mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
257 lines
8.9 KiB
Python
257 lines
8.9 KiB
Python
import math
|
|
import random
|
|
|
|
import torch
|
|
from torch.autograd import Variable
|
|
|
|
|
|
def uniform(tensor, a=0, b=1):
|
|
"""Fills the input Tensor or Variable with values drawn from a uniform U(a,b)
|
|
|
|
Args:
|
|
tensor: a n-dimension torch.Tensor
|
|
a: the lower bound of the uniform distribution
|
|
b: the upper bound of the uniform distribution
|
|
|
|
Examples:
|
|
>>> w = torch.Tensor(3, 5)
|
|
>>> nn.init.uniform(w)
|
|
"""
|
|
if isinstance(tensor, Variable):
|
|
uniform(tensor.data, a=a, b=b)
|
|
return tensor
|
|
return tensor.uniform_(a, b)
|
|
|
|
|
|
def normal(tensor, mean=0, std=1):
|
|
"""Fills the input Tensor or Variable with values drawn from a normal distribution with the given mean and std
|
|
|
|
Args:
|
|
tensor: a n-dimension torch.Tensor
|
|
mean: the mean of the normal distribution
|
|
std: the standard deviation of the normal distribution
|
|
|
|
Examples:
|
|
>>> w = torch.Tensor(3, 5)
|
|
>>> nn.init.normal(w)
|
|
"""
|
|
if isinstance(tensor, Variable):
|
|
normal(tensor.data, mean=mean, std=std)
|
|
return tensor
|
|
return tensor.normal_(mean, std)
|
|
|
|
|
|
def constant(tensor, val):
|
|
"""Fills the input Tensor or Variable with the value `val`
|
|
|
|
Args:
|
|
tensor: a n-dimension torch.Tensor
|
|
val: the value to fill the tensor with
|
|
|
|
Examples:
|
|
>>> w = torch.Tensor(3, 5)
|
|
>>> nn.init.constant(w)
|
|
"""
|
|
if isinstance(tensor, Variable):
|
|
constant(tensor.data, val)
|
|
return tensor
|
|
return tensor.fill_(val)
|
|
|
|
|
|
def _calculate_fan_in_and_fan_out(tensor):
|
|
if tensor.ndimension() < 2:
|
|
raise ValueError("fan in and fan out can not be computed for tensor of size ", tensor.size())
|
|
|
|
if tensor.ndimension() == 2: # Linear
|
|
fan_in = tensor.size(1)
|
|
fan_out = tensor.size(0)
|
|
else:
|
|
num_input_fmaps = tensor.size(1)
|
|
num_output_fmaps = tensor.size(0)
|
|
receptive_field_size = 1
|
|
if tensor.dim() > 2:
|
|
receptive_field_size = tensor[0][0].numel()
|
|
fan_in = num_input_fmaps * receptive_field_size
|
|
fan_out = num_output_fmaps * receptive_field_size
|
|
|
|
return fan_in, fan_out
|
|
|
|
|
|
def xavier_uniform(tensor, gain=1):
|
|
"""Fills the input Tensor or Variable with values according to the method described in "Understanding the
|
|
difficulty of training deep feedforward neural networks" - Glorot, X. and Bengio, Y., using a uniform
|
|
distribution. The resulting tensor will have values sampled from U(-a, a) where a = gain * sqrt(2/(fan_in +
|
|
fan_out)) * sqrt(3)
|
|
|
|
Args:
|
|
tensor: a n-dimension torch.Tensor
|
|
gain: an optional scaling factor to be applied
|
|
|
|
Examples:
|
|
>>> w = torch.Tensor(3, 5)
|
|
>>> nn.init.xavier_uniform(w, gain=math.sqrt(2.0))
|
|
"""
|
|
if isinstance(tensor, Variable):
|
|
xavier_uniform(tensor.data, gain=gain)
|
|
return tensor
|
|
|
|
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
|
std = gain * math.sqrt(2.0 / (fan_in + fan_out))
|
|
a = math.sqrt(3.0) * std
|
|
return tensor.uniform_(-a, a)
|
|
|
|
|
|
def xavier_normal(tensor, gain=1):
|
|
"""Fills the input Tensor or Variable with values according to the method described in "Understanding the
|
|
difficulty of training deep feedforward neural networks" - Glorot, X. and Bengio, Y., using a normal
|
|
distribution. The resulting tensor will have values sampled from normal distribution with mean=0 and std = gain *
|
|
sqrt(2/(fan_in + fan_out))
|
|
|
|
Args:
|
|
tensor: a n-dimension torch.Tensor
|
|
gain: an optional scaling factor to be applied
|
|
|
|
Examples:
|
|
>>> w = torch.Tensor(3, 5)
|
|
>>> nn.init.xavier_normal(w)
|
|
"""
|
|
if isinstance(tensor, Variable):
|
|
xavier_normal(tensor.data, gain=gain)
|
|
return tensor
|
|
|
|
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
|
std = gain * math.sqrt(2.0 / (fan_in + fan_out))
|
|
return tensor.normal_(0, std)
|
|
|
|
|
|
def _calculate_correct_fan(tensor, mode):
|
|
mode = mode.lower()
|
|
valid_modes = ['fan_in', 'fan_out']
|
|
if mode not in valid_modes:
|
|
raise ValueError("mode {} not supported, please use one of {}".format(mode, valid_modes))
|
|
|
|
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
|
if mode == 'fan_in':
|
|
return fan_in
|
|
else:
|
|
return fan_out
|
|
|
|
|
|
def kaiming_uniform(tensor, a=0, mode='fan_in'):
|
|
"""Fills the input Tensor or Variable with values according to the method described in "Delving deep into
|
|
rectifiers: Surpassing human-level performance on ImageNet classification" - He, K. et al using a uniform
|
|
distribution. The resulting tensor will have values sampled from U(-bound, bound) where bound = sqrt(2/((1 + a^2)
|
|
* fan_in)) * sqrt(3)
|
|
|
|
Args:
|
|
tensor: a n-dimension torch.Tensor
|
|
a: the coefficient of the slope of the rectifier used after this layer (0 for ReLU by default)
|
|
mode: either 'fan_in' (default) or 'fan_out'. Choosing `fan_in` preserves the magnitude of the variance of the
|
|
weights in the forward pass. Choosing `fan_out` preserves the magnitudes in the backwards pass.
|
|
|
|
Examples:
|
|
>>> w = torch.Tensor(3, 5)
|
|
>>> nn.init.kaiming_uniform(w, mode='fan_in')
|
|
"""
|
|
if isinstance(tensor, Variable):
|
|
kaiming_uniform(tensor.data, a=a, mode=mode)
|
|
return tensor
|
|
|
|
fan = _calculate_correct_fan(tensor, mode)
|
|
std = math.sqrt(2.0 / ((1 + a ** 2) * fan))
|
|
bound = math.sqrt(3.0) * std
|
|
return tensor.uniform_(-bound, bound)
|
|
|
|
|
|
def kaiming_normal(tensor, a=0, mode='fan_in'):
|
|
"""Fills the input Tensor or Variable with values according to the method described in "Delving deep into
|
|
rectifiers: Surpassing human-level performance on ImageNet classification" - He, K. et al using a normal
|
|
distribution. The resulting tensor will have values sampled from normal distribution with mean=0 and std = sqrt(
|
|
2/((1 + a^2) * fan_in))
|
|
|
|
Args:
|
|
tensor: a n-dimension torch.Tensor
|
|
a: the coefficient of the slope of the rectifier used after this layer (0 for ReLU by default)
|
|
mode: either 'fan_in' (default) or 'fan_out'. Choosing `fan_in` preserves the magnitude of the variance of the
|
|
weights in the forward pass. Choosing `fan_out` preserves the magnitudes in the backwards pass.
|
|
|
|
Examples:
|
|
>>> w = torch.Tensor(3, 5)
|
|
>>> nn.init.kaiming_normal(w, mode='fan_out')
|
|
"""
|
|
if isinstance(tensor, Variable):
|
|
kaiming_normal(tensor.data, a=a, mode=mode)
|
|
return tensor
|
|
|
|
fan = _calculate_correct_fan(tensor, mode)
|
|
std = math.sqrt(2.0 / ((1 + a ** 2) * fan))
|
|
return tensor.normal_(0, std)
|
|
|
|
|
|
def orthogonal(tensor, gain=1):
|
|
"""Fills the input Tensor or Variable with a (semi) orthogonal matrix. The input tensor must have at least 2
|
|
dimensions, and for tensors with more than 2 dimensions the trailing dimensions are flattened. viewed as 2D
|
|
representation with rows equal to the first dimension and columns equal to the product of as a sparse matrix,
|
|
where the non-zero elements will be drawn from a normal distribution with mean=0 and std=`std`. Reference: "Exact
|
|
solutions to the nonlinear dynamics of learning in deep linear neural networks"-Saxe, A. et al.
|
|
|
|
Args:
|
|
tensor: a n-dimension torch.Tensor, where n >= 2
|
|
gain: optional gain to be applied
|
|
|
|
Examples:
|
|
>>> w = torch.Tensor(3, 5)
|
|
>>> nn.init.orthogonal(w)
|
|
"""
|
|
if isinstance(tensor, Variable):
|
|
orthogonal(tensor.data, gain=gain)
|
|
return tensor
|
|
|
|
if tensor.ndimension() < 2:
|
|
raise ValueError("Only tensors with 2 or more dimensions are supported.")
|
|
rows = tensor.size(0)
|
|
cols = tensor[0].numel()
|
|
flattened = torch.Tensor(rows, cols).normal_(0, 1)
|
|
|
|
u, s, v = torch.svd(flattened, some=True)
|
|
if u.is_same_size(flattened):
|
|
tensor.view_as(u).copy_(u)
|
|
else:
|
|
tensor.view_as(v.t()).copy_(v.t())
|
|
|
|
tensor.mul_(gain)
|
|
return tensor
|
|
|
|
|
|
def sparse(tensor, sparsity, std=0.01):
|
|
"""Fills the 2D input Tensor or Variable as a sparse matrix, where the non-zero elements will be drawn from a
|
|
normal distribution with mean=0 and std=`std`.
|
|
|
|
Args:
|
|
tensor: a n-dimension torch.Tensor
|
|
sparsity: The fraction of elements in each column to be set to zero
|
|
std: the standard deviation of the normal distribution used to generate the non-zero values
|
|
|
|
Examples:
|
|
>>> w = torch.Tensor(3, 5)
|
|
>>> nn.init.sparse(w, sparsity=0.1)
|
|
"""
|
|
if isinstance(tensor, Variable):
|
|
sparse(tensor.data, sparsity, std=std)
|
|
return tensor
|
|
|
|
if tensor.ndimension() != 2:
|
|
raise ValueError("Sparse initialization only supported for 2D inputs")
|
|
tensor.normal_(0, std)
|
|
rows, cols = tensor.size(0), tensor.size(1)
|
|
num_zeros = int(math.ceil(cols * sparsity))
|
|
|
|
for col_idx in range(tensor.size(1)):
|
|
row_indices = list(range(rows))
|
|
random.shuffle(row_indices)
|
|
zero_indices = row_indices[:num_zeros]
|
|
for row_idx in zero_indices:
|
|
tensor[row_idx, col_idx] = 0
|
|
|
|
return tensor
|