mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Assign `has_gpu_support = has_cuda_support or has_hip_support` and make according changes in python tests. Pull Request resolved: https://github.com/pytorch/pytorch/pull/16748 Differential Revision: D13983132 Pulled By: bddppq fbshipit-source-id: ca496fd8c6ae3549b736bebd3ace7fa20a6dad7f
104 lines
3.1 KiB
Python
104 lines
3.1 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from caffe2.python import core, workspace
|
|
from caffe2.python.test.executor_test_util import (
|
|
build_conv_model,
|
|
build_resnet50_dataparallel_model,
|
|
run_resnet50_epoch,
|
|
ExecutorTestBase,
|
|
executor_test_settings,
|
|
executor_test_model_names)
|
|
|
|
from caffe2.python.test_util import TestCase
|
|
|
|
from hypothesis import given
|
|
import hypothesis.strategies as st
|
|
|
|
import unittest
|
|
|
|
|
|
EXECUTORS = ["parallel", "async_scheduling"]
|
|
ITERATIONS = 1
|
|
|
|
|
|
class ExecutorCPUConvNetTest(ExecutorTestBase):
|
|
@given(executor=st.sampled_from(EXECUTORS),
|
|
model_name=st.sampled_from(executor_test_model_names()),
|
|
batch_size=st.sampled_from([1]),
|
|
num_workers=st.sampled_from([8]))
|
|
@executor_test_settings
|
|
def test_executor(self, executor, model_name, batch_size, num_workers):
|
|
model = build_conv_model(model_name, batch_size)
|
|
model.Proto().num_workers = num_workers
|
|
|
|
def run_model():
|
|
iterations = ITERATIONS
|
|
if model_name == "MLP":
|
|
iterations = 1 # avoid numeric instability with MLP gradients
|
|
workspace.RunNet(model.net, iterations)
|
|
|
|
self.compare_executors(
|
|
model,
|
|
ref_executor="simple",
|
|
test_executor=executor,
|
|
model_run_func=run_model,
|
|
)
|
|
|
|
|
|
@unittest.skipIf(not workspace.has_gpu_support, "no gpu")
|
|
class ExecutorGPUResNetTest(ExecutorTestBase):
|
|
@given(executor=st.sampled_from(EXECUTORS),
|
|
num_workers=st.sampled_from([8]))
|
|
@executor_test_settings
|
|
def test_executor(self, executor, num_workers):
|
|
model = build_resnet50_dataparallel_model(
|
|
num_gpus=workspace.NumGpuDevices(), batch_size=8, epoch_size=8)
|
|
model.Proto().num_workers = num_workers
|
|
|
|
def run_model():
|
|
run_resnet50_epoch(model, batch_size=8, epoch_size=8)
|
|
|
|
self.compare_executors(
|
|
model,
|
|
ref_executor="simple",
|
|
test_executor=executor,
|
|
model_run_func=run_model,
|
|
)
|
|
|
|
|
|
class ExecutorFailingOpTest(TestCase):
|
|
def test_failing_op(self):
|
|
def create_failing_net(throw_exception):
|
|
net = core.Net("failing_net")
|
|
if throw_exception:
|
|
net.ThrowException([], [])
|
|
else:
|
|
net.Fail([], [])
|
|
net.Proto().type = "async_scheduling"
|
|
return net
|
|
|
|
workspace.ResetWorkspace()
|
|
net = create_failing_net(throw_exception=True)
|
|
workspace.CreateNet(net)
|
|
with self.assertRaises(RuntimeError):
|
|
workspace.RunNet(net)
|
|
|
|
with self.assertRaises(RuntimeError):
|
|
workspace.RunNet(net, allow_fail=True)
|
|
|
|
workspace.ResetWorkspace()
|
|
net = create_failing_net(throw_exception=False)
|
|
workspace.CreateNet(net)
|
|
|
|
with self.assertRaises(RuntimeError):
|
|
workspace.RunNet(net)
|
|
|
|
res = workspace.RunNet(net, allow_fail=True)
|
|
self.assertFalse(res)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|