mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary:
Enhance FileCheck util to check for highlighted source ranges. This is useful when writing tests regarding generated error messages that require source code highlighting.
Here is how the error looks like in different cases:
- In case of needed source code token not found at all in input string:
```
RuntimeError: Expected to find "invalid_token" but did not find it
Searched string:
... <--- HERE
def to_list_missing_type_annotation(x):
# type: (torch.Tensor) -> List[float]
From CHECK-SOURCE-HIGHLIGHTED: invalid_token
```
- In case of source code token not highlighted:
```
Traceback (most recent call last):
File "test_range.py", line 11, in <module>
FileCheck().check_source_highlighted("x.tolist()").run(s)
RuntimeError: Expected to find "~~~~~~~~~~" but did not find it
Searched string:
# type: (torch.Tensor) -> List[float]
li = x.tolist()
~~~~~~~~~ <--- HERE
~~~~~~~~~~~~~~~~~~~... <--- HERE
return li
```
It is a bit confusing since both input text (usually an error message) and generated error messages have their highlighted portions, but this is consistent of previous behavior. Another option is to generate plain error messages without additional range highlighting on input text.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39692
Test Plan:
Added unit test.
Closes https://github.com/pytorch/pytorch/issues/38698
Differential Revision: D22001765
Pulled By: gmagogsfm
fbshipit-source-id: 6681441eee5853ab061d198ccfe55ebffddca202
667 lines
25 KiB
Python
667 lines
25 KiB
Python
# Torch
|
|
from torch.autograd import Variable
|
|
from torch.autograd.function import _nested_map
|
|
from torch.jit.annotations import BroadcastingList2, BroadcastingList3 # noqa: F401
|
|
|
|
from torch.onnx import OperatorExportTypes
|
|
import torch
|
|
import torch.cuda
|
|
import torch.jit
|
|
import torch.jit._logging
|
|
import torch.jit.frontend
|
|
import torch.jit.quantized
|
|
import zipfile
|
|
import functools
|
|
|
|
# Testing utils
|
|
from torch.testing import FileCheck
|
|
from torch.testing._internal.common_utils import TestCase, IS_WINDOWS, \
|
|
freeze_rng_state, TemporaryFileName, enable_profiling_mode_for_profiling_tests, ProfilingMode, TEST_BAILOUTS
|
|
from torch.testing._internal.common_utils import enable_profiling_mode # noqa: F401
|
|
|
|
# Standard library
|
|
from contextlib import contextmanager
|
|
from functools import reduce
|
|
from itertools import chain
|
|
from torch._six import StringIO
|
|
|
|
import inspect
|
|
import io
|
|
import math
|
|
import os
|
|
import pickle
|
|
import sys
|
|
import tempfile
|
|
import textwrap
|
|
|
|
RUN_CUDA = torch.cuda.is_available()
|
|
RUN_CUDA_MULTI_GPU = RUN_CUDA and torch.cuda.device_count() > 1
|
|
|
|
def execWrapper(code, glob, loc):
|
|
exec(code, glob, loc)
|
|
|
|
def do_input_map(fn, input):
|
|
return _nested_map(lambda t: isinstance(t, torch.Tensor), fn)(input)
|
|
|
|
def clear_class_registry():
|
|
torch._C._jit_clear_class_registry()
|
|
torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
|
|
|
|
def get_execution_plan(graph_executor_state):
|
|
execution_plans = list(graph_executor_state.execution_plans.values())
|
|
num_plans = len(execution_plans)
|
|
if num_plans != 1:
|
|
raise RuntimeError('This test assumes this GraphExecutor should '
|
|
'only have one execution plan, got: {}'.format(num_plans))
|
|
return execution_plans[0]
|
|
|
|
class _AssertRaisesRegexWithHighlightContext(object):
|
|
"""
|
|
A context manager that is useful for checking that error messages highlight
|
|
the correct part of the source code.
|
|
"""
|
|
|
|
def __init__(self, test_case, exception, regex, highlight):
|
|
self.test_case = test_case
|
|
self.exception_type = exception
|
|
self.regex = regex
|
|
self.highlight = highlight
|
|
|
|
def __enter__(self):
|
|
return self
|
|
|
|
def __exit__(self, type, value, traceback):
|
|
with self.test_case.assertRaisesRegex(self.exception_type, self.regex):
|
|
if type:
|
|
raise value
|
|
|
|
if self.highlight:
|
|
FileCheck().check_source_highlighted(self.highlight).run(str(value))
|
|
|
|
return True
|
|
|
|
|
|
class JitTestCase(TestCase):
|
|
_do_cuda_memory_leak_check = True
|
|
_restored_warnings = False
|
|
|
|
class capture_stdout(list):
|
|
"""
|
|
Replace sys.stdout with a temporary StringIO
|
|
"""
|
|
def __enter__(self):
|
|
self.sys_stdout = sys.stdout
|
|
self.stringio = StringIO()
|
|
sys.stdout = self.stringio
|
|
return self
|
|
|
|
def __exit__(self, *args):
|
|
self.append(str(self.stringio.getvalue()))
|
|
del self.stringio
|
|
sys.stdout = self.sys_stdout
|
|
|
|
def setHooks(self):
|
|
torch._C._jit_set_emit_hooks(self.emitModuleHook, self.emitFunctionHook)
|
|
|
|
def clearHooks(self):
|
|
torch._C._jit_set_emit_hooks(None, None)
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
# unittest overrides all warning filters and forces all of them to show up
|
|
# after we install our own to silence those coming from inside PyTorch.
|
|
# This will ensure that our filter still takes precedence.
|
|
if not JitTestCase._restored_warnings:
|
|
torch.jit.TracerWarning.ignore_lib_warnings()
|
|
JitTestCase._restored_warnings = True
|
|
self.setHooks()
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
# needs to be cleared because python might be unloaded before
|
|
# the callback gets destucted
|
|
self.clearHooks()
|
|
clear_class_registry()
|
|
|
|
def _isHookExceptionOk(self, e):
|
|
se = str(e)
|
|
allowed = ("Could not export Python function",
|
|
"closures are not exportable")
|
|
for a in allowed:
|
|
if a in se:
|
|
return True
|
|
return False
|
|
|
|
def _compared_saved_loaded(self, m):
|
|
def extract_files(buffer):
|
|
# crack open the zip format to get at the main module code
|
|
archive = zipfile.ZipFile(buffer)
|
|
# check that we have no duplicate names
|
|
self.assertEqual(len(set(archive.namelist())), len(archive.namelist()))
|
|
files = list(filter(lambda x: x.startswith('archive/code/'), archive.namelist()))
|
|
# unwrap all the code files into strings
|
|
code_files = filter(lambda x: x.endswith('.py'), files)
|
|
code_files = map(lambda f: archive.open(f), code_files)
|
|
code_files = map(lambda file: "".join([line.decode() for line in file]), code_files)
|
|
|
|
# unpickled all the debug files
|
|
debug_files = filter(lambda f: f.endswith('.debug_pkl'), files)
|
|
debug_files = map(lambda f: archive.open(f), debug_files)
|
|
debug_files = map(lambda f: pickle.load(f), debug_files)
|
|
return code_files, debug_files
|
|
|
|
# disable the hook while we parse code, otherwise we will re-enter the hook
|
|
with torch.jit._disable_emit_hooks():
|
|
try:
|
|
# short-circuit if this is an empty function or module
|
|
if len(m.code) == 0:
|
|
return
|
|
if isinstance(m, torch._C.ScriptModule):
|
|
if len(m._method_names()) == 0:
|
|
return
|
|
|
|
# save the module to a buffer
|
|
buffer = io.BytesIO()
|
|
torch.jit.save(m, buffer)
|
|
# copy the data in the buffer so we can restore it later. This
|
|
# is because py2 and py3 have different semantics with zipfile
|
|
# and it's easier to just work with a fresh copy each time.
|
|
buffer_copy = buffer.getvalue()
|
|
|
|
code_files, debug_files = extract_files(buffer)
|
|
|
|
except RuntimeError as e:
|
|
if not self._isHookExceptionOk(e):
|
|
raise
|
|
else:
|
|
return
|
|
|
|
# import the model again (from a the copy we made of the original)
|
|
buffer2 = io.BytesIO(buffer_copy)
|
|
imported = torch.jit.load(buffer2)
|
|
|
|
# save it again
|
|
saved_module_buffer_2 = io.BytesIO()
|
|
torch.jit.save(imported, saved_module_buffer_2)
|
|
|
|
saved_module_buffer_2.seek(0)
|
|
code_files_2, debug_files_2 = extract_files(saved_module_buffer_2)
|
|
|
|
for a, b in zip(code_files, code_files_2):
|
|
self.assertMultiLineEqual(a, b)
|
|
|
|
if isinstance(m, torch._C.ScriptModule):
|
|
self.assertTrue(torch._C._ivalue_tags_match(m, imported._c))
|
|
|
|
|
|
def emitFunctionHook(self, func):
|
|
# func has invalid names for export, skip the jitter check
|
|
if func.name == "<lambda>" or "aten::" in func.name:
|
|
return
|
|
self._compared_saved_loaded(func)
|
|
|
|
def emitModuleHook(self, module):
|
|
self._compared_saved_loaded(module)
|
|
|
|
|
|
def getExportImportCopy(self, m, also_test_file=True, map_location=None):
|
|
buffer = io.BytesIO()
|
|
torch.jit.save(m, buffer)
|
|
buffer.seek(0)
|
|
imported = torch.jit.load(buffer, map_location=map_location)
|
|
|
|
if not also_test_file:
|
|
return imported
|
|
|
|
with TemporaryFileName() as fname:
|
|
torch.jit.save(imported, fname)
|
|
return torch.jit.load(fname, map_location=map_location)
|
|
|
|
def getExportImportCopyWithPacking(self, m, also_test_file=True, map_location=None):
|
|
buffer = io.BytesIO()
|
|
m.apply(lambda s: s._pack() if s._c._has_method('_pack') else None)
|
|
torch.jit.save(m, buffer)
|
|
m.apply(lambda s: s._unpack() if s._c._has_method('_unpack') else None)
|
|
buffer.seek(0)
|
|
imported = torch.jit.load(buffer, map_location=map_location)
|
|
imported.apply(lambda s: s._unpack() if s._c._has_method('_unpack') else None)
|
|
|
|
if not also_test_file:
|
|
return imported
|
|
|
|
# Ideally we would like to not have to manually delete the file, but NamedTemporaryFile
|
|
# opens the file, and it cannot be opened multiple times in Windows. To support Windows,
|
|
# close the file after creation and try to remove it manually
|
|
f = tempfile.NamedTemporaryFile(delete=False)
|
|
try:
|
|
f.close()
|
|
imported.save(f.name)
|
|
result = torch.jit.load(f.name, map_location=map_location)
|
|
finally:
|
|
os.unlink(f.name)
|
|
|
|
result.apply(lambda s: s._unpack() if s._c._has_method('_unpack') else None)
|
|
return result
|
|
|
|
def assertGraphContains(self, graph, kind):
|
|
self.assertTrue(any(n.kind() == kind for n in graph.nodes()))
|
|
|
|
def assertGraphContainsExactly(self, graph, kind, num_kind_nodes, consider_subgraphs=False):
|
|
def perform_assert(graph, kind, actual, expected, consider_subgraphs):
|
|
if actual == expected:
|
|
return
|
|
subgraph = 'including' if consider_subgraphs else 'excluding'
|
|
raise AssertionError(
|
|
'{}\nError: graph contains {} {} nodes ({} subgraphs) but expected {}'.format(
|
|
graph, actual, kind, subgraph, expected))
|
|
|
|
if consider_subgraphs:
|
|
strgraph = str(graph)
|
|
count = strgraph.count(kind) - strgraph.count('with {}'.format(kind))
|
|
perform_assert(graph, kind, count, num_kind_nodes,
|
|
consider_subgraphs)
|
|
return
|
|
|
|
nodes = [node for node in graph.nodes()
|
|
if node.kind() == kind]
|
|
perform_assert(graph, kind, len(nodes), num_kind_nodes,
|
|
consider_subgraphs)
|
|
|
|
def assertExpectedONNXGraph(self, g, *args, **kwargs):
|
|
g = torch.onnx._optimize_trace(g, operator_export_type=OperatorExportTypes.ONNX)
|
|
self.assertExpectedGraph(g, *args, **kwargs)
|
|
|
|
def assertExpectedGraph(self, trace, *args, **kwargs):
|
|
if isinstance(trace, torch._C.Graph):
|
|
graph = trace
|
|
else:
|
|
graph = trace.graph()
|
|
|
|
torch._C._jit_pass_lint(graph)
|
|
torch._C._jit_pass_dce(graph)
|
|
torch._C._jit_pass_lint(graph)
|
|
graph = torch._C._jit_pass_canonicalize(graph)
|
|
torch._C._jit_pass_lint(graph)
|
|
self.assertExpected(str(graph), *args, **kwargs)
|
|
|
|
def assertAutodiffNode(self, graph, should_autodiff_node, nonfusible_nodes, fusible_nodes):
|
|
diff_nodes = graph.findAllNodes('prim::DifferentiableGraph')
|
|
diff_subgraphs = [node.g('Subgraph') for node in diff_nodes]
|
|
|
|
# For any non-fusible node, it must show up in one of the DifferentiableGraph.
|
|
found_all_nonfusible_nodes = (len(diff_subgraphs) == 0 and len(nonfusible_nodes) == 0)\
|
|
or all([any(g.findNode(n) is not None for g in diff_subgraphs) for n in nonfusible_nodes])
|
|
|
|
# For any fusible node, it must show up in one of the FusionGroup in the DifferentiableGraph.
|
|
fusion_nodes = list(chain.from_iterable([g.findAllNodes('prim::FusionGroup') for g in diff_subgraphs]))
|
|
fusion_subgraphs = [node.g('Subgraph') for node in fusion_nodes]
|
|
found_all_fusible_nodes = (len(fusion_nodes) == 0 and len(fusible_nodes) == 0)\
|
|
or all([any(g.findNode(n) is not None for g in fusion_subgraphs) for n in fusible_nodes])
|
|
|
|
self.assertEqual(should_autodiff_node, found_all_nonfusible_nodes and found_all_fusible_nodes)
|
|
|
|
def run_pass(self, name, trace):
|
|
if isinstance(trace, torch._C.Graph):
|
|
graph = trace
|
|
set_graph = False
|
|
else:
|
|
set_graph = True
|
|
graph = trace.graph()
|
|
|
|
torch._C._jit_pass_lint(graph)
|
|
result = getattr(torch._C, '_jit_pass_' + name)(graph)
|
|
if result is not None:
|
|
graph = result
|
|
torch._C._jit_pass_lint(graph)
|
|
|
|
if set_graph:
|
|
trace.set_graph(graph)
|
|
return graph
|
|
|
|
def get_frame_vars(self, frames_up):
|
|
frame = inspect.currentframe()
|
|
i = 0
|
|
while i < frames_up + 1:
|
|
frame = frame.f_back
|
|
i += 1
|
|
defined_vars = {}
|
|
defined_vars.update(frame.f_locals)
|
|
defined_vars.update(frame.f_globals)
|
|
return defined_vars
|
|
|
|
def assertRaisesRegexWithHighlight(self, exception, regex, highlight):
|
|
return _AssertRaisesRegexWithHighlightContext(self, exception, regex, highlight)
|
|
|
|
def checkScriptRaisesRegex(self, script, inputs, exception, regex,
|
|
outputs=None, capture_output=False, profiling=ProfilingMode.PROFILING):
|
|
"""
|
|
Checks that a given function will throw the correct exception,
|
|
when executed with normal python, the string frontend, and the AST frontend
|
|
"""
|
|
|
|
with enable_profiling_mode_for_profiling_tests():
|
|
# normal python
|
|
with self.assertRaisesRegex(exception, regex):
|
|
script(*inputs)
|
|
# string frontend
|
|
with self.assertRaisesRegex(exception, regex):
|
|
source = textwrap.dedent(inspect.getsource(script))
|
|
cu = torch.jit.CompilationUnit(source)
|
|
ge = getattr(cu, script.__name__)
|
|
# profiling run
|
|
with self.assertRaisesRegex(exception, regex):
|
|
ge(*inputs)
|
|
# optimized run
|
|
ge(*inputs)
|
|
# python AST frontend
|
|
with self.assertRaisesRegex(exception, regex):
|
|
ge = torch.jit.script(script)
|
|
# profiling run
|
|
with self.assertRaisesRegex(exception, regex):
|
|
ge(*inputs)
|
|
# optimized run
|
|
ge(*inputs)
|
|
|
|
|
|
def checkBailouts(self, model, inputs, expected):
|
|
state = model.get_debug_state()
|
|
plan = get_execution_plan(state)
|
|
num_bailouts = plan.code.num_bailouts()
|
|
for i in range(0, num_bailouts):
|
|
plan.code.request_bailout(i)
|
|
bailout_outputs = model(*inputs)
|
|
self.assertEqual(bailout_outputs, expected)
|
|
|
|
def checkScript(self,
|
|
script,
|
|
inputs,
|
|
name='func',
|
|
optimize=True,
|
|
inputs_requires_grad=False,
|
|
capture_output=False,
|
|
frames_up=1,
|
|
profiling=ProfilingMode.PROFILING):
|
|
with torch.jit.optimized_execution(optimize):
|
|
with enable_profiling_mode_for_profiling_tests():
|
|
if isinstance(script, str):
|
|
# Compile the string to a Script function
|
|
# with enable_profiling_mode():
|
|
cu = torch.jit.CompilationUnit(script, _frames_up=frames_up)
|
|
|
|
# Execute the Python function so we can run it later and get its
|
|
# outputs
|
|
|
|
frame = self.get_frame_vars(frames_up)
|
|
the_locals = {}
|
|
execWrapper(script, glob=frame, loc=the_locals)
|
|
frame.update(the_locals)
|
|
|
|
python_fn = frame[name]
|
|
scripted_fn = getattr(cu, name)
|
|
else:
|
|
|
|
# Check the string frontend first
|
|
source = textwrap.dedent(inspect.getsource(script))
|
|
self.checkScript(
|
|
source,
|
|
inputs,
|
|
script.__name__,
|
|
optimize=optimize,
|
|
inputs_requires_grad=inputs_requires_grad,
|
|
capture_output=capture_output,
|
|
profiling=profiling,
|
|
frames_up=2)
|
|
|
|
# Continue checking the Python frontend
|
|
scripted_fn = torch.jit.script(script, _frames_up=1)
|
|
python_fn = script
|
|
|
|
if inputs_requires_grad:
|
|
recording_inputs = do_input_map(lambda t: t.detach().requires_grad_(), inputs)
|
|
else:
|
|
recording_inputs = inputs
|
|
|
|
if capture_output:
|
|
with self.capture_stdout() as script_stdout:
|
|
script_outputs = scripted_fn(*recording_inputs)
|
|
with self.capture_stdout() as opt_script_stdout:
|
|
opt_script_outputs = scripted_fn(*recording_inputs)
|
|
with self.capture_stdout() as _python_stdout:
|
|
python_outputs = python_fn(*inputs)
|
|
if not IS_WINDOWS:
|
|
self.assertExpected(script_stdout[0], subname='stdout')
|
|
self.assertEqual(python_outputs, opt_script_outputs)
|
|
else:
|
|
# profiling run
|
|
script_outputs = scripted_fn(*recording_inputs)
|
|
# optimized run
|
|
opt_script_outputs = scripted_fn(*recording_inputs)
|
|
if TEST_BAILOUTS:
|
|
self.checkBailouts(scripted_fn, inputs, opt_script_outputs)
|
|
python_outputs = python_fn(*inputs)
|
|
self.assertEqual(python_outputs, script_outputs)
|
|
self.assertEqual(script_outputs, opt_script_outputs)
|
|
return scripted_fn
|
|
|
|
def checkTrace(self, func, reference_tensors, input_tensors=None,
|
|
drop=None, allow_unused=False, verbose=False,
|
|
inputs_require_grads=True, check_tolerance=1e-5, export_import=True,
|
|
_force_outplace=False):
|
|
|
|
# TODO: check gradients for parameters, not just inputs
|
|
def allSum(vs):
|
|
# drop allows us to remove some values from ever being used
|
|
# to test unused outputs
|
|
if drop is not None:
|
|
vs = vs[:-drop]
|
|
# we don't want all the grad for all the outputs to be the same
|
|
# so we multiply each by a constant
|
|
return sum(math.log(i + 2) * v.sum() for i, v in enumerate(vs) if v is not None)
|
|
if input_tensors is None:
|
|
input_tensors = reference_tensors
|
|
|
|
def flatten_inputs(inputs):
|
|
def input_reduce(input, fn, acc):
|
|
if isinstance(input, torch.Tensor):
|
|
fn(input, acc)
|
|
elif isinstance(input, dict):
|
|
reduce(lambda acc, key: input_reduce(input[key], fn, acc), input, acc)
|
|
else:
|
|
reduce(lambda acc, val: input_reduce(val, fn, acc), input, acc)
|
|
return acc
|
|
return tuple(input_reduce(recording_inputs, lambda t, acc: acc.append(t), []))
|
|
|
|
nograd_inputs = reference_tensors
|
|
if inputs_require_grads:
|
|
recording_inputs = do_input_map(lambda t: t.clone().requires_grad_(), reference_tensors)
|
|
flattened_recording_inputs = flatten_inputs(recording_inputs)
|
|
else:
|
|
recording_inputs = reference_tensors
|
|
|
|
# `check_trace` is set to False because check_trace is run with @no_grad
|
|
# Also, `checkTrace` already does all the checks
|
|
# against python function
|
|
ge = torch.jit.trace(func, input_tensors, check_tolerance=check_tolerance,
|
|
_force_outplace=_force_outplace, check_trace=False)
|
|
|
|
if export_import:
|
|
ge = self.getExportImportCopy(ge)
|
|
|
|
if verbose:
|
|
print(ge.graph)
|
|
|
|
# test no gradients case
|
|
outputs = func(*nograd_inputs)
|
|
outputs_ge = ge(*nograd_inputs)
|
|
self.assertEqual(outputs, outputs_ge)
|
|
|
|
# test gradients case
|
|
outputs = func(*recording_inputs)
|
|
if inputs_require_grads:
|
|
grads = torch.autograd.grad(allSum(outputs), flattened_recording_inputs,
|
|
allow_unused=allow_unused)
|
|
|
|
outputs_ge = ge(*recording_inputs)
|
|
if inputs_require_grads:
|
|
grads_ge = torch.autograd.grad(allSum(outputs_ge), flattened_recording_inputs,
|
|
allow_unused=allow_unused)
|
|
self.assertEqual(outputs, outputs_ge)
|
|
if inputs_require_grads:
|
|
self.assertEqual(grads, grads_ge)
|
|
|
|
self.assertEqual(outputs, outputs_ge)
|
|
if inputs_require_grads:
|
|
self.assertEqual(grads, grads_ge)
|
|
|
|
# test the grad grad case
|
|
outputs = func(*recording_inputs)
|
|
l1 = allSum(outputs)
|
|
if inputs_require_grads:
|
|
grads = torch.autograd.grad(l1, flattened_recording_inputs, create_graph=True,
|
|
allow_unused=allow_unused)
|
|
if inputs_require_grads:
|
|
l2 = (allSum(grads) * l1)
|
|
grads2 = torch.autograd.grad(l2, flattened_recording_inputs, allow_unused=allow_unused)
|
|
|
|
if inputs_require_grads:
|
|
recording_inputs = do_input_map(lambda t: Variable(t, requires_grad=True), reference_tensors)
|
|
flattened_recording_inputs = flatten_inputs(recording_inputs)
|
|
|
|
outputs_ge = ge(*recording_inputs)
|
|
l1_ge = allSum(outputs_ge)
|
|
if inputs_require_grads:
|
|
grads_ge = torch.autograd.grad(
|
|
l1_ge, flattened_recording_inputs, create_graph=True, allow_unused=allow_unused)
|
|
|
|
if inputs_require_grads:
|
|
l2_ge = (allSum(grads_ge) * l1_ge)
|
|
grads2_ge = torch.autograd.grad(l2_ge, flattened_recording_inputs, allow_unused=allow_unused)
|
|
|
|
self.assertEqual(outputs, outputs_ge)
|
|
if inputs_require_grads:
|
|
self.assertEqual(grads, grads_ge)
|
|
for g2, g2_ge in zip(grads2, grads2_ge):
|
|
if g2 is None and g2_ge is None:
|
|
continue
|
|
self.assertTrue(torch.allclose(g2, g2_ge, atol=8e-4, rtol=8e-4))
|
|
|
|
return ge
|
|
|
|
def createFunctionFromGraph(self, trace):
|
|
graph = trace if isinstance(trace, torch._C.Graph) else trace.graph()
|
|
return torch._C._create_function_from_graph("forward", graph)
|
|
|
|
def assertExportImport(self, trace, inputs):
|
|
m = self.createFunctionFromGraph(trace)
|
|
self.assertExportImportModule(m, inputs)
|
|
|
|
def assertExportImportModule(self, m, inputs):
|
|
m_import = self.getExportImportCopy(m)
|
|
a = self.runAndSaveRNG(m, inputs)
|
|
b = self.runAndSaveRNG(m_import, inputs)
|
|
self.assertEqual(a, b)
|
|
|
|
def runAndSaveRNG(self, func, inputs, kwargs=None):
|
|
kwargs = kwargs if kwargs else {}
|
|
with freeze_rng_state():
|
|
results = func(*inputs, **kwargs)
|
|
return results
|
|
|
|
def checkModule(self, nn_module, args):
|
|
"""
|
|
Check that a nn.Module's results in Script mode match eager and that it
|
|
can be exported
|
|
"""
|
|
sm = torch.jit.script(nn_module)
|
|
|
|
with freeze_rng_state():
|
|
eager_out = nn_module(*args)
|
|
|
|
with freeze_rng_state():
|
|
script_out = sm(*args)
|
|
|
|
self.assertEqual(eager_out, script_out)
|
|
self.assertExportImportModule(sm, args)
|
|
|
|
return sm
|
|
|
|
@contextmanager
|
|
def inline_everything_mode(should_inline):
|
|
old = torch._C._jit_get_inline_everything_mode()
|
|
torch._C._jit_set_inline_everything_mode(should_inline)
|
|
try:
|
|
yield
|
|
finally:
|
|
torch._C._jit_set_inline_everything_mode(old)
|
|
|
|
|
|
# note: not re-entrant, use unnested only
|
|
@contextmanager
|
|
def disable_autodiff_subgraph_inlining(enabled=True):
|
|
torch._C._debug_set_autodiff_subgraph_inlining(not enabled)
|
|
try:
|
|
yield
|
|
finally:
|
|
torch._C._debug_set_autodiff_subgraph_inlining(True)
|
|
|
|
def _inline_everything(fn):
|
|
@functools.wraps(fn)
|
|
def wrapper(*args, **kwargs):
|
|
with inline_everything_mode(True):
|
|
fn(*args, **kwargs)
|
|
return wrapper
|
|
|
|
# this exists for forward compatibility reasons temporarily.
|
|
# TODO(suo) remove
|
|
def _tmp_donotuse_dont_inline_everything(fn):
|
|
@functools.wraps(fn)
|
|
def wrapper(*args, **kwargs):
|
|
with inline_everything_mode(False):
|
|
fn(*args, **kwargs)
|
|
return wrapper
|
|
|
|
# make it easy to quicky define/trace a function for these tests
|
|
def _trace(*args, **kwargs):
|
|
def wrapper(func):
|
|
return torch.jit.trace(func, args, **kwargs)
|
|
return wrapper
|
|
|
|
|
|
def enable_cpu_fuser(fn):
|
|
def wrapper(*args, **kwargs):
|
|
torch._C._jit_override_can_fuse_on_cpu(True)
|
|
try:
|
|
fn(*args, **kwargs)
|
|
finally:
|
|
torch._C._jit_override_can_fuse_on_cpu(False)
|
|
return wrapper
|
|
|
|
|
|
def enable_cpu_fuser_if(cond):
|
|
if cond:
|
|
return enable_cpu_fuser
|
|
else:
|
|
def noop_fuser(fn):
|
|
def wrapper(*args, **kwargs):
|
|
return fn(*args, **kwargs)
|
|
return wrapper
|
|
return noop_fuser
|
|
|
|
def get_forward(c):
|
|
return c._get_method('forward')
|
|
|
|
def get_forward_graph(c):
|
|
return c._get_method('forward').graph
|
|
|
|
def get_module_method(m, module, method):
|
|
return m._c.getattr(module)._get_method(method)
|
|
|
|
def attrs_with_prefix(module, prefix):
|
|
return [x for x, _ in module._modules._c.items()
|
|
if x.startswith(prefix)]
|
|
|
|
op_alias_mappings = {
|
|
"absolute" : "abs",
|
|
"absolute_" : "abs_",
|
|
}
|