pytorch/torch/nn/init.py

257 lines
8.9 KiB
Python

import math
import random
import torch
from torch.autograd import Variable
def uniform(tensor, a=0, b=1):
"""Fills the input Tensor or Variable with values drawn from a uniform U(a,b)
Args:
tensor: a n-dimension torch.Tensor
a: the lower bound of the uniform distribution
b: the upper bound of the uniform distribution
Examples:
>>> w = torch.Tensor(3, 5)
>>> nn.init.uniform(w)
"""
if isinstance(tensor, Variable):
uniform(tensor.data, a=a, b=b)
return tensor
return tensor.uniform_(a, b)
def normal(tensor, mean=0, std=1):
"""Fills the input Tensor or Variable with values drawn from a normal distribution with the given mean and std
Args:
tensor: a n-dimension torch.Tensor
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
Examples:
>>> w = torch.Tensor(3, 5)
>>> nn.init.normal(w)
"""
if isinstance(tensor, Variable):
normal(tensor.data, mean=mean, std=std)
return tensor
return tensor.normal_(mean, std)
def constant(tensor, val):
"""Fills the input Tensor or Variable with the value `val`
Args:
tensor: a n-dimension torch.Tensor
val: the value to fill the tensor with
Examples:
>>> w = torch.Tensor(3, 5)
>>> nn.init.constant(w)
"""
if isinstance(tensor, Variable):
constant(tensor.data, val)
return tensor
return tensor.fill_(val)
def _calculate_fan_in_and_fan_out(tensor):
if tensor.ndimension() < 2:
raise ValueError("fan in and fan out can not be computed for tensor of size ", tensor.size())
if tensor.ndimension() == 2: # Linear
fan_in = tensor.size(1)
fan_out = tensor.size(0)
else:
num_input_fmaps = tensor.size(1)
num_output_fmaps = tensor.size(0)
receptive_field_size = 1
if tensor.dim() > 2:
receptive_field_size = tensor[0][0].numel()
fan_in = num_input_fmaps * receptive_field_size
fan_out = num_output_fmaps * receptive_field_size
return fan_in, fan_out
def xavier_uniform(tensor, gain=1):
"""Fills the input Tensor or Variable with values according to the method described in "Understanding the
difficulty of training deep feedforward neural networks" - Glorot, X. and Bengio, Y., using a uniform
distribution. The resulting tensor will have values sampled from U(-a, a) where a = gain * sqrt(2/(fan_in +
fan_out)) * sqrt(3)
Args:
tensor: a n-dimension torch.Tensor
gain: an optional scaling factor to be applied
Examples:
>>> w = torch.Tensor(3, 5)
>>> nn.init.xavier_uniform(w, gain=math.sqrt(2.0))
"""
if isinstance(tensor, Variable):
xavier_uniform(tensor.data, gain=gain)
return tensor
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
std = gain * math.sqrt(2.0 / (fan_in + fan_out))
a = math.sqrt(3.0) * std
return tensor.uniform_(-a, a)
def xavier_normal(tensor, gain=1):
"""Fills the input Tensor or Variable with values according to the method described in "Understanding the
difficulty of training deep feedforward neural networks" - Glorot, X. and Bengio, Y., using a normal
distribution. The resulting tensor will have values sampled from normal distribution with mean=0 and std = gain *
sqrt(2/(fan_in + fan_out))
Args:
tensor: a n-dimension torch.Tensor
gain: an optional scaling factor to be applied
Examples:
>>> w = torch.Tensor(3, 5)
>>> nn.init.xavier_normal(w)
"""
if isinstance(tensor, Variable):
xavier_normal(tensor.data, gain=gain)
return tensor
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
std = gain * math.sqrt(2.0 / (fan_in + fan_out))
return tensor.normal_(0, std)
def _calculate_correct_fan(tensor, mode):
mode = mode.lower()
valid_modes = ['fan_in', 'fan_out']
if mode not in valid_modes:
raise ValueError("mode {} not supported, please use one of {}".format(mode, valid_modes))
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
if mode == 'fan_in':
return fan_in
else:
return fan_out
def kaiming_uniform(tensor, a=0, mode='fan_in'):
"""Fills the input Tensor or Variable with values according to the method described in "Delving deep into
rectifiers: Surpassing human-level performance on ImageNet classification" - He, K. et al using a uniform
distribution. The resulting tensor will have values sampled from U(-bound, bound) where bound = sqrt(2/((1 + a^2)
* fan_in)) * sqrt(3)
Args:
tensor: a n-dimension torch.Tensor
a: the coefficient of the slope of the rectifier used after this layer (0 for ReLU by default)
mode: either 'fan_in' (default) or 'fan_out'. Choosing `fan_in` preserves the magnitude of the variance of the
weights in the forward pass. Choosing `fan_out` preserves the magnitudes in the backwards pass.
Examples:
>>> w = torch.Tensor(3, 5)
>>> nn.init.kaiming_uniform(w, mode='fan_in')
"""
if isinstance(tensor, Variable):
kaiming_uniform(tensor.data, a=a, mode=mode)
return tensor
fan = _calculate_correct_fan(tensor, mode)
std = math.sqrt(2.0 / ((1 + a ** 2) * fan))
bound = math.sqrt(3.0) * std
return tensor.uniform_(-bound, bound)
def kaiming_normal(tensor, a=0, mode='fan_in'):
"""Fills the input Tensor or Variable with values according to the method described in "Delving deep into
rectifiers: Surpassing human-level performance on ImageNet classification" - He, K. et al using a normal
distribution. The resulting tensor will have values sampled from normal distribution with mean=0 and std = sqrt(
2/((1 + a^2) * fan_in))
Args:
tensor: a n-dimension torch.Tensor
a: the coefficient of the slope of the rectifier used after this layer (0 for ReLU by default)
mode: either 'fan_in' (default) or 'fan_out'. Choosing `fan_in` preserves the magnitude of the variance of the
weights in the forward pass. Choosing `fan_out` preserves the magnitudes in the backwards pass.
Examples:
>>> w = torch.Tensor(3, 5)
>>> nn.init.kaiming_normal(w, mode='fan_out')
"""
if isinstance(tensor, Variable):
kaiming_normal(tensor.data, a=a, mode=mode)
return tensor
fan = _calculate_correct_fan(tensor, mode)
std = math.sqrt(2.0 / ((1 + a ** 2) * fan))
return tensor.normal_(0, std)
def orthogonal(tensor, gain=1):
"""Fills the input Tensor or Variable with a (semi) orthogonal matrix. The input tensor must have at least 2
dimensions, and for tensors with more than 2 dimensions the trailing dimensions are flattened. viewed as 2D
representation with rows equal to the first dimension and columns equal to the product of as a sparse matrix,
where the non-zero elements will be drawn from a normal distribution with mean=0 and std=`std`. Reference: "Exact
solutions to the nonlinear dynamics of learning in deep linear neural networks"-Saxe, A. et al.
Args:
tensor: a n-dimension torch.Tensor, where n >= 2
gain: optional gain to be applied
Examples:
>>> w = torch.Tensor(3, 5)
>>> nn.init.orthogonal(w)
"""
if isinstance(tensor, Variable):
orthogonal(tensor.data, gain=gain)
return tensor
if tensor.ndimension() < 2:
raise ValueError("Only tensors with 2 or more dimensions are supported.")
rows = tensor.size(0)
cols = tensor[0].numel()
flattened = torch.Tensor(rows, cols).normal_(0, 1)
u, s, v = torch.svd(flattened, some=True)
if u.is_same_size(flattened):
tensor.view_as(u).copy_(u)
else:
tensor.view_as(v.t()).copy_(v.t())
tensor.mul_(gain)
return tensor
def sparse(tensor, sparsity, std=0.01):
"""Fills the 2D input Tensor or Variable as a sparse matrix, where the non-zero elements will be drawn from a
normal distribution with mean=0 and std=`std`.
Args:
tensor: a n-dimension torch.Tensor
sparsity: The fraction of elements in each column to be set to zero
std: the standard deviation of the normal distribution used to generate the non-zero values
Examples:
>>> w = torch.Tensor(3, 5)
>>> nn.init.sparse(w, sparsity=0.1)
"""
if isinstance(tensor, Variable):
sparse(tensor.data, sparsity, std=std)
return tensor
if tensor.ndimension() != 2:
raise ValueError("Sparse initialization only supported for 2D inputs")
tensor.normal_(0, std)
rows, cols = tensor.size(0), tensor.size(1)
num_zeros = int(math.ceil(cols * sparsity))
for col_idx in range(tensor.size(1)):
row_indices = list(range(rows))
random.shuffle(row_indices)
zero_indices = row_indices[:num_zeros]
for row_idx in zero_indices:
tensor[row_idx, col_idx] = 0
return tensor