(const std::string& data);
private:
void pushIValueImpl(const IValue& ivalue);
void startTypeTag();
void endTypeTag(const IValue& value);
void pushBool(bool value);
void pushDouble(double value);
void pushComplexDouble(const IValue& value);
void pushGenericList(const IValue& ivalue);
void pushIntList(const IValue& ivalue);
void pushList(const IValue& ivalue);
void pushTensor(const IValue& ivalue);
void pushTensorReference(const IValue& ivalue);
void pushLiteralTensor(const IValue& ivalue);
void pushLiteralSparseTensor(const at::Tensor& tensor);
void pushTuple(const IValue& ivalue);
void pushString(const std::string& string);
void pushDevice(const IValue& ivalue);
void pushRRef(const IValue& ivalue);
// unmemoized version
void pushStringImpl(const std::string& string);
void pushStorageOfTensor(const at::Tensor& tensor);
void pushBinGet(uint32_t memo_id);
void pushSpecializedList(
const IValue& ivalue,
const char* list_name,
const std::function<void(const IValue&)>& item_pusher);
void pushGlobal(std::string_view module_name, std::string_view class_name);
// raw string data is appended directly to the byte stream
void pushBytes(const std::string& string);
void pushTensorData(const at::Tensor& tensor);
// Add a BINPUT op and return the memoization id used
size_t pushNextBinPut();
const void* getPointer(const IValue& ivalue);
// Caller checks that bufferPos_ > 0
void flushNonEmpty() {
writer_(buffer_.data(), bufferPos_);
bufferPos_ = 0;
}
void flush() {
if (bufferPos_ != 0) {
flushNonEmpty();
}
}
// These convert values to bytes and add them to the stack (NB: since T is to
// the left of a '::', its type cannot be deduced by the compiler so one must
// explicitly instantiate the template, i.e. push<int>(int) works, push(int)
// does not)
static constexpr size_t kBufferSize = 256;
template <typename T>
void push(std::common_type_t<T> value) {
const char* begin = reinterpret_cast<const char*>(&value);
if (bufferPos_ + sizeof(T) > buffer_.size()) {
flushNonEmpty();
}
static_assert(sizeof(T) <= kBufferSize, "Buffer size assumption");
memcpy(buffer_.data() + bufferPos_, begin, sizeof(T));
bufferPos_ += sizeof(T);
}
// Stream to write binary data to
// Code shouldn't call writer_ directly without first flushing.
std::function<void(const char*, size_t)> writer_;
// Buffer to avoid calling a writer_ on a per-byte basis.
std::array<char, kBufferSize> buffer_;
size_t bufferPos_{0};
// Stack of opcodes/data
std::vector<char> stack_;
// External table of tensors to serialize. If this is missing, then tensors
// are serialized directly into the pickle
std::vector<at::Tensor>* tensor_table_;
// TODO: only use this if necessary (add a pass to find all shared ivalues,
// and only memoize those)
uint32_t memo_id_ = 0;
// Memoization of IValues that have been written (index in table is used for
// BINPUT opcodes) to enable shared references
c10::FastMap<const void*, uint32_t> memoized_ivalue_map_;
// because we de-dup ivalues based on their raw pointer address in the above
// map we need to keep all the memoized values alive during the pickle.
// Otherwise, it is possible that a raw address gets reused for another
// object, and we will alias it to the old object at that address.
std::vector<IValue> memoized_ivalues_;
std::function<c10::QualifiedName(const c10::ClassTypePtr&)> type_renamer_;
// List of all the types that it wrote, inspect from the IValues it wrote.
std::vector<c10::ClassTypePtr>* memoized_class_types_;
// Function to grab next id_name for tensor storage, function is responsible
// for returning unique ids
std::function<std::string(const at::Tensor&)> get_tensor_id_;
// List of tensor storages to serialize in the same binary as the pickle data
// similar to ivalues, they are memoized using BINPUT
std::vector<at::Tensor> tensor_data_;
c10::FastMap<const void*, uint32_t> memoized_storage_map_;
c10::FastMap<std::string, uint32_t> memoized_globals_map_;
c10::FastMap<std::string, uint32_t> memoized_strings_map_;
c10::FastMap<std::string, uint32_t> memoized_devices_map_;
// when true, List and Dict objects will be wrapped in a
// torch.jit._pickle.restore_type_tag call to correctly set the dynamic
// TorchScript type for the object. When true the thing unpickling must have
// torch installed.
bool tag_aggregates_;
};
} // namespace torch::jit