mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
63 lines
2.0 KiB
Python
63 lines
2.0 KiB
Python
## @package fc_without_bias
|
|
# Module caffe2.python.layers.fc_without_bias
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
from caffe2.python import schema
|
|
from caffe2.python.layers.layers import ModelLayer
|
|
from caffe2.python.layers.sampling_trainable_mixin import SamplingTrainableMixin
|
|
|
|
import math
|
|
import numpy as np
|
|
|
|
|
|
class FCWithoutBias(SamplingTrainableMixin, ModelLayer):
|
|
def __init__(
|
|
self,
|
|
model,
|
|
input_record,
|
|
output_dims,
|
|
weight_init=None,
|
|
weight_optim=None,
|
|
name='fc_without_bias',
|
|
**kwargs
|
|
):
|
|
super(FCWithoutBias, self).__init__(model, name, input_record, **kwargs)
|
|
assert isinstance(input_record, schema.Scalar), "Incorrect input type"
|
|
assert len(input_record.field_types()[0].shape) > 0, (
|
|
"FCWithoutBias expects limited dimensions of the input tensor"
|
|
)
|
|
|
|
input_dims = input_record.field_types()[0].shape[0]
|
|
assert input_dims > 0, (
|
|
"FCWithoutBias expects input dimensions > 0, got {}".format(input_dims)
|
|
)
|
|
|
|
self.output_schema = schema.Scalar(
|
|
(np.float32, (output_dims, )),
|
|
self.get_next_blob_reference('output')
|
|
)
|
|
|
|
scale = math.sqrt(1.0 / input_dims)
|
|
weight_init = weight_init if weight_init else (
|
|
'UniformFill', {'min': -scale,
|
|
'max': scale}
|
|
)
|
|
|
|
self.w = self.create_param(param_name='w',
|
|
shape=[output_dims, input_dims],
|
|
initializer=weight_init,
|
|
optimizer=weight_optim)
|
|
|
|
def _add_ops(self, net, params):
|
|
net.MatMul(
|
|
self.input_record.field_blobs() + params,
|
|
self.output_schema.field_blobs(), trans_b=1, **self.kwargs
|
|
)
|
|
|
|
@property
|
|
def param_blobs(self):
|
|
return [self.w]
|