mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
All modifications are done through tools, the detailed commands are as follows: ```bash lintrunner -a --take "PYFMT" --all-files ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/150761 Approved by: https://github.com/jerryzh168
165 lines
7.4 KiB
Python
165 lines
7.4 KiB
Python
# Owner(s): ["oncall: quantization"]
|
|
|
|
import torch
|
|
from torch.testing._internal.common_quantization import (
|
|
ModelMultipleOps,
|
|
ModelMultipleOpsNoAvgPool,
|
|
QuantizationTestCase,
|
|
)
|
|
from torch.testing._internal.common_quantized import (
|
|
override_quantized_engine,
|
|
supported_qengines,
|
|
)
|
|
|
|
|
|
class TestModelNumericsEager(QuantizationTestCase):
|
|
def test_float_quant_compare_per_tensor(self):
|
|
for qengine in supported_qengines:
|
|
with override_quantized_engine(qengine):
|
|
torch.manual_seed(42)
|
|
my_model = ModelMultipleOps().to(torch.float32)
|
|
my_model.eval()
|
|
calib_data = torch.rand(1024, 3, 15, 15, dtype=torch.float32)
|
|
eval_data = torch.rand(1, 3, 15, 15, dtype=torch.float32)
|
|
out_ref = my_model(eval_data)
|
|
qModel = torch.ao.quantization.QuantWrapper(my_model)
|
|
qModel.eval()
|
|
qModel.qconfig = torch.ao.quantization.default_qconfig
|
|
torch.ao.quantization.fuse_modules(
|
|
qModel.module, [["conv1", "bn1", "relu1"]], inplace=True
|
|
)
|
|
torch.ao.quantization.prepare(qModel, inplace=True)
|
|
qModel(calib_data)
|
|
torch.ao.quantization.convert(qModel, inplace=True)
|
|
out_q = qModel(eval_data)
|
|
SQNRdB = 20 * torch.log10(
|
|
torch.norm(out_ref) / torch.norm(out_ref - out_q)
|
|
)
|
|
# Quantized model output should be close to floating point model output numerically
|
|
# Setting target SQNR to be 30 dB so that relative error is 1e-3 below the desired
|
|
# output
|
|
self.assertGreater(
|
|
SQNRdB,
|
|
30,
|
|
msg="Quantized model numerics diverge from float, expect SQNR > 30 dB",
|
|
)
|
|
|
|
def test_float_quant_compare_per_channel(self):
|
|
# Test for per-channel Quant
|
|
torch.manual_seed(67)
|
|
my_model = ModelMultipleOps().to(torch.float32)
|
|
my_model.eval()
|
|
calib_data = torch.rand(2048, 3, 15, 15, dtype=torch.float32)
|
|
eval_data = torch.rand(10, 3, 15, 15, dtype=torch.float32)
|
|
out_ref = my_model(eval_data)
|
|
q_model = torch.ao.quantization.QuantWrapper(my_model)
|
|
q_model.eval()
|
|
q_model.qconfig = torch.ao.quantization.default_per_channel_qconfig
|
|
torch.ao.quantization.fuse_modules(
|
|
q_model.module, [["conv1", "bn1", "relu1"]], inplace=True
|
|
)
|
|
torch.ao.quantization.prepare(q_model)
|
|
q_model(calib_data)
|
|
torch.ao.quantization.convert(q_model)
|
|
out_q = q_model(eval_data)
|
|
SQNRdB = 20 * torch.log10(torch.norm(out_ref) / torch.norm(out_ref - out_q))
|
|
# Quantized model output should be close to floating point model output numerically
|
|
# Setting target SQNR to be 35 dB
|
|
self.assertGreater(
|
|
SQNRdB,
|
|
35,
|
|
msg="Quantized model numerics diverge from float, expect SQNR > 35 dB",
|
|
)
|
|
|
|
def test_fake_quant_true_quant_compare(self):
|
|
for qengine in supported_qengines:
|
|
with override_quantized_engine(qengine):
|
|
torch.manual_seed(67)
|
|
my_model = ModelMultipleOpsNoAvgPool().to(torch.float32)
|
|
calib_data = torch.rand(2048, 3, 15, 15, dtype=torch.float32)
|
|
eval_data = torch.rand(10, 3, 15, 15, dtype=torch.float32)
|
|
my_model.eval()
|
|
out_ref = my_model(eval_data)
|
|
fq_model = torch.ao.quantization.QuantWrapper(my_model)
|
|
fq_model.train()
|
|
fq_model.qconfig = torch.ao.quantization.default_qat_qconfig
|
|
torch.ao.quantization.fuse_modules_qat(
|
|
fq_model.module, [["conv1", "bn1", "relu1"]], inplace=True
|
|
)
|
|
torch.ao.quantization.prepare_qat(fq_model)
|
|
fq_model.eval()
|
|
fq_model.apply(torch.ao.quantization.disable_fake_quant)
|
|
fq_model.apply(torch.ao.nn.intrinsic.qat.freeze_bn_stats)
|
|
fq_model(calib_data)
|
|
fq_model.apply(torch.ao.quantization.enable_fake_quant)
|
|
fq_model.apply(torch.ao.quantization.disable_observer)
|
|
out_fq = fq_model(eval_data)
|
|
SQNRdB = 20 * torch.log10(
|
|
torch.norm(out_ref) / torch.norm(out_ref - out_fq)
|
|
)
|
|
# Quantized model output should be close to floating point model output numerically
|
|
# Setting target SQNR to be 35 dB
|
|
self.assertGreater(
|
|
SQNRdB,
|
|
35,
|
|
msg="Quantized model numerics diverge from float, expect SQNR > 35 dB",
|
|
)
|
|
torch.ao.quantization.convert(fq_model)
|
|
out_q = fq_model(eval_data)
|
|
SQNRdB = 20 * torch.log10(
|
|
torch.norm(out_fq) / (torch.norm(out_fq - out_q) + 1e-10)
|
|
)
|
|
self.assertGreater(
|
|
SQNRdB,
|
|
60,
|
|
msg="Fake quant and true quant numerics diverge, expect SQNR > 60 dB",
|
|
)
|
|
|
|
# Test to compare weight only quantized model numerics and
|
|
# activation only quantized model numerics with float
|
|
def test_weight_only_activation_only_fakequant(self):
|
|
for qengine in supported_qengines:
|
|
with override_quantized_engine(qengine):
|
|
torch.manual_seed(67)
|
|
calib_data = torch.rand(2048, 3, 15, 15, dtype=torch.float32)
|
|
eval_data = torch.rand(10, 3, 15, 15, dtype=torch.float32)
|
|
qconfigset = {
|
|
torch.ao.quantization.default_weight_only_qconfig,
|
|
torch.ao.quantization.default_activation_only_qconfig,
|
|
}
|
|
SQNRTarget = [35, 45]
|
|
for idx, qconfig in enumerate(qconfigset):
|
|
my_model = ModelMultipleOpsNoAvgPool().to(torch.float32)
|
|
my_model.eval()
|
|
out_ref = my_model(eval_data)
|
|
fq_model = torch.ao.quantization.QuantWrapper(my_model)
|
|
fq_model.train()
|
|
fq_model.qconfig = qconfig
|
|
torch.ao.quantization.fuse_modules_qat(
|
|
fq_model.module, [["conv1", "bn1", "relu1"]], inplace=True
|
|
)
|
|
torch.ao.quantization.prepare_qat(fq_model)
|
|
fq_model.eval()
|
|
fq_model.apply(torch.ao.quantization.disable_fake_quant)
|
|
fq_model.apply(torch.ao.nn.intrinsic.qat.freeze_bn_stats)
|
|
fq_model(calib_data)
|
|
fq_model.apply(torch.ao.quantization.enable_fake_quant)
|
|
fq_model.apply(torch.ao.quantization.disable_observer)
|
|
out_fq = fq_model(eval_data)
|
|
SQNRdB = 20 * torch.log10(
|
|
torch.norm(out_ref) / torch.norm(out_ref - out_fq)
|
|
)
|
|
self.assertGreater(
|
|
SQNRdB,
|
|
SQNRTarget[idx],
|
|
msg="Quantized model numerics diverge from float",
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
raise RuntimeError(
|
|
"This test file is not meant to be run directly, use:\n\n"
|
|
"\tpython test/test_quantization.py TESTNAME\n\n"
|
|
"instead."
|
|
)
|