pytorch/test/cpp/api
Will Feng be6ad7ddde Rename BatchNorm running_variance to running_var (#17371)
Summary:
Currently there is a mismatch in naming between Python BatchNorm `running_var` and C++ BatchNorm `running_variance`, which causes JIT model parameters loading to fail (https://github.com/pytorch/vision/pull/728#issuecomment-466067138):
```
terminate called after throwing an instance of 'c10::Error'
  what():  No such serialized tensor 'running_variance' (read at /home/shahriar/Build/pytorch/torch/csrc/api/src/serialize/input-archive.cpp:27)
frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x85 (0x7f2d92d32f95 in /usr/local/lib/libc10.so)
frame #1: torch::serialize::InputArchive::read(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, at::Tensor&, bool) + 0xdeb (0x7f2d938551ab in /usr/local/lib/libtorch.so.1)
frame #2: torch::nn::Module::load(torch::serialize::InputArchive&) + 0x98 (0x7f2d9381cd08 in /usr/local/lib/libtorch.so.1)
frame #3: torch::nn::Module::load(torch::serialize::InputArchive&) + 0xf9 (0x7f2d9381cd69 in /usr/local/lib/libtorch.so.1)
frame #4: torch::nn::Module::load(torch::serialize::InputArchive&) + 0xf9 (0x7f2d9381cd69 in /usr/local/lib/libtorch.so.1)
frame #5: torch::nn::operator>>(torch::serialize::InputArchive&, std::shared_ptr<torch::nn::Module> const&) + 0x32 (0x7f2d9381c7b2 in /usr/local/lib/libtorch.so.1)
frame #6: <unknown function> + 0x2b16c (0x5645f4d1916c in /home/shahriar/Projects/CXX/build-TorchVisionTest-Desktop_Qt_5_12_1_GCC_64bit-Debug/TorchVisionTest)
frame #7: <unknown function> + 0x27a3c (0x5645f4d15a3c in /home/shahriar/Projects/CXX/build-TorchVisionTest-Desktop_Qt_5_12_1_GCC_64bit-Debug/TorchVisionTest)
frame #8: <unknown function> + 0x2165c (0x5645f4d0f65c in /home/shahriar/Projects/CXX/build-TorchVisionTest-Desktop_Qt_5_12_1_GCC_64bit-Debug/TorchVisionTest)
frame #9: <unknown function> + 0x1540b (0x5645f4d0340b in /home/shahriar/Projects/CXX/build-TorchVisionTest-Desktop_Qt_5_12_1_GCC_64bit-Debug/TorchVisionTest)
frame #10: __libc_start_main + 0xf3 (0x7f2d051dd223 in /usr/lib/libc.so.6)
frame #11: <unknown function> + 0x1381e (0x5645f4d0181e in /home/shahriar/Projects/CXX/build-TorchVisionTest-Desktop_Qt_5_12_1_GCC_64bit-Debug/TorchVisionTest)
```
Renaming C++ BatchNorm `running_variance` to `running_var` should fix this problem.

This is a BC-breaking change, but it should be easy for end user to rename `running_variance` to `running_var` in their call sites.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17371

Reviewed By: goldsborough

Differential Revision: D14172775

Pulled By: yf225

fbshipit-source-id: b9d3729ec79272a8084269756f28a8f7c4dd16b6
2019-02-22 08:00:25 -08:00
..
any.cpp Fix Windows build and test in CI (#11716) 2018-11-13 16:35:54 -08:00
CMakeLists.txt Kaiming Initialization (#14718) 2019-02-15 14:58:22 -08:00
dataloader.cpp C++ Frontend: adding two distributed samples (Random and Sequential) (#16910) 2019-02-19 05:40:37 -08:00
expanding-array.cpp Rewrite C++ API tests in gtest (#11953) 2018-09-21 21:28:16 -07:00
init_baseline.h Kaiming Initialization (#14718) 2019-02-15 14:58:22 -08:00
init_baseline.py Kaiming Initialization (#14718) 2019-02-15 14:58:22 -08:00
init.cpp Kaiming Initialization (#14718) 2019-02-15 14:58:22 -08:00
integration.cpp Move isnan to C++ (#15722) 2019-01-08 10:42:33 -08:00
jit.cpp Remove templates for GenericDict 2019-02-15 21:35:19 -08:00
memory.cpp Hide c10::optional and nullopt in torch namespace (#12927) 2018-10-26 00:08:04 -07:00
misc.cpp Kaiming Initialization (#14718) 2019-02-15 14:58:22 -08:00
module.cpp Apply modernize-use-override - 2/2 2019-02-13 21:01:28 -08:00
modules.cpp Rename BatchNorm running_variance to running_var (#17371) 2019-02-22 08:00:25 -08:00
optim_baseline.h Use torch:: instead of at:: in all C++ APIs (#13523) 2018-11-06 14:32:25 -08:00
optim_baseline.py Use torch:: instead of at:: in all C++ APIs (#13523) 2018-11-06 14:32:25 -08:00
optim.cpp Replace cursors with OrderedDict (#13427) 2018-11-07 11:10:05 -08:00
ordered_dict.cpp Replace cursors with OrderedDict (#13427) 2018-11-07 11:10:05 -08:00
parallel.cpp Remove OptionsGuard from ATen (#14524) 2018-11-30 13:30:35 -08:00
README.md Rewrite C++ API tests in gtest (#11953) 2018-09-21 21:28:16 -07:00
rnn.cpp Pretty printing of C++ modules (#15326) 2018-12-19 21:55:49 -08:00
sequential.cpp Pretty printing of C++ modules (#15326) 2018-12-19 21:55:49 -08:00
serialize.cpp Trim libshm deps, move tempfile.h to c10 (#17019) 2019-02-13 19:38:35 -08:00
static.cpp Make call operator on module holder call forward (#15831) 2019-01-14 14:40:33 -08:00
support.h Use torch:: instead of at:: in all C++ APIs (#13523) 2018-11-06 14:32:25 -08:00
tensor_cuda.cpp Fix Windows build and test in CI (#11716) 2018-11-13 16:35:54 -08:00
tensor_options_cuda.cpp Fix include paths for TensorOptions 2018-12-07 16:23:44 -08:00
tensor_options.cpp Apply modernize-use-override - 2/2 2019-02-13 21:01:28 -08:00
tensor.cpp Rename _local_scalar to item() (#13676) 2018-12-04 13:19:26 -08:00

C++ Frontend Tests

In this folder live the tests for PyTorch's C++ Frontend. They use the GoogleTest test framework.

CUDA Tests

To make a test runnable only on platforms with CUDA, you should suffix your test with _CUDA, e.g.

TEST(MyTestSuite, MyTestCase_CUDA) { }

To make it runnable only on platforms with at least two CUDA machines, suffix it with _MultiCUDA instead of _CUDA, e.g.

TEST(MyTestSuite, MyTestCase_MultiCUDA) { }

There is logic in main.cpp that detects the availability and number of CUDA devices and supplies the appropriate negative filters to GoogleTest.

Integration Tests

Integration tests use the MNIST dataset. You must download it by running the following command from the PyTorch root folder:

$ python tools/download_mnist.py -d test/cpp/api/mnist

The required paths will be referenced as test/cpp/api/mnist/... in the test code, so you must run the integration tests from the PyTorch root folder.