mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Fixes https://github.com/pytorch/pytorch/issues/103125 torch._C._get_privateuse1_backend_name() will cause graph break, so I add it to the functions. Pull Request resolved: https://github.com/pytorch/pytorch/pull/103141 Approved by: https://github.com/yanboliang
295 lines
14 KiB
Python
295 lines
14 KiB
Python
import torch
|
|
from torch._C import _rename_privateuse1_backend, _get_privateuse1_backend_name
|
|
from typing import List, Optional, Union
|
|
|
|
__all__ = ["rename_privateuse1_backend", "generate_methods_for_privateuse1_backend"]
|
|
|
|
def rename_privateuse1_backend(backend_name: str) -> None:
|
|
r"""
|
|
rename_privateuse1_backend(backend_name) -> None
|
|
|
|
Note: support the custom device with privateuse1
|
|
This is a registration API for external backends that would like to register their
|
|
own device and C++ kernels out of tree.
|
|
|
|
The steps are:
|
|
(1) (In C++) implement kernels for various torch operations, and register them
|
|
to the PrivateUse1 dispatch key.
|
|
(2) (In python) call torch.register_privateuse1_backend("foo")
|
|
|
|
You can now use "foo" as an ordinary device string in python.
|
|
|
|
Note: this API can only be called once per process. Attempting to change
|
|
the external backend after it's already been set will result in an error.
|
|
|
|
Note(AMP): If you want to support AMP on your device, you can register a custom backend module.
|
|
The backend must register a custom backend module with `torch._register_device_module("foo", BackendModule)`.
|
|
BackendModule needs to have the following API's:
|
|
|
|
(1) get_amp_supported_dtype() -> List[torch.dtype]
|
|
get the supported dtypes on your `foo` device in AMP, maybe the `foo` device supports one more dtype.
|
|
|
|
(2) is_autocast_enabled() -> bool
|
|
check the AMP is enabled or not on your `foo` device.
|
|
|
|
(3) get_autocast_dtype() -> torch.dtype
|
|
get the supported dtype on your `foo` device in AMP, which is set by `set_autocast_dtype` or the
|
|
default dtype, and the default dtype is `torch.float16`.
|
|
|
|
(4) set_autocast_enabled(bool) -> None
|
|
enable the AMP or not on your `foo` device.
|
|
|
|
(5) set_autocast_dtype(dtype) -> None
|
|
set the supported dtype on your `foo` device in AMP, and the dtype be contained in the dtypes got
|
|
from `get_amp_supported_dtype`.
|
|
|
|
Note(random): If you want to support to set seed for your device, BackendModule needs to have the following API's:
|
|
|
|
(1) _is_in_bad_fork() -> bool
|
|
Return `True` if now it is in bad_fork, else return `False`.
|
|
|
|
(2) manual_seed_all(seed: int) -> None
|
|
Sets the seed for generating random numbers for your devices.
|
|
|
|
(3) device_count() -> int:
|
|
Returns the number of `foo`s available.
|
|
|
|
(4) get_rng_state(device: Union[int, str, torch.device] = 'foo') -> Tensor:
|
|
Returns a list of ByteTensor representing the random number states of all devices.
|
|
|
|
(5) set_rng_state(new_state: Tensor, device: Union[int, str, torch.device] = 'foo') -> None:
|
|
Sets the random number generator state of the specified `foo` device.
|
|
|
|
And there are some common funcs:
|
|
(1) is_available() -> bool:
|
|
Returns a bool indicating if `foo` is currently available.
|
|
For more details, see https://pytorch.org/tutorials/advanced/extend_dispatcher.html#get-a-dispatch-key-for-your-backend
|
|
For an existing example, see https://github.com/bdhirsh/pytorch_open_registration_example
|
|
|
|
(2) current_device() -> int:
|
|
Returns the index of a currently selected device.
|
|
|
|
Example::
|
|
|
|
>>> # xdoctest: +SKIP("failing")
|
|
>>> torch.register_privateuse1_backend("foo")
|
|
# This will work, assuming that you've implemented the right C++ kernels
|
|
# to implement torch.ones.
|
|
>>> a = torch.ones(2, device="foo")
|
|
"""
|
|
return _rename_privateuse1_backend(backend_name)
|
|
|
|
|
|
def _check_register_once(module, attr):
|
|
if hasattr(module, attr):
|
|
raise RuntimeError(f"The custom device module of {module} has already been registered with {attr}")
|
|
|
|
|
|
def _normalization_device(custom_backend_name: str, device: Optional[Union[int, str, torch.device]] = None) -> int:
|
|
def _get_current_device_index():
|
|
_get_device_index = "current_device"
|
|
if hasattr(torch, custom_backend_name) and \
|
|
hasattr(getattr(torch, custom_backend_name), _get_device_index):
|
|
return getattr(getattr(torch, custom_backend_name), _get_device_index)()
|
|
else:
|
|
# The default device index is 0.
|
|
return 0
|
|
|
|
if device is None:
|
|
return _get_current_device_index()
|
|
# if isinstance(device, str), this means that the parameter passed in is in the string format "foo:0"
|
|
# convert str object to torch.device object, and then process it uniformly
|
|
elif isinstance(device, str):
|
|
device = torch.device(device)
|
|
|
|
# variable devcie can only be torch.device type or int type
|
|
if isinstance(device, torch.device):
|
|
if device.type != custom_backend_name:
|
|
raise RuntimeError(f"Invalid device, must be {custom_backend_name} device")
|
|
elif device.index is None:
|
|
device_idx = _get_current_device_index()
|
|
else:
|
|
device_idx = device.index
|
|
# if isinstance(device, int), we can take the index number directly
|
|
else:
|
|
device_idx = device
|
|
return device_idx
|
|
|
|
|
|
def _generate_tensor_methods_for_privateuse1_backend(custom_backend_name: str) -> None:
|
|
@property # type: ignore[misc]
|
|
def wrap_tensor_backend(self: torch.Tensor) -> bool:
|
|
return self.device.type == custom_backend_name
|
|
|
|
_check_register_once(torch.Tensor, f'is_{custom_backend_name}')
|
|
setattr(torch.Tensor, f'is_{custom_backend_name}', wrap_tensor_backend)
|
|
|
|
def wrap_tensor_to(self: torch.Tensor, device: Optional[Union[int, torch.device]] = None, non_blocking=False,
|
|
**kwargs) -> torch.Tensor:
|
|
r"""Performs Tensor device conversion. Call the to operator implementation.
|
|
|
|
.. note::
|
|
If the ``self`` Tensor already
|
|
has the correct :class:`torch.device`, then ``self`` is returned.
|
|
Otherwise, the returned tensor is a copy of ``self`` with the desired :class:`torch.device`.
|
|
|
|
Args:
|
|
device (int, optional): if specified, all parameters will be copied to that device
|
|
non_blocking (bool): If ``True`` and the source is in pinned memory,
|
|
the copy will be asynchronous with respect to the host. Otherwise,
|
|
the argument has no effect.
|
|
**kwargs (dict): For compatibility, may contain the key ``memory_format`` argument.
|
|
"""
|
|
device_idx = _normalization_device(custom_backend_name, device)
|
|
return self.to(device=torch.device(f'{custom_backend_name}:{device_idx}'), non_blocking=non_blocking, **kwargs)
|
|
|
|
_check_register_once(torch.Tensor, custom_backend_name)
|
|
setattr(torch.Tensor, custom_backend_name, wrap_tensor_to)
|
|
|
|
|
|
def _generate_module_methods_for_privateuse1_backend(custom_backend_name: str) -> None:
|
|
# Generate Module attributes and methods depends on Tensor methods,
|
|
# so we need to check whether Tensor methods is already registered.
|
|
if not hasattr(torch.Tensor, custom_backend_name):
|
|
raise RuntimeError(
|
|
f"Can not automatically generate {custom_backend_name}() method for torch.nn.Module."
|
|
f"Because torch.Tensor doesn't has the method {custom_backend_name}()."
|
|
f"For this error, you can try setting for_tensor=True.")
|
|
|
|
def wrap_module_to(self: torch.nn.modules.module.T,
|
|
device: Optional[Union[int, torch.device]] = None) -> torch.nn.modules.module.T:
|
|
r"""Moves all model parameters and buffers to the custom device.
|
|
|
|
This also makes associated parameters and buffers different objects. So
|
|
it should be called before constructing optimizer if the module will
|
|
live on device while being optimized.
|
|
|
|
.. note::
|
|
This method modifies the module in-place.
|
|
|
|
Args:
|
|
device (int, optional): if specified, all parameters will be copied to that device
|
|
"""
|
|
return self._apply(lambda t: getattr(t, custom_backend_name)(device))
|
|
|
|
_check_register_once(torch.nn.Module, custom_backend_name)
|
|
setattr(torch.nn.Module, custom_backend_name, wrap_module_to)
|
|
|
|
|
|
def _generate_storage_methods_for_privateuse1_backend(custom_backend_name: str,
|
|
unsupported_dtype: List[torch.dtype] = None) -> None:
|
|
# Attribute is registered in the _StorageBase class
|
|
# and UntypedStorage obtains through inheritance.
|
|
@property # type: ignore[misc]
|
|
def wrap_storage_backend(self: torch.storage._StorageBase) -> bool:
|
|
r"""Returns the internal :class:`torch.UntypedStorage`"""
|
|
return self.device.type == custom_backend_name
|
|
|
|
_check_register_once(torch.storage._StorageBase, f'is_{custom_backend_name}')
|
|
setattr(torch.storage._StorageBase, f'is_{custom_backend_name}', wrap_storage_backend)
|
|
|
|
def wrap_storage_to(self, device=None, non_blocking=False):
|
|
r"""Returns a copy of this object in custom device memory.
|
|
|
|
If this object is already in device memory and on the correct device, then
|
|
no copy is performed and the original object is returned.
|
|
|
|
Args:
|
|
device (int): The destination device id. Defaults to the current device.
|
|
non_blocking (bool): If ``True`` and the source is in pinned memory,
|
|
the copy will be asynchronous with respect to the host. Otherwise,
|
|
the argument has no effect.
|
|
"""
|
|
# There should be a judgment related to storage device and a judgment related to storage type,
|
|
# but it depends on the extended function, so this part is temporarily omitted in the automatic generation.
|
|
device_idx = _normalization_device(custom_backend_name, device)
|
|
|
|
if getattr(self, f'is_{custom_backend_name}'):
|
|
# storage has already on expected device.
|
|
if self.get_device() == device_idx:
|
|
return self
|
|
# For sparse storage, custom need to extend the implementation by themselves.
|
|
if self.is_sparse:
|
|
raise RuntimeError(f"Can not support a sparse storage move to {custom_backend_name} backend")
|
|
# create untyped_storage and copy data
|
|
untyped_storage = torch.UntypedStorage(
|
|
self.size(), device=torch.device(f'{custom_backend_name}:{device_idx}')
|
|
)
|
|
untyped_storage.copy_(self, non_blocking)
|
|
return untyped_storage
|
|
|
|
_check_register_once(torch.storage._StorageBase, custom_backend_name)
|
|
setattr(torch.storage._StorageBase, custom_backend_name, wrap_storage_to)
|
|
|
|
# Register the corresponding attribute for the TypedStorage class.
|
|
# When the TypedStorage class is removed, the registration is also removed.
|
|
|
|
@property # type: ignore[misc]
|
|
def wrap_typed_storage_backend(self: torch.storage.TypedStorage) -> bool:
|
|
torch.storage._warn_typed_storage_removal()
|
|
return self._untyped_storage.device.type == custom_backend_name
|
|
|
|
_check_register_once(torch.TypedStorage, f'is_{custom_backend_name}')
|
|
setattr(torch.storage.TypedStorage, f'is_{custom_backend_name}', wrap_typed_storage_backend)
|
|
|
|
def wrap_typed_storage_to(self: torch.storage.TypedStorage,
|
|
device=None, non_blocking=False, **kwargs) -> torch.storage.TypedStorage:
|
|
torch.storage._warn_typed_storage_removal()
|
|
if unsupported_dtype and self.dtype in unsupported_dtype:
|
|
raise RuntimeError(f"Cannot create {custom_backend_name} storage "
|
|
f"as {self.dtype} dtype is not supported by this backend")
|
|
custom_backend_storage: torch.UntypedStorage = getattr(
|
|
self._untyped_storage, custom_backend_name)(device, non_blocking, **kwargs)
|
|
return self._new_wrapped_storage(custom_backend_storage)
|
|
|
|
_check_register_once(torch.TypedStorage, custom_backend_name)
|
|
setattr(torch.TypedStorage, custom_backend_name, wrap_typed_storage_to)
|
|
|
|
|
|
def generate_methods_for_privateuse1_backend(for_tensor: bool = True, for_module: bool = True,
|
|
for_storage: bool = False,
|
|
unsupported_dtype: List[torch.dtype] = None) -> None:
|
|
r"""
|
|
generate_methods_for_privateuse1_backend(for_tensor, for_module, for_storage, unsupported_dtype) -> None
|
|
|
|
Args:
|
|
for_tensor (bool): whether register related methods for torch.Tensor class.
|
|
for_module (bool): whether register related methods for torch.nn.Module class.
|
|
for_storage (bool): whether register related methods for torch.Storage class.
|
|
unsupported_dtype(List[torch.dtype]): takes effect only when the storage method needs to be generated,
|
|
indicating that the storage does not support the torch.dtype type.
|
|
|
|
Automatically generate attributes and methods for the custom backend after rename privateuse1 backend.
|
|
In the default scenario, storage-related methods will not be generated automatically.
|
|
|
|
When you implement kernels for various torch operations, and register them to the PrivateUse1 dispatch key.
|
|
And call the function torch.rename_privateuse1_backend("foo") to rename your backend name.
|
|
At this point, you can easily register specific methods and attributes by calling this function.
|
|
Just like torch.Tensor.foo(), torch.Tensor.is_foo, torch.Storage.foo(), torch.Storage.is_foo.
|
|
|
|
Note: We recommend you use generic functions (check devices are equal or to(device=)).
|
|
We provide these methods for convenience only and they will be "monkey patched" onto the objects
|
|
and so will not be properly typed. For Storage methods generate, if you need to support sparse data storage,
|
|
you need to extend the implementation yourself.
|
|
|
|
Example::
|
|
|
|
>>> # xdoctest: +SKIP("failing")
|
|
>>> torch.utils.register_privateuse1_backend("foo")
|
|
>>> torch.utils.generate_for_privateuse1_backend()
|
|
# Then automatically generate backend-related attributes and methods.
|
|
>>> a = torch.tensor(2).foo()
|
|
>>> a.is_foo
|
|
>>> hasattr(torch.nn.Module, 'foo')
|
|
"""
|
|
custom_backend_name = _get_privateuse1_backend_name()
|
|
|
|
if for_tensor:
|
|
_generate_tensor_methods_for_privateuse1_backend(custom_backend_name)
|
|
|
|
if for_module:
|
|
_generate_module_methods_for_privateuse1_backend(custom_backend_name)
|
|
|
|
if for_storage:
|
|
_generate_storage_methods_for_privateuse1_backend(custom_backend_name, unsupported_dtype)
|