mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
239 lines
6.5 KiB
C
239 lines
6.5 KiB
C
#include "THGeneral.h"
|
|
#include "THRandom.h"
|
|
|
|
/* The initial seed. */
|
|
static unsigned long the_initial_seed;
|
|
|
|
/* Code for the Mersenne Twister random generator.... */
|
|
#define n 624
|
|
#define m 397
|
|
static int left = 1;
|
|
static int initf = 0;
|
|
static unsigned long *next;
|
|
static unsigned long state[n]; /* the array for the state vector */
|
|
/********************************/
|
|
|
|
/* For normal distribution */
|
|
static double normal_x;
|
|
static double normal_y;
|
|
static double normal_rho;
|
|
static int normal_is_valid = 0;
|
|
|
|
unsigned long THRandom_seed()
|
|
{
|
|
unsigned long s = (unsigned long)time(0);
|
|
THRandom_manualSeed(s);
|
|
return s;
|
|
}
|
|
|
|
/* The next 4 methods are taken from http:www.math.keio.ac.jpmatumotoemt.html
|
|
Here is the copyright:
|
|
Some minor modifications have been made to adapt to "my" C... */
|
|
|
|
/*
|
|
A C-program for MT19937, with initialization improved 2002/2/10.
|
|
Coded by Takuji Nishimura and Makoto Matsumoto.
|
|
This is a faster version by taking Shawn Cokus's optimization,
|
|
Matthe Bellew's simplification, Isaku Wada's double version.
|
|
|
|
Before using, initialize the state by using init_genrand(seed)
|
|
or init_by_array(init_key, key_length).
|
|
|
|
Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
3. The names of its contributors may not be used to endorse or promote
|
|
products derived from this software without specific prior written
|
|
permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
Any feedback is very welcome.
|
|
http://www.math.keio.ac.jp/matumoto/emt.html
|
|
email: matumoto@math.keio.ac.jp
|
|
*/
|
|
|
|
/* Macros for the Mersenne Twister random generator... */
|
|
/* Period parameters */
|
|
/* #define n 624 */
|
|
/* #define m 397 */
|
|
#define MATRIX_A 0x9908b0dfUL /* constant vector a */
|
|
#define UMASK 0x80000000UL /* most significant w-r bits */
|
|
#define LMASK 0x7fffffffUL /* least significant r bits */
|
|
#define MIXBITS(u,v) ( ((u) & UMASK) | ((v) & LMASK) )
|
|
#define TWIST(u,v) ((MIXBITS(u,v) >> 1) ^ ((v)&1UL ? MATRIX_A : 0UL))
|
|
/*********************************************************** That's it. */
|
|
|
|
void THRandom_manualSeed(unsigned long the_seed_)
|
|
{
|
|
int j;
|
|
the_initial_seed = the_seed_;
|
|
state[0]= the_initial_seed & 0xffffffffUL;
|
|
for(j = 1; j < n; j++)
|
|
{
|
|
state[j] = (1812433253UL * (state[j-1] ^ (state[j-1] >> 30)) + j);
|
|
/* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
|
|
/* In the previous versions, mSBs of the seed affect */
|
|
/* only mSBs of the array state[]. */
|
|
/* 2002/01/09 modified by makoto matsumoto */
|
|
state[j] &= 0xffffffffUL; /* for >32 bit machines */
|
|
}
|
|
left = 1;
|
|
initf = 1;
|
|
}
|
|
|
|
unsigned long THRandom_initialSeed()
|
|
{
|
|
if(initf == 0)
|
|
{
|
|
THRandom_seed();
|
|
}
|
|
|
|
return the_initial_seed;
|
|
}
|
|
|
|
void THRandom_nextState()
|
|
{
|
|
unsigned long *p=state;
|
|
int j;
|
|
|
|
/* if init_genrand() has not been called, */
|
|
/* a default initial seed is used */
|
|
if(initf == 0)
|
|
THRandom_seed();
|
|
|
|
left = n;
|
|
next = state;
|
|
|
|
for(j = n-m+1; --j; p++)
|
|
*p = p[m] ^ TWIST(p[0], p[1]);
|
|
|
|
for(j = m; --j; p++)
|
|
*p = p[m-n] ^ TWIST(p[0], p[1]);
|
|
|
|
*p = p[m-n] ^ TWIST(p[0], state[0]);
|
|
}
|
|
|
|
unsigned long THRandom_random()
|
|
{
|
|
unsigned long y;
|
|
|
|
if (--left == 0)
|
|
THRandom_nextState();
|
|
y = *next++;
|
|
|
|
/* Tempering */
|
|
y ^= (y >> 11);
|
|
y ^= (y << 7) & 0x9d2c5680UL;
|
|
y ^= (y << 15) & 0xefc60000UL;
|
|
y ^= (y >> 18);
|
|
|
|
return y;
|
|
}
|
|
|
|
/* generates a random number on [0,1)-double-interval */
|
|
static double __uniform__()
|
|
{
|
|
unsigned long y;
|
|
|
|
if(--left == 0)
|
|
THRandom_nextState();
|
|
y = *next++;
|
|
|
|
/* Tempering */
|
|
y ^= (y >> 11);
|
|
y ^= (y << 7) & 0x9d2c5680UL;
|
|
y ^= (y << 15) & 0xefc60000UL;
|
|
y ^= (y >> 18);
|
|
|
|
return (double)y * (1.0/4294967296.0);
|
|
/* divided by 2^32 */
|
|
}
|
|
|
|
/*********************************************************
|
|
|
|
Thanks *a lot* Takuji Nishimura and Makoto Matsumoto!
|
|
|
|
Now my own code...
|
|
|
|
*********************************************************/
|
|
|
|
double THRandom_uniform(double a, double b)
|
|
{
|
|
return(__uniform__() * (b - a) + a);
|
|
}
|
|
|
|
double THRandom_normal(double mean, double stdv)
|
|
{
|
|
THArgCheck(stdv > 0, 2, "standard deviation must be strictly positive");
|
|
|
|
if(!normal_is_valid)
|
|
{
|
|
normal_x = __uniform__();
|
|
normal_y = __uniform__();
|
|
normal_rho = sqrt(-2. * log(1.0-normal_y));
|
|
normal_is_valid = 1;
|
|
}
|
|
else
|
|
normal_is_valid = 0;
|
|
|
|
if(normal_is_valid)
|
|
return normal_rho*cos(2.*M_PI*normal_x)*stdv+mean;
|
|
else
|
|
return normal_rho*sin(2.*M_PI*normal_x)*stdv+mean;
|
|
}
|
|
|
|
double THRandom_exponential(double lambda)
|
|
{
|
|
return(-1. / lambda * log(1-__uniform__()));
|
|
}
|
|
|
|
double THRandom_cauchy(double median, double sigma)
|
|
{
|
|
return(median + sigma * tan(M_PI*(__uniform__()-0.5)));
|
|
}
|
|
|
|
/* Faut etre malade pour utiliser ca.
|
|
M'enfin. */
|
|
double THRandom_logNormal(double mean, double stdv)
|
|
{
|
|
double zm = mean*mean;
|
|
double zs = stdv*stdv;
|
|
THArgCheck(stdv > 0, 2, "standard deviation must be strictly positive");
|
|
return(exp(THRandom_normal(log(zm/sqrt(zs + zm)), sqrt(log(zs/zm+1)) )));
|
|
}
|
|
|
|
int THRandom_geometric(double p)
|
|
{
|
|
THArgCheck(p > 0 && p < 1, 1, "must be > 0 and < 1");
|
|
return((int)(log(1-__uniform__()) / log(p)) + 1);
|
|
}
|
|
|
|
int THRandom_bernoulli(double p)
|
|
{
|
|
THArgCheck(p > 0 && p < 1, 1, "must be > 0 and < 1");
|
|
return(__uniform__() <= p);
|
|
}
|