mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/9380 Differential Revision: D8821294 Pulled By: zou3519 fbshipit-source-id: b375cd0de9042bcaef1d22de104966fb704bd43e
156 lines
5.4 KiB
Python
156 lines
5.4 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
from caffe2.python.core import DataType, BlobReference, ScopedBlobReference
|
|
from caffe2.python.modeling.parameter_info import ParameterInfo
|
|
|
|
import six
|
|
|
|
|
|
class Initializer(object):
|
|
'''
|
|
This class abstracts out parameter creation. One can come up with a new
|
|
Initializer in order to implement more complex parameter initializaion logic
|
|
'''
|
|
|
|
def __init__(self, operator_name=None, **kwargs):
|
|
self.operator_name = operator_name
|
|
self.operator_kwargs = kwargs
|
|
|
|
def update(self, operator_name, kwargs):
|
|
if self.operator_name is not None:
|
|
raise Exception("Operator name overwrites are not allowed")
|
|
self.operator_name = operator_name
|
|
self.operator_kwargs = kwargs
|
|
|
|
def create_param(self, param_name, init_net, shape):
|
|
param = init_net.__getattr__(self.operator_name)(
|
|
[], param_name, shape=shape, **self.operator_kwargs)
|
|
return ParameterInfo(
|
|
param_id=None,
|
|
param=param,
|
|
shape=shape,
|
|
)
|
|
|
|
|
|
class ExternalInitializer(object):
|
|
'''
|
|
This class is used in cases when the parameter should not be initialized by
|
|
the initializer, but rather provided in the workspace when param_init_net is
|
|
executed.
|
|
|
|
Current version is not doing any real sanity checks to the parameter.
|
|
'''
|
|
|
|
def create_param(self, param_name, init_net, shape):
|
|
if isinstance(param_name, BlobReference):
|
|
param = BlobReference(str(param_name), init_net)
|
|
elif isinstance(param_name, six.string_types):
|
|
param = ScopedBlobReference(param_name, init_net)
|
|
else:
|
|
raise "Unsupported type for param_name"
|
|
# TODO(amalevich): Add operator that will check param in the workspace
|
|
return ParameterInfo(
|
|
param_id=None,
|
|
param=param,
|
|
shape=shape,
|
|
)
|
|
|
|
|
|
class PseudoFP16Initializer(Initializer):
|
|
'''
|
|
Used in cases when the parameter should be used at half (16-bit) precision
|
|
for compute purposes (i.e. on the forward and backward pass) but
|
|
needs to be stored and optimized at single (32-bit) precision so tiny
|
|
gradients with small learning rates don't underflow FP16 precision.
|
|
A 32-bit copy of the 16-bit blob is stored in the ParameterInfo.
|
|
This is helpful for mixed-precision training, see
|
|
https://arxiv.org/abs/1710.03740 for details.
|
|
'''
|
|
def update(self, operator_name, kwargs):
|
|
if self.operator_name is not None:
|
|
raise Exception("Operator name overwrites are not allowed")
|
|
self.operator_name = operator_name
|
|
self.operator_kwargs = kwargs
|
|
|
|
def create_param(self, param_name, init_net, shape):
|
|
# create master fp32 copy
|
|
param_fp32 = init_net.__getattr__(self.operator_name)(
|
|
[], param_name + "_fp32", shape=shape,
|
|
**self.operator_kwargs)
|
|
# cast to fp16 copy
|
|
param = init_net.FloatToHalf(
|
|
param_fp32, param_name)
|
|
|
|
return ParameterInfo(
|
|
param_id=None,
|
|
param=param,
|
|
shape=shape,
|
|
blob_copy={DataType.FLOAT: param_fp32}
|
|
)
|
|
|
|
|
|
class ReversePseudoFP16Initializer(Initializer):
|
|
'''
|
|
Like PseudoFP16Initializer above, except the primary blob is taken to
|
|
be the 32-bit precision parameter, and the 16-bit version of the blob
|
|
is stored in blob_copy instead.
|
|
'''
|
|
def update(self, operator_name, kwargs):
|
|
if self.operator_name is not None:
|
|
raise Exception("Operator name overwrites are not allowed")
|
|
self.operator_name = operator_name
|
|
self.operator_kwargs = kwargs
|
|
|
|
def create_param(self, param_name, init_net, shape):
|
|
# create master fp32 copy
|
|
param_fp32 = init_net.__getattr__(self.operator_name)(
|
|
[], param_name, shape=shape,
|
|
**self.operator_kwargs)
|
|
# cast to fp16 copy
|
|
param_fp16 = init_net.FloatToHalf(
|
|
param_fp32, param_name + "_fp16")
|
|
|
|
return ParameterInfo(
|
|
param_id=None,
|
|
param=param_fp32,
|
|
shape=shape,
|
|
blob_copy={DataType.FLOAT16: param_fp16}
|
|
)
|
|
|
|
def update_initializer(initializer_class,
|
|
operator_name_and_kwargs,
|
|
default_operator_name_and_kwargs):
|
|
'''
|
|
A helper function to convert from operator_name_and_kwargs to new
|
|
object of type initializer_class. This function serves two purposes:
|
|
|
|
1. Support for custom initialization operators being passed in
|
|
2. Allow user to specify a custom Initializer without overwriting
|
|
default operators used for initialization
|
|
|
|
If initializer_class is None, creates a default initializer using
|
|
the Initializer class and operator_name_and_kwargs provided
|
|
|
|
If operator_name_and_kwargs is None, uses default_operator_name_and_kwargs
|
|
|
|
returns an instantiated Initializer object
|
|
'''
|
|
def get_initializer_args():
|
|
return (
|
|
operator_name_and_kwargs or
|
|
default_operator_name_and_kwargs
|
|
)
|
|
|
|
if initializer_class is not None:
|
|
init = initializer_class(get_initializer_args()[0],
|
|
**get_initializer_args()[1])
|
|
else:
|
|
init = Initializer(
|
|
get_initializer_args()[0],
|
|
**get_initializer_args()[1]
|
|
)
|
|
return init
|