mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
In this PR, I added support for packaging the AOTI generated files into a zipfile, and loading it in python.
`compile_so` takes the path to the package, a device, and a desired so_path location, and compiles package into a .so, and saves to the specified location.
`load_package` takes a path to the package and device, calls _extract_so, and then creates a callable to run the compiled model.
The zipfile generated looks like the following:
```
|- version
|- archive_format
|- data
|- aotinductor
|- cbtnafqaqrhvwztv7xudlal4xs6sofxa5oxccyuaqtrt6aozaklx.cubin # AOTI cuda generated cubin files
|- cskkqtna23bty2v3aq7g2q37cxrgufehlkuaaolhlgug5zg6fuwe.cpp # AOTI generated cpp file
|- cskkqtna23bty2v3aq7g2q37cxrgufehlkuaaolhlgug5zg6fuwe_compile_flags # Flags for compiling the .o
|- c6qqtnpgwfi3dv5nb76ai773kt45ezoxfwdmd7q37lvq6fs2tnoi.o # AOTI saved const.o
|- cskkqtna23bty2v3aq7g2q37cxrgufehlkuaaolhlgug5zg6fuwe_linker_flags # Flags for linking the files to form the .so
|- constants
|- constants.pt # Constants saved using torch.save, can be loaded using mmap
```
The workflow is something like:
```
with torch.no_grad():
ep = torch.export.export(
model,
example_inputs,
dynamic_shapes=dynamic_shapes,
strict=False,
)
gm = ep.module()
package_path = torch._inductor.aot_compile(
gm,
example_inputs,
options= {
"aot_inductor.output_path": "my_path.pt2", # or a directory
"aot_inductor.package": True,
}
)
compiled_model = torch._inductor.package.load_package(package_path, device)
return compiled_model
```
I tried turning on loading the weights using mmap by default, but had some trouble with it, so that is just left as a todo
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129895
Approved by: https://github.com/malfet
|
||
|---|---|---|
| .. | ||
| _awaits | ||
| _C | ||
| _C_flatbuffer | ||
| _custom_op | ||
| _decomp | ||
| _dispatch | ||
| _dynamo | ||
| _export | ||
| _functorch | ||
| _higher_order_ops | ||
| _inductor | ||
| _lazy | ||
| _library | ||
| _logging | ||
| _numpy | ||
| _prims | ||
| _prims_common | ||
| _refs | ||
| _strobelight | ||
| _subclasses | ||
| _vendor | ||
| amp | ||
| ao | ||
| autograd | ||
| backends | ||
| compiler | ||
| contrib | ||
| cpu | ||
| csrc | ||
| cuda | ||
| distributed | ||
| distributions | ||
| export | ||
| fft | ||
| func | ||
| futures | ||
| fx | ||
| jit | ||
| legacy | ||
| lib | ||
| linalg | ||
| masked | ||
| monitor | ||
| mps | ||
| mtia | ||
| multiprocessing | ||
| nested | ||
| nn | ||
| onnx | ||
| optim | ||
| package | ||
| profiler | ||
| quantization | ||
| signal | ||
| sparse | ||
| special | ||
| testing | ||
| utils | ||
| xpu | ||
| __config__.py | ||
| __future__.py | ||
| __init__.py | ||
| _appdirs.py | ||
| _classes.py | ||
| _compile.py | ||
| _custom_ops.py | ||
| _deploy.py | ||
| _guards.py | ||
| _jit_internal.py | ||
| _linalg_utils.py | ||
| _lobpcg.py | ||
| _lowrank.py | ||
| _meta_registrations.py | ||
| _namedtensor_internals.py | ||
| _ops.py | ||
| _python_dispatcher.py | ||
| _size_docs.py | ||
| _sources.py | ||
| _storage_docs.py | ||
| _streambase.py | ||
| _tensor_docs.py | ||
| _tensor_str.py | ||
| _tensor.py | ||
| _torch_docs.py | ||
| _utils_internal.py | ||
| _utils.py | ||
| _VF.py | ||
| _vmap_internals.py | ||
| _weights_only_unpickler.py | ||
| abi-check.cpp | ||
| CMakeLists.txt | ||
| custom_class_detail.h | ||
| custom_class.h | ||
| extension.h | ||
| functional.py | ||
| hub.py | ||
| library.h | ||
| library.py | ||
| overrides.py | ||
| py.typed | ||
| quasirandom.py | ||
| random.py | ||
| README.txt | ||
| return_types.py | ||
| script.h | ||
| serialization.py | ||
| storage.py | ||
| torch_version.py | ||
| types.py | ||
| version.py.tpl | ||
Note [TH abstraction violation] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ TH/THC provide some hpp headers, which are proper C++ headers rather than C headers. These headers serve double duty as *internal implementation detail* headers, whose contents should largely not be used by external clients. Ideally, we would not install these headers at all; instead, you should use public functions (in headers like `THTensor.h`, NOT `THTensor.hpp`) to manipulate these structs. However, there are a few places in torch/csrc where we violate this abstraction. They are marked with a pointer to this note. Each of those sites will have to be refactored when we refactor the guts of THTensor and related structures.