pytorch/test/quantization/eager/test_model_numerics.py
FFFrog 8895c290f4 [Easy] enable PYFMT for torch/quantization/eager (#150761)
All modifications are done through tools, the detailed commands are as follows:

```bash
lintrunner -a --take "PYFMT" --all-files
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150761
Approved by: https://github.com/jerryzh168
2025-04-18 05:53:33 +00:00

165 lines
7.4 KiB
Python

# Owner(s): ["oncall: quantization"]
import torch
from torch.testing._internal.common_quantization import (
ModelMultipleOps,
ModelMultipleOpsNoAvgPool,
QuantizationTestCase,
)
from torch.testing._internal.common_quantized import (
override_quantized_engine,
supported_qengines,
)
class TestModelNumericsEager(QuantizationTestCase):
def test_float_quant_compare_per_tensor(self):
for qengine in supported_qengines:
with override_quantized_engine(qengine):
torch.manual_seed(42)
my_model = ModelMultipleOps().to(torch.float32)
my_model.eval()
calib_data = torch.rand(1024, 3, 15, 15, dtype=torch.float32)
eval_data = torch.rand(1, 3, 15, 15, dtype=torch.float32)
out_ref = my_model(eval_data)
qModel = torch.ao.quantization.QuantWrapper(my_model)
qModel.eval()
qModel.qconfig = torch.ao.quantization.default_qconfig
torch.ao.quantization.fuse_modules(
qModel.module, [["conv1", "bn1", "relu1"]], inplace=True
)
torch.ao.quantization.prepare(qModel, inplace=True)
qModel(calib_data)
torch.ao.quantization.convert(qModel, inplace=True)
out_q = qModel(eval_data)
SQNRdB = 20 * torch.log10(
torch.norm(out_ref) / torch.norm(out_ref - out_q)
)
# Quantized model output should be close to floating point model output numerically
# Setting target SQNR to be 30 dB so that relative error is 1e-3 below the desired
# output
self.assertGreater(
SQNRdB,
30,
msg="Quantized model numerics diverge from float, expect SQNR > 30 dB",
)
def test_float_quant_compare_per_channel(self):
# Test for per-channel Quant
torch.manual_seed(67)
my_model = ModelMultipleOps().to(torch.float32)
my_model.eval()
calib_data = torch.rand(2048, 3, 15, 15, dtype=torch.float32)
eval_data = torch.rand(10, 3, 15, 15, dtype=torch.float32)
out_ref = my_model(eval_data)
q_model = torch.ao.quantization.QuantWrapper(my_model)
q_model.eval()
q_model.qconfig = torch.ao.quantization.default_per_channel_qconfig
torch.ao.quantization.fuse_modules(
q_model.module, [["conv1", "bn1", "relu1"]], inplace=True
)
torch.ao.quantization.prepare(q_model)
q_model(calib_data)
torch.ao.quantization.convert(q_model)
out_q = q_model(eval_data)
SQNRdB = 20 * torch.log10(torch.norm(out_ref) / torch.norm(out_ref - out_q))
# Quantized model output should be close to floating point model output numerically
# Setting target SQNR to be 35 dB
self.assertGreater(
SQNRdB,
35,
msg="Quantized model numerics diverge from float, expect SQNR > 35 dB",
)
def test_fake_quant_true_quant_compare(self):
for qengine in supported_qengines:
with override_quantized_engine(qengine):
torch.manual_seed(67)
my_model = ModelMultipleOpsNoAvgPool().to(torch.float32)
calib_data = torch.rand(2048, 3, 15, 15, dtype=torch.float32)
eval_data = torch.rand(10, 3, 15, 15, dtype=torch.float32)
my_model.eval()
out_ref = my_model(eval_data)
fq_model = torch.ao.quantization.QuantWrapper(my_model)
fq_model.train()
fq_model.qconfig = torch.ao.quantization.default_qat_qconfig
torch.ao.quantization.fuse_modules_qat(
fq_model.module, [["conv1", "bn1", "relu1"]], inplace=True
)
torch.ao.quantization.prepare_qat(fq_model)
fq_model.eval()
fq_model.apply(torch.ao.quantization.disable_fake_quant)
fq_model.apply(torch.ao.nn.intrinsic.qat.freeze_bn_stats)
fq_model(calib_data)
fq_model.apply(torch.ao.quantization.enable_fake_quant)
fq_model.apply(torch.ao.quantization.disable_observer)
out_fq = fq_model(eval_data)
SQNRdB = 20 * torch.log10(
torch.norm(out_ref) / torch.norm(out_ref - out_fq)
)
# Quantized model output should be close to floating point model output numerically
# Setting target SQNR to be 35 dB
self.assertGreater(
SQNRdB,
35,
msg="Quantized model numerics diverge from float, expect SQNR > 35 dB",
)
torch.ao.quantization.convert(fq_model)
out_q = fq_model(eval_data)
SQNRdB = 20 * torch.log10(
torch.norm(out_fq) / (torch.norm(out_fq - out_q) + 1e-10)
)
self.assertGreater(
SQNRdB,
60,
msg="Fake quant and true quant numerics diverge, expect SQNR > 60 dB",
)
# Test to compare weight only quantized model numerics and
# activation only quantized model numerics with float
def test_weight_only_activation_only_fakequant(self):
for qengine in supported_qengines:
with override_quantized_engine(qengine):
torch.manual_seed(67)
calib_data = torch.rand(2048, 3, 15, 15, dtype=torch.float32)
eval_data = torch.rand(10, 3, 15, 15, dtype=torch.float32)
qconfigset = {
torch.ao.quantization.default_weight_only_qconfig,
torch.ao.quantization.default_activation_only_qconfig,
}
SQNRTarget = [35, 45]
for idx, qconfig in enumerate(qconfigset):
my_model = ModelMultipleOpsNoAvgPool().to(torch.float32)
my_model.eval()
out_ref = my_model(eval_data)
fq_model = torch.ao.quantization.QuantWrapper(my_model)
fq_model.train()
fq_model.qconfig = qconfig
torch.ao.quantization.fuse_modules_qat(
fq_model.module, [["conv1", "bn1", "relu1"]], inplace=True
)
torch.ao.quantization.prepare_qat(fq_model)
fq_model.eval()
fq_model.apply(torch.ao.quantization.disable_fake_quant)
fq_model.apply(torch.ao.nn.intrinsic.qat.freeze_bn_stats)
fq_model(calib_data)
fq_model.apply(torch.ao.quantization.enable_fake_quant)
fq_model.apply(torch.ao.quantization.disable_observer)
out_fq = fq_model(eval_data)
SQNRdB = 20 * torch.log10(
torch.norm(out_ref) / torch.norm(out_ref - out_fq)
)
self.assertGreater(
SQNRdB,
SQNRTarget[idx],
msg="Quantized model numerics diverge from float",
)
if __name__ == "__main__":
raise RuntimeError(
"This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_quantization.py TESTNAME\n\n"
"instead."
)