mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Fixes #144196 Extends #144106 and #144110 ## Open Problems: - [ ] Annotating with `numbers.Number` is a bad idea, should consider using `float`, `SupportsFloat` or some `Procotol`. https://github.com/pytorch/pytorch/pull/144197#discussion_r1903324769 # Notes - `beta.py`: needed to add `type: ignore` since `broadcast_all` is untyped. - `categorical.py`: converted `else` branches of mutually exclusive arguments to `if` branch[^2]. - ~~`dirichlet.py`: replaced `axis` with `dim` arguments.~~ #144402 - `gemoetric.py`: converted `else` branches of mutually exclusive arguments to `if` branch[^2]. - ~~`independent.py`: fixed bug in `Independent.__init__` where `tuple[int, ...]` could be passed to `Distribution.__init__` instead of `torch.Size`.~~ **EDIT:** turns out the bug is related to typing of `torch.Size`. #144218 - `independent.py`: made `Independent` a generic class of its base distribution. - `multivariate_normal.py`: converted `else` branches of mutually exclusive arguments to `if` branch[^2]. - `relaxed_bernoulli.py`: added class-level type hint for `base_dist`. - `relaxed_categorical.py`: added class-level type hint for `base_dist`. - ~~`transforms.py`: Added missing argument to docstring of `ReshapeTransform`~~ #144401 - ~~`transforms.py`: Fixed bug in `AffineTransform.sign` (could return `Tensor` instead of `int`).~~ #144400 - `transforms.py`: Added `type: ignore` comments to `AffineTransform.log_abs_det_jacobian`[^1]; replaced `torch.abs(scale)` with `scale.abs()`. - `transforms.py`: Added `type: ignore` comments to `AffineTransform.__eq__`[^1]. - `transforms.py`: Fixed type hint on `CumulativeDistributionTransform.domain`. Note that this is still an LSP violation, because `Transform.domain` is defined as `Constraint`, but `Distribution.domain` is defined as `Optional[Constraint]`. - skipped: `constraints.py`, `constraints_registry.py`, `kl.py`, `utils.py`, `exp_family.py`, `__init__.py`. ## Remark `TransformedDistribution`: `__init__` uses the check `if reinterpreted_batch_ndims > 0:`, which can lead to the creation of `Independent` distributions with only 1 component. This results in awkward code like `base_dist.base_dist` in `LogisticNormal`. ```python import torch from torch.distributions import * b1 = Normal(torch.tensor([0.0]), torch.tensor([1.0])) b2 = MultivariateNormal(torch.tensor([0.0]), torch.eye(1)) t = StickBreakingTransform() d1 = TransformedDistribution(b1, t) d2 = TransformedDistribution(b2, t) print(d1.base_dist) # Independent with 1 dimension print(d2.base_dist) # MultivariateNormal ``` One could consider changing this to `if reinterpreted_batch_ndims > 1:`. [^1]: Usage of `isinstance(value, numbers.Real)` leads to problems with static typing, as the `numbers` module is not supported by `mypy` (see <https://github.com/python/mypy/issues/3186>). This results in us having to add type-ignore comments in several places [^2]: Otherwise, we would have to add a bunch of `type: ignore` comments to make `mypy` happy, as it isn't able to perform the type narrowing. Ideally, such code should be replaced with structural pattern matching once support for Python 3.9 is dropped. Pull Request resolved: https://github.com/pytorch/pytorch/pull/144197 Approved by: https://github.com/malfet Co-authored-by: Aaron Gokaslan <aaronGokaslan@gmail.com>
67 lines
2.2 KiB
Python
67 lines
2.2 KiB
Python
# mypy: allow-untyped-defs
|
|
from typing import Optional, Union
|
|
|
|
from torch import Tensor
|
|
from torch.distributions import constraints, Independent
|
|
from torch.distributions.normal import Normal
|
|
from torch.distributions.transformed_distribution import TransformedDistribution
|
|
from torch.distributions.transforms import StickBreakingTransform
|
|
|
|
|
|
__all__ = ["LogisticNormal"]
|
|
|
|
|
|
class LogisticNormal(TransformedDistribution):
|
|
r"""
|
|
Creates a logistic-normal distribution parameterized by :attr:`loc` and :attr:`scale`
|
|
that define the base `Normal` distribution transformed with the
|
|
`StickBreakingTransform` such that::
|
|
|
|
X ~ LogisticNormal(loc, scale)
|
|
Y = log(X / (1 - X.cumsum(-1)))[..., :-1] ~ Normal(loc, scale)
|
|
|
|
Args:
|
|
loc (float or Tensor): mean of the base distribution
|
|
scale (float or Tensor): standard deviation of the base distribution
|
|
|
|
Example::
|
|
|
|
>>> # logistic-normal distributed with mean=(0, 0, 0) and stddev=(1, 1, 1)
|
|
>>> # of the base Normal distribution
|
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
|
>>> m = LogisticNormal(torch.tensor([0.0] * 3), torch.tensor([1.0] * 3))
|
|
>>> m.sample()
|
|
tensor([ 0.7653, 0.0341, 0.0579, 0.1427])
|
|
|
|
"""
|
|
|
|
arg_constraints = {"loc": constraints.real, "scale": constraints.positive}
|
|
support = constraints.simplex
|
|
has_rsample = True
|
|
base_dist: Independent[Normal]
|
|
|
|
def __init__(
|
|
self,
|
|
loc: Union[Tensor, float],
|
|
scale: Union[Tensor, float],
|
|
validate_args: Optional[bool] = None,
|
|
) -> None:
|
|
base_dist = Normal(loc, scale, validate_args=validate_args)
|
|
if not base_dist.batch_shape:
|
|
base_dist = base_dist.expand([1])
|
|
super().__init__(
|
|
base_dist, StickBreakingTransform(), validate_args=validate_args
|
|
)
|
|
|
|
def expand(self, batch_shape, _instance=None):
|
|
new = self._get_checked_instance(LogisticNormal, _instance)
|
|
return super().expand(batch_shape, _instance=new)
|
|
|
|
@property
|
|
def loc(self) -> Tensor:
|
|
return self.base_dist.base_dist.loc
|
|
|
|
@property
|
|
def scale(self) -> Tensor:
|
|
return self.base_dist.base_dist.scale
|