mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
149 lines
5.8 KiB
Python
149 lines
5.8 KiB
Python
import numpy as np
|
|
from caffe2.python import core, workspace
|
|
from caffe2.proto import caffe2_pb2
|
|
|
|
|
|
class GradientChecker:
|
|
"""A gradient checker in Python.
|
|
|
|
This is not the most efficient way to check gradients, as the Python
|
|
interface will involve a lot of copy back and forth operations. Use at your
|
|
own risk.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
stepsize,
|
|
threshold,
|
|
device_option=caffe2_pb2.DeviceOption(),
|
|
workspace_name="gradient_check"
|
|
):
|
|
self._stepsize = stepsize
|
|
self._threshold = threshold
|
|
self._device_option = device_option
|
|
self._workspace_name = workspace_name
|
|
|
|
def GetLossAndGrad(
|
|
self, op, grad_ops, x, input_name, grad_name, outputs_with_grads
|
|
):
|
|
# First, feed in the current input. Note that we are not changing
|
|
# anything else, so we don't need to feed in others.
|
|
workspace.FeedBlob(input_name, x, self._device_option)
|
|
# Run.
|
|
workspace.RunOperatorOnce(op)
|
|
loss = 0.
|
|
# Get Loss and feed in the gradients, run gradient ops.
|
|
for idx in outputs_with_grads:
|
|
name = op.output[idx]
|
|
arr = workspace.FetchBlob(name)
|
|
loss += (arr**2).sum()
|
|
workspace.FeedBlob(name + '_grad', arr, self._device_option)
|
|
loss /= 2.
|
|
# Run gradient ops
|
|
workspace.RunOperatorsOnce(grad_ops)
|
|
# Get gradients
|
|
grad = workspace.FetchBlob(grad_name)
|
|
return loss, grad
|
|
|
|
def CheckSimple(
|
|
self,
|
|
op,
|
|
inputs,
|
|
input_to_check,
|
|
outputs_with_grads,
|
|
grad_ops=None,
|
|
input_device_options=None
|
|
):
|
|
"""Checks the operator in a very simple fashion by stacking a sum of
|
|
squares on the top.
|
|
|
|
Inputs:
|
|
op: the operator to be checked.
|
|
inputs: the input data in numpy arrays.
|
|
input_to_check: an index specifying which input blob we should
|
|
check.
|
|
outputs_with_grads: indices specifying which output blobs will we
|
|
need to check gradients with. For these outputs, we will collect a
|
|
squared sum and also feed in their gradients.
|
|
grad_operator: the gradient operator. If not given, we will get the
|
|
gradient operator from the gradient registry.
|
|
input_device_options: an optional mapping from input names to
|
|
DeviceOptions (to override the default DeviceOption)
|
|
Outputs:
|
|
boolean: True if it passes, False if it does not pass.
|
|
"""
|
|
if input_device_options is None:
|
|
input_device_options = {}
|
|
# Entering the checker workspace
|
|
old_ws_name = workspace.CurrentWorkspace()
|
|
if self._workspace_name != old_ws_name:
|
|
workspace.SwitchWorkspace(self._workspace_name, True)
|
|
|
|
op.device_option.CopyFrom(self._device_option)
|
|
if grad_ops is None:
|
|
# TODO(jiayq): use the gradient registration instead of the old
|
|
# hack.
|
|
grad_ops, g_input = core.GradientRegistry.GetGradientForOp(
|
|
op, [s + '_grad' for s in op.output])
|
|
|
|
# sanity check: we only support dense gradient checking in this checker
|
|
assert all(type(g) is not core.GradientSlice for g in g_input), \
|
|
"This checker does not support sparse gradient yet."""
|
|
|
|
dims_to_check = inputs[input_to_check].size
|
|
# First, feed in the input.
|
|
for i, arr in enumerate(inputs):
|
|
workspace.FeedBlob(
|
|
op.input[i], arr,
|
|
input_device_options.get(
|
|
op.input[i], self._device_option))
|
|
|
|
# Get the loss and gradient for the original.
|
|
input_name = op.input[input_to_check]
|
|
grad_name = g_input[input_to_check]
|
|
loss, grad = self.GetLossAndGrad(
|
|
op, grad_ops, inputs[input_to_check], input_name, grad_name,
|
|
outputs_with_grads
|
|
)
|
|
grad_estimate = np.zeros_like(inputs[input_to_check])
|
|
if grad_estimate.shape != grad.shape:
|
|
raise Exception(
|
|
"Mismatched gradient shapes: estimated ({}), grad ({})".format(
|
|
grad_estimate.shape, grad.shape))
|
|
|
|
for current_dim in range(dims_to_check):
|
|
# Positive gradient
|
|
inputs[input_to_check].flat[current_dim] += self._stepsize
|
|
pos_loss, _ = self.GetLossAndGrad(
|
|
op, grad_ops, inputs[input_to_check], input_name,
|
|
grad_name, outputs_with_grads
|
|
)
|
|
# Negative gradient
|
|
inputs[input_to_check].flat[current_dim] -= self._stepsize * 2
|
|
neg_loss, _ = self.GetLossAndGrad(
|
|
op, grad_ops, inputs[input_to_check], input_name,
|
|
grad_name, outputs_with_grads
|
|
)
|
|
# Recover the value
|
|
inputs[input_to_check].flat[current_dim] += self._stepsize
|
|
grad_estimate.flat[current_dim] = (
|
|
pos_loss - neg_loss) / self._stepsize / 2
|
|
# Now, check correctness
|
|
fail_mat = ~np.isclose(
|
|
grad, grad_estimate, atol=self._threshold, rtol=self._threshold)
|
|
if np.any(fail_mat):
|
|
idx = np.flatnonzero(fail_mat)
|
|
print('Failed. [idx, grad, grad_estimate] are:')
|
|
print(np.vstack([idx, grad.flat[idx], grad_estimate.flat[idx]]).T)
|
|
ret = False
|
|
else:
|
|
ret = True
|
|
# After finishing, cleaning up things.
|
|
if self._workspace_name != old_ws_name:
|
|
# We reset the workspace to make sure everything intermediate is
|
|
# cleaned up. Note that there is no need to delete a workspace -
|
|
# when empty it takes a very limited amount of memory.
|
|
workspace.ResetWorkspace()
|
|
workspace.SwitchWorkspace(old_ws_name)
|
|
return ret, grad, grad_estimate
|