mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Changes to enable feature importance. Reviewed By: kennyhorror Differential Revision: D5075252 fbshipit-source-id: e5d46e129bcd5cbef77932c63b5a288dd57775d1
90 lines
2.7 KiB
Python
90 lines
2.7 KiB
Python
## @package batch_distill_lr_loss
|
|
# Module caffe2.python.layers.batch_distill_lr_loss
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
from caffe2.python import schema
|
|
from caffe2.python.layers.layers import (
|
|
ModelLayer,
|
|
)
|
|
from caffe2.python.layers.tags import (
|
|
Tags
|
|
)
|
|
import numpy as np
|
|
|
|
|
|
class BatchDistillLRLoss(ModelLayer):
|
|
|
|
def __init__(
|
|
self, model, input_record,
|
|
name='batch_distill_lr_loss', teacherWeight=0.0, **kwargs):
|
|
|
|
super(BatchDistillLRLoss, self).__init__(model, name, input_record, **kwargs)
|
|
|
|
assert teacherWeight >= 0 and teacherWeight <= 1, (
|
|
'teacherWeight=%0.2f should be in [0, 1]' % teacherWeight
|
|
)
|
|
self._teacherWeight = teacherWeight
|
|
|
|
assert schema.is_schema_subset(
|
|
schema.Struct(
|
|
('teacher_label', schema.Scalar()),
|
|
('label', schema.Scalar()),
|
|
('prediction', schema.Scalar())
|
|
),
|
|
input_record
|
|
)
|
|
self.tags.update([Tags.EXCLUDE_FROM_PREDICTION])
|
|
|
|
self.output_schema = schema.Scalar(
|
|
np.float32,
|
|
model.net.NextScopedBlob(name + '_output'))
|
|
|
|
def add_train_ops(self, net):
|
|
label = self.input_record.label()
|
|
if self.input_record.label.field_type() != np.int32:
|
|
label = net.Cast(label, net.NextScopedBlob('int32_label'), to='int32')
|
|
|
|
teacher_label = self.input_record.teacher_label()
|
|
|
|
class_probabilities = net.MakeTwoClass(
|
|
self.input_record.prediction(),
|
|
net.NextScopedBlob('two_class_predictions')
|
|
)
|
|
|
|
true_xent = net.LabelCrossEntropy(
|
|
[class_probabilities, label],
|
|
net.NextScopedBlob('cross_entropy')
|
|
)
|
|
teacher_xent = net.CrossEntropy(
|
|
[self.input_record.prediction(), teacher_label],
|
|
net.NextScopedBlob('teacher_cross_entropy')
|
|
)
|
|
|
|
scaled_true_xent = net.Scale(
|
|
true_xent,
|
|
net.NextScopedBlob('scaled_cross_entropy'),
|
|
scale=1.0 - self._teacherWeight,
|
|
)
|
|
scaled_teacher_xent = net.Scale(
|
|
teacher_xent,
|
|
net.NextScopedBlob('scaled_teacher_cross_entropy'),
|
|
scale=self._teacherWeight,
|
|
)
|
|
|
|
true_loss = net.AveragedLoss(
|
|
scaled_true_xent,
|
|
net.NextScopedBlob('true_loss')
|
|
)
|
|
teacher_loss = net.AveragedLoss(
|
|
scaled_teacher_xent,
|
|
net.NextScopedBlob('teacher_loss')
|
|
)
|
|
|
|
net.Add(
|
|
[true_loss, teacher_loss],
|
|
self.output_schema.field_blobs()
|
|
)
|