mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: According to https://github.com/pytorch/pytorch/issues/27285 , seems we do not intend to use shebang as an indication of Python version, thus we enable EXE001 flake8 check. For violations, we either remove shebang from non-executable Python scripts or grant them executable permission. Pull Request resolved: https://github.com/pytorch/pytorch/pull/27560 Differential Revision: D17831782 Pulled By: ezyang fbshipit-source-id: 6282fd3617b25676a6d959af0d318faf05c09b26
830 lines
26 KiB
Python
830 lines
26 KiB
Python
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
|
|
import concurrent.futures
|
|
import sys
|
|
import unittest
|
|
from collections import namedtuple
|
|
from unittest import mock
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.distributed.rpc as rpc
|
|
from common_utils import load_tests
|
|
from dist_utils import INIT_METHOD_TEMPLATE, TEST_CONFIG, dist_init
|
|
from torch.distributed import ProcessGroupAgent
|
|
from torch.distributed.rpc import RpcBackend
|
|
from torch.distributed.rpc.internal import PythonUDF, _internal_rpc_pickler
|
|
|
|
|
|
def requires_process_group_agent(func):
|
|
from torch.distributed.rpc.api import _agent
|
|
|
|
return unittest.skipUnless(
|
|
isinstance(_agent, ProcessGroupAgent),
|
|
"Only ProcessGroupAgent supports global termination detection",
|
|
)
|
|
|
|
|
|
VALUE_FUTURE = concurrent.futures.Future()
|
|
|
|
|
|
def stub_init_rpc_backend_handler(self_rank, self_name, init_method):
|
|
return mock.Mock() # RpcAgent.
|
|
|
|
|
|
def set_value(value):
|
|
VALUE_FUTURE.set_result(value)
|
|
|
|
|
|
# it is used to test python user defined function over rpc
|
|
# classes and functions are used to test python user defined class and
|
|
# methods over rpc
|
|
TensorClass = namedtuple("TensorClass", ["tensors"])
|
|
|
|
|
|
class MyPickleClass:
|
|
def __init__(self):
|
|
self.t = None
|
|
|
|
def __getstate__(self):
|
|
(pickled_python_udf, tensors) = _internal_rpc_pickler.serialize(
|
|
PythonUDF(my_tensor_function, (torch.ones(2, 2), torch.ones(2, 2)), None)
|
|
)
|
|
return (pickled_python_udf, tensors)
|
|
|
|
def __setstate__(self, obj):
|
|
python_udf = _internal_rpc_pickler.deserialize(obj[0], obj[1])
|
|
result = python_udf.func(python_udf.args[0], python_udf.args[1])
|
|
self.t = result
|
|
|
|
def set(self, val):
|
|
self.t = val
|
|
|
|
|
|
class MyClass:
|
|
def __init__(self, a):
|
|
self.a = a
|
|
|
|
def my_instance_method(self, b):
|
|
return self.a + b
|
|
|
|
@classmethod
|
|
def my_class_method(cls, d, e):
|
|
return d + e
|
|
|
|
@staticmethod
|
|
def my_static_method(f):
|
|
return f > 10
|
|
|
|
|
|
def run_nested_pickle(pickle_cls_instance, tensor):
|
|
return pickle_cls_instance.t + tensor
|
|
|
|
|
|
def build_complex_tensors():
|
|
a = torch.ones(3, 3)
|
|
b = [a, a]
|
|
c = [b, b]
|
|
d = [a, b]
|
|
e = {a: d}
|
|
return [a, b, c, d, e]
|
|
|
|
|
|
def my_function(a, b, c):
|
|
return a + b + c
|
|
|
|
|
|
def my_tensor_function(a, b):
|
|
return a + b
|
|
|
|
|
|
def my_complex_tensor_function(list_input, tensor_class_input, dict_input):
|
|
res = list_input[0]
|
|
for t in list_input:
|
|
res += t
|
|
for k, v in dict_input.items():
|
|
res += v
|
|
complex_tensors = tensor_class_input.tensors
|
|
return (res, complex_tensors[0], complex_tensors[1], complex_tensors[2])
|
|
|
|
|
|
def my_rref_function(rref_a, rref_b):
|
|
return rref_a.to_here() + rref_b.to_here()
|
|
|
|
|
|
def no_result():
|
|
print("do nothing")
|
|
|
|
|
|
def nested_rpc(dst):
|
|
return rpc.rpc_sync(dst, torch.add, args=(torch.ones(2, 2), 1))
|
|
|
|
|
|
def multi_layer_nested_async_rpc(dst, world_size, ttl):
|
|
# this method returns immediately without blocking the callee, but will
|
|
# generate additional requests.
|
|
if ttl > 0:
|
|
current_dst = "worker{}".format(dst)
|
|
next_dst = (dst + 1) % world_size
|
|
rpc.rpc_async(
|
|
current_dst,
|
|
multi_layer_nested_async_rpc,
|
|
args=(next_dst, world_size, ttl - 1),
|
|
)
|
|
return 0
|
|
|
|
|
|
def nested_rref(dst):
|
|
return (
|
|
dist.remote(dst, torch.add, args=(torch.ones(2, 2), 1)),
|
|
dist.remote(dst, torch.add, args=(torch.ones(2, 2), 2)),
|
|
)
|
|
|
|
|
|
def nested_remote(dst):
|
|
rref = dist.remote(dst, torch.add, args=(torch.ones(2, 2), 3))
|
|
return rref.to_here()
|
|
|
|
|
|
def rref_forward_chain(dst, world_size, rref, ttl):
|
|
if ttl > 0:
|
|
current_dst = "worker{}".format(dst)
|
|
next_dst = (dst + 1) % world_size
|
|
ret_rref = dist.remote(
|
|
current_dst, rref_forward_chain, args=(next_dst, world_size, rref, ttl - 1)
|
|
)
|
|
return [ret_rref]
|
|
else:
|
|
return rref.to_here()
|
|
|
|
|
|
def rpc_return_rref(dst):
|
|
return dist.remote(dst, torch.add, args=(torch.ones(2, 2), 1))
|
|
|
|
|
|
def light_rpc():
|
|
return 0
|
|
|
|
|
|
def heavy_rpc(tensor):
|
|
for i in range(1, 100):
|
|
tensor *= i
|
|
tensor /= i + 1
|
|
return 0
|
|
|
|
|
|
def raise_func():
|
|
raise ValueError("Expected error")
|
|
|
|
|
|
# load_tests from common_utils is used to automatically filter tests for
|
|
# sharding on sandcastle. This line silences flake warnings
|
|
load_tests = load_tests
|
|
|
|
|
|
@unittest.skipIf(
|
|
sys.version_info < (3, 0),
|
|
"Pytorch distributed rpc package " "does not support python2",
|
|
)
|
|
class RpcTest(object):
|
|
@property
|
|
def world_size(self):
|
|
return 4
|
|
|
|
@property
|
|
def init_method(self):
|
|
return INIT_METHOD_TEMPLATE.format(
|
|
file_name=self.file_name, rank=self.rank, world_size=self.world_size
|
|
)
|
|
|
|
@dist_init
|
|
def test_worker_id(self):
|
|
n = self.rank + 1
|
|
peer_rank = n % self.world_size
|
|
self_worker_info = rpc.get_worker_info()
|
|
peer_worker_info = rpc.get_worker_info("worker{}".format(peer_rank))
|
|
|
|
self.assertEqual(self_worker_info.name, "worker{}".format(self.rank))
|
|
self.assertEqual(peer_worker_info.name, "worker{}".format(peer_rank))
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "Unknown destination worker"):
|
|
unknown_worker_id = rpc.get_worker_info("WorkerUnknown")
|
|
|
|
@dist_init
|
|
def test_self_add(self):
|
|
self_worker_info = rpc.get_worker_info()
|
|
self_worker_name = "worker{}".format(self.rank)
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "does not support making RPC calls to self"
|
|
):
|
|
rpc.rpc_sync(self_worker_info, torch.add, args=(torch.ones(2, 2), 1))
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "does not support making RPC calls to self"
|
|
):
|
|
rpc.rpc_sync(self_worker_name, torch.add, args=(torch.ones(2, 2), 1))
|
|
|
|
@mock.patch.object(torch.distributed.autograd, "_init")
|
|
@mock.patch.object(torch.distributed.rpc.api, "_init_rref_context")
|
|
def test_register_rpc_backend_and_init_rpc_backend(
|
|
self, mock_init_rref_context, mock_dist_autograd_init
|
|
):
|
|
backend_name = "stub_backend"
|
|
rpc.register_backend(
|
|
backend_name, stub_init_rpc_backend_handler
|
|
)
|
|
rpc.init_model_parallel(self_name="worker1", backend=backend_name, self_rank=1)
|
|
|
|
@unittest.skipIf(
|
|
TEST_CONFIG.backend != RpcBackend.PROCESS_GROUP,
|
|
"PROCESS_GROUP rpc backend specific test, skip",
|
|
)
|
|
def test_duplicate_name(self):
|
|
dist.init_process_group(backend="gloo", init_method=self.init_method)
|
|
with self.assertRaisesRegex(RuntimeError, "is not unique"):
|
|
rpc.init_model_parallel(
|
|
self_name="duplicate_name",
|
|
backend=TEST_CONFIG.backend,
|
|
self_rank=self.rank,
|
|
init_method=self.init_method,
|
|
)
|
|
rpc.join_rpc()
|
|
|
|
def test_reinit(self):
|
|
dist.init_process_group(backend="gloo", init_method=self.init_method)
|
|
rpc.init_model_parallel(
|
|
self_name="worker{}".format(self.rank),
|
|
backend=TEST_CONFIG.backend,
|
|
self_rank=self.rank,
|
|
init_method=self.init_method,
|
|
)
|
|
with self.assertRaisesRegex(RuntimeError, "is already initialized"):
|
|
rpc.init_model_parallel(
|
|
self_name="worker{}".format(self.rank),
|
|
backend=TEST_CONFIG.backend,
|
|
self_rank=self.rank,
|
|
init_method=self.init_method,
|
|
)
|
|
rpc.join_rpc()
|
|
|
|
def test_init_invalid_backend(self):
|
|
with self.assertRaisesRegex(RuntimeError, "Unrecognized RPC backend"):
|
|
rpc.init_model_parallel(
|
|
self_name="worker{}".format(self.rank),
|
|
backend="invalid",
|
|
self_rank=self.rank,
|
|
init_method=self.init_method,
|
|
)
|
|
|
|
@unittest.skip("Test is flaky, see https://github.com/pytorch/pytorch/issues/25912")
|
|
def test_invalid_names(self):
|
|
dist.init_process_group(backend="gloo", init_method=self.init_method)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "Worker name must match"):
|
|
rpc.init_model_parallel(self_name="abc*")
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "Worker name must match"):
|
|
rpc.init_model_parallel(self_name=" ")
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "must be non-empty"):
|
|
rpc.init_model_parallel(self_name="")
|
|
|
|
# If the number in the message does not match, it is likely that the
|
|
# value of MAX_NAME_LEN in RPC WorkerInfo has changed.
|
|
with self.assertRaisesRegex(RuntimeError, "shorter than 128"):
|
|
rpc.init_model_parallel(
|
|
self_name="".join(["a" for _ in range(500)]),
|
|
backend=TEST_CONFIG.backend,
|
|
self_rank=self.rank,
|
|
init_method=self.init_method,
|
|
)
|
|
rpc.join_rpc()
|
|
|
|
@dist_init
|
|
def test_add(self):
|
|
n = self.rank + 1
|
|
dst_rank = n % self.world_size
|
|
ret = rpc.rpc_sync(
|
|
"worker{}".format(dst_rank),
|
|
torch.add,
|
|
args=(torch.ones(n, n), torch.ones(n, n)),
|
|
)
|
|
self.assertEqual(ret, torch.ones(n, n) * 2)
|
|
|
|
@dist_init
|
|
def test_add_with_id(self):
|
|
n = self.rank + 1
|
|
dst_rank = n % self.world_size
|
|
workder_info = rpc.get_worker_info("worker{}".format(dst_rank))
|
|
|
|
ret = rpc.rpc_sync(
|
|
workder_info, torch.add, args=(torch.ones(n, n), torch.ones(n, n))
|
|
)
|
|
self.assertEqual(ret, torch.ones(n, n) * 2)
|
|
|
|
@dist_init
|
|
def test_scalar_add(self):
|
|
n = self.rank + 1
|
|
dst_rank = n % self.world_size
|
|
ret = rpc.rpc_sync(
|
|
"worker{}".format(dst_rank), torch.add, args=(torch.ones(n, n), n)
|
|
)
|
|
self.assertEqual(ret, (torch.ones(n, n) + n))
|
|
|
|
@dist_init
|
|
def test_async_add(self):
|
|
n = self.rank + 1
|
|
dst_rank = n % self.world_size
|
|
fut = rpc.rpc_async(
|
|
"worker{}".format(dst_rank),
|
|
torch.add,
|
|
args=(torch.ones(n, n), torch.ones(n, n)),
|
|
)
|
|
self.assertEqual(fut.wait(), torch.ones(n, n) * 2)
|
|
|
|
@dist_init
|
|
def test_nonzero(self):
|
|
n = self.rank + 1
|
|
dst_rank = n % self.world_size
|
|
x = torch.ones(self.world_size, self.world_size)
|
|
x[self.rank][self.rank] = 0
|
|
ret = rpc.rpc_sync("worker{}".format(dst_rank), torch.nonzero, args=(x,))
|
|
self.assertEqual(ret, x.nonzero())
|
|
|
|
@dist_init
|
|
def test_multi_rpc(self):
|
|
dst_rank = (self.rank + 1) % self.world_size
|
|
for i in range(20):
|
|
n = i + self.rank + 1
|
|
ret = rpc.rpc_sync(
|
|
"worker{}".format(dst_rank),
|
|
torch.add,
|
|
args=(torch.ones(n, n), torch.ones(n, n)),
|
|
)
|
|
self.assertEqual(ret, torch.ones(n, n) * 2)
|
|
|
|
@dist_init
|
|
def test_sync_rpc(self):
|
|
dst_rank = (self.rank + 1) % self.world_size
|
|
for i in range(20):
|
|
rpc.sync_rpc()
|
|
n = i + self.rank + 1
|
|
ret1 = rpc.rpc_sync(
|
|
"worker{}".format(dst_rank),
|
|
torch.add,
|
|
args=(torch.ones(n, n), torch.ones(n, n)),
|
|
)
|
|
rpc.sync_rpc()
|
|
ret2 = rpc.rpc_sync(
|
|
"worker{}".format(dst_rank), torch.add, args=(torch.ones(n, n), 2)
|
|
)
|
|
rpc.sync_rpc()
|
|
self.assertEqual(ret1, torch.ones(n, n) * 2)
|
|
self.assertEqual(ret2, torch.ones(n, n) * 3)
|
|
|
|
@dist_init
|
|
def test_join_rpc(self):
|
|
n = self.rank + 1
|
|
dst_rank = n % self.world_size
|
|
ret = rpc.rpc_sync(
|
|
"worker{}".format(dst_rank),
|
|
torch.add,
|
|
args=(torch.ones(n, n), torch.ones(n, n)),
|
|
)
|
|
self.assertEqual(ret, torch.ones(n, n) * 2)
|
|
rpc.join_rpc()
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "^RPC has not been initialized"):
|
|
rpc.rpc_sync(
|
|
"worker{}".format(dst_rank),
|
|
torch.add,
|
|
args=(torch.ones(n, n), torch.ones(n, n)),
|
|
)
|
|
|
|
# it's safe to call join_rpc() multiple times
|
|
rpc.join_rpc()
|
|
|
|
@dist_init
|
|
def test_expected_src(self):
|
|
dst_rank = (self.rank + 1) % self.world_size
|
|
expected_src_rank = (self.rank - 1) % self.world_size
|
|
ret = rpc.rpc_sync("worker{}".format(dst_rank), set_value, args=(self.rank,))
|
|
value = VALUE_FUTURE.result()
|
|
self.assertEqual(value, expected_src_rank)
|
|
|
|
@dist_init
|
|
def test_py_built_in(self):
|
|
n = self.rank + 1
|
|
dst_rank = n % self.world_size
|
|
ret = rpc.rpc_sync("worker{}".format(dst_rank), min, args=(n, n + 1, n + 2))
|
|
self.assertEqual(ret, min(n, n + 1, n + 2))
|
|
|
|
@dist_init
|
|
def test_py_user_defined(self):
|
|
n = self.rank + 1
|
|
dst_rank = n % self.world_size
|
|
ret = rpc.rpc_sync(
|
|
"worker{}".format(dst_rank),
|
|
my_function,
|
|
kwargs={"a": n, "b": n + 1, "c": n + 2},
|
|
)
|
|
self.assertEqual(ret, my_function(n, n + 1, n + 2))
|
|
|
|
@dist_init
|
|
def test_py_class_constructor(self):
|
|
n = self.rank + 1
|
|
dst_rank = n % self.world_size
|
|
ret = rpc.rpc_sync("worker{}".format(dst_rank), MyClass, args=(n,))
|
|
self.assertEqual(ret.a, n)
|
|
|
|
@dist_init
|
|
def test_py_class_instance_method(self):
|
|
n = self.rank + 1
|
|
dst_rank = n % self.world_size
|
|
ret = rpc.rpc_sync(
|
|
"worker{}".format(dst_rank), MyClass(2).my_instance_method, args=(n,)
|
|
)
|
|
self.assertEqual(ret, MyClass(2).my_instance_method(n))
|
|
|
|
@dist_init
|
|
def test_py_class_method(self):
|
|
n = self.rank + 1
|
|
dst_rank = n % self.world_size
|
|
ret = rpc.rpc_sync(
|
|
"worker{}".format(dst_rank), MyClass.my_class_method, args=(n, n + 1)
|
|
)
|
|
self.assertEqual(ret, MyClass.my_class_method(n, n + 1))
|
|
|
|
@dist_init
|
|
def test_py_class_static_method(self):
|
|
n = self.rank + 1
|
|
dst_rank = n % self.world_size
|
|
ret = rpc.rpc_sync(
|
|
"worker{}".format(dst_rank), MyClass.my_static_method, args=(n + 10,)
|
|
)
|
|
self.assertEqual(ret, MyClass.my_static_method(n + 10))
|
|
|
|
@dist_init
|
|
def test_py_multi_async_call(self):
|
|
n = self.rank + 1
|
|
dst_rank = n % self.world_size
|
|
dst_worker_info = rpc.get_worker_info("worker{}".format(dst_rank))
|
|
fut1 = rpc.rpc_async(dst_worker_info, MyClass.my_static_method, args=(n + 10,))
|
|
fut2 = rpc.rpc_async(dst_worker_info, min, args=(n, n + 1, n + 2))
|
|
self.assertEqual(fut1.wait(), MyClass.my_static_method(n + 10))
|
|
self.assertEqual(fut2.wait(), min(n, n + 1, n + 2))
|
|
|
|
@dist_init
|
|
def test_py_no_return_result(self):
|
|
n = self.rank + 1
|
|
dst_rank = n % self.world_size
|
|
ret = rpc.rpc_sync("worker{}".format(dst_rank), no_result)
|
|
self.assertEqual(ret, no_result())
|
|
|
|
@dist_init
|
|
def test_py_tensors(self):
|
|
n = self.rank + 1
|
|
dst_rank = n % self.world_size
|
|
ret = rpc.rpc_sync(
|
|
"worker{}".format(dst_rank),
|
|
my_tensor_function,
|
|
args=(torch.ones(n, n), torch.ones(n, n)),
|
|
)
|
|
self.assertEqual(ret, my_tensor_function(torch.ones(n, n), torch.ones(n, n)))
|
|
|
|
@dist_init
|
|
def test_py_tensors_multi_async_call(self):
|
|
futs = []
|
|
n = self.rank + 1
|
|
dst_rank = n % self.world_size
|
|
for i in range(100):
|
|
fut = rpc.rpc_async(
|
|
"worker{}".format(dst_rank),
|
|
my_tensor_function,
|
|
args=(torch.ones(i, i), torch.ones(i, i)),
|
|
)
|
|
futs.append(fut)
|
|
|
|
j = 0
|
|
for fut in futs:
|
|
self.assertEqual(
|
|
fut.wait(), my_tensor_function(torch.ones(j, j), torch.ones(j, j))
|
|
)
|
|
j += 1
|
|
|
|
@dist_init
|
|
def test_py_tensors_in_container(self):
|
|
n = self.rank + 1
|
|
dst_rank = n % self.world_size
|
|
a = [torch.ones(n, n), torch.ones(n, n)]
|
|
b = TensorClass(build_complex_tensors())
|
|
c = {"foo": torch.ones(n, n), "bar": torch.ones(n, n)}
|
|
ret = rpc.rpc_sync(
|
|
"worker{}".format(dst_rank), my_complex_tensor_function, args=(a, b, c)
|
|
)
|
|
self.assertEqual(ret, my_complex_tensor_function(a, b, c))
|
|
|
|
@dist_init
|
|
def test_py_nested_pickle(self):
|
|
n = self.rank + 1
|
|
dst_rank = n % self.world_size
|
|
|
|
ret = rpc.rpc_sync(
|
|
"worker{}".format(dst_rank),
|
|
run_nested_pickle,
|
|
args=(MyPickleClass(), torch.ones(2, 2)),
|
|
)
|
|
|
|
m = MyPickleClass()
|
|
m.set(my_tensor_function(torch.ones(2, 2), torch.ones(2, 2)))
|
|
self.assertEqual(ret, run_nested_pickle(m, torch.ones(2, 2)))
|
|
|
|
@dist_init
|
|
def test_py_function_exception(self):
|
|
n = self.rank + 1
|
|
dst_rank = n % self.world_size
|
|
with self.assertRaisesRegex(Exception, "TypeError"):
|
|
ret = rpc.rpc_sync("worker{}".format(dst_rank), no_result, args=(10,))
|
|
|
|
@dist_init
|
|
def test_py_raise_in_user_func(self):
|
|
n = self.rank + 1
|
|
dst_rank = n % self.world_size
|
|
fut = rpc.rpc_async("worker{}".format(dst_rank), raise_func)
|
|
with self.assertRaisesRegex(Exception, "ValueError"):
|
|
fut.wait()
|
|
|
|
@dist_init
|
|
def test_nested_rpc(self):
|
|
n = self.rank + 1
|
|
dst_rank = n % self.world_size
|
|
ret = rpc.rpc_sync(
|
|
"worker{}".format(dst_rank),
|
|
nested_rpc,
|
|
args=("worker{}".format(self.rank),),
|
|
)
|
|
self.assertEqual(ret, torch.ones(2, 2) + 1)
|
|
|
|
def _stress_test_rpc(self, f, repeat=1000, args=()):
|
|
import time
|
|
|
|
n = self.rank + 1
|
|
dst_rank = n % self.world_size
|
|
futs = []
|
|
tik = time.time()
|
|
for _ in range(repeat):
|
|
fut = rpc.rpc_async("worker{}".format(dst_rank), f, args=args)
|
|
futs.append(fut)
|
|
|
|
for fut in futs:
|
|
self.assertEqual(fut.wait(), 0)
|
|
tok = time.time()
|
|
print(
|
|
"Rank {} finished testing {} {} times in {} seconds.".format(
|
|
self.rank, f.__name__, repeat, tok - tik
|
|
)
|
|
)
|
|
|
|
@dist_init
|
|
def test_stress_light_rpc(self):
|
|
self._stress_test_rpc(light_rpc)
|
|
|
|
@dist_init
|
|
def test_stress_heavy_rpc(self):
|
|
self._stress_test_rpc(heavy_rpc, repeat=20, args=(torch.ones(100, 100),))
|
|
|
|
@dist_init
|
|
def test_builtin_remote_ret(self):
|
|
n = self.rank + 1
|
|
dst_rank = n % self.world_size
|
|
rref = rpc.remote(
|
|
"worker{}".format(dst_rank),
|
|
torch.add,
|
|
args=(torch.ones(n, n), torch.ones(n, n)),
|
|
)
|
|
self.assertEqual(rref.to_here(), torch.ones(n, n) * 2)
|
|
|
|
def _test_multi_remote_call(self, fn, args_fn=lambda x: (), kwargs_fn=lambda x: {}):
|
|
m = 10
|
|
n = self.rank + 1
|
|
dst_rank = n % self.world_size
|
|
rrefs = []
|
|
expected = []
|
|
for i in range(m):
|
|
n = n + i
|
|
rrefs.append(
|
|
rpc.remote(
|
|
"worker{}".format(dst_rank),
|
|
fn,
|
|
args=args_fn(n),
|
|
kwargs=kwargs_fn(n),
|
|
)
|
|
)
|
|
expected.append(fn(*args_fn(n), **kwargs_fn(n)))
|
|
|
|
for i in range(m):
|
|
self.assertEqual(rrefs[i].to_here(), expected[i])
|
|
|
|
@dist_init
|
|
@requires_process_group_agent
|
|
def test_multi_builtin_remote_ret(self):
|
|
def args_fn(n):
|
|
return (torch.ones(n, n), torch.ones(n, n))
|
|
|
|
self._test_multi_remote_call(torch.add, args_fn=args_fn)
|
|
|
|
@dist_init
|
|
@requires_process_group_agent
|
|
def test_py_udf_remote(self):
|
|
n = self.rank + 1
|
|
dst_rank = n % self.world_size
|
|
rref = dist.remote(
|
|
"worker{}".format(dst_rank),
|
|
my_function,
|
|
kwargs={"a": n, "b": n + 1, "c": n + 2},
|
|
)
|
|
self.assertEqual(rref.to_here(), my_function(n, n + 1, n + 2))
|
|
|
|
@dist_init
|
|
@requires_process_group_agent
|
|
def test_multi_py_udf_remote(self):
|
|
def kwargs_fn(n):
|
|
return {"a": torch.ones(n, n), "b": torch.ones(n, n), "c": torch.ones(n, n)}
|
|
|
|
self._test_multi_remote_call(my_function, kwargs_fn=kwargs_fn)
|
|
|
|
@dist_init
|
|
@requires_process_group_agent
|
|
def test_py_rref_args(self):
|
|
n = self.rank + 1
|
|
dst_rank = n % self.world_size
|
|
rref_a = dist.remote(
|
|
"worker{}".format(dst_rank), torch.add, args=(torch.ones(n, n), 2)
|
|
)
|
|
rref_b = dist.remote(
|
|
"worker{}".format(dst_rank), torch.add, args=(torch.ones(n, n), 1)
|
|
)
|
|
rref_c = dist.remote(
|
|
"worker{}".format(dst_rank), my_rref_function, args=(rref_a, rref_b)
|
|
)
|
|
self.assertEqual(rref_c.to_here(), torch.ones(n, n) + 4)
|
|
|
|
@dist_init
|
|
@requires_process_group_agent
|
|
def test_py_rref_args_user_share(self):
|
|
n = self.rank + 1
|
|
owner_rank = n % self.world_size
|
|
user_rank = (n + 1) % self.world_size
|
|
rref_a = dist.remote(
|
|
"worker{}".format(owner_rank), my_function, args=(torch.ones(n, n), 2, 0)
|
|
)
|
|
rref_b = dist.remote(
|
|
"worker{}".format(owner_rank), my_function, args=(torch.ones(n, n), 1, 0)
|
|
)
|
|
rref_c = dist.remote(
|
|
"worker{}".format(user_rank), my_rref_function, args=(rref_a, rref_b)
|
|
)
|
|
self.assertEqual(rref_c.to_here(), torch.ones(n, n) + 4)
|
|
|
|
@dist_init
|
|
@requires_process_group_agent
|
|
def test_py_rpc_rref_args(self):
|
|
n = self.rank + 1
|
|
dst_rank = n % self.world_size
|
|
rref_a = dist.remote(
|
|
"worker{}".format(dst_rank), my_function, args=(torch.ones(n, n), 2, 0)
|
|
)
|
|
rref_b = dist.remote(
|
|
"worker{}".format(dst_rank), my_function, args=(torch.ones(n, n), 1, 0)
|
|
)
|
|
|
|
c = dist.rpc_sync(
|
|
"worker{}".format(dst_rank), my_rref_function, args=(rref_a, rref_b)
|
|
)
|
|
|
|
self.assertEqual(c, torch.ones(n, n) + 4)
|
|
|
|
@dist_init
|
|
@requires_process_group_agent
|
|
def test_nested_remote(self):
|
|
n = self.rank + 1
|
|
dst_rank1 = n % self.world_size
|
|
dst_rank2 = (n + 1) % self.world_size
|
|
rref = dist.remote(
|
|
"worker{}".format(dst_rank1),
|
|
nested_remote,
|
|
args=("worker{}".format(dst_rank2),),
|
|
)
|
|
self.assertEqual(rref.to_here(), torch.ones(2, 2) + 3)
|
|
|
|
@dist_init
|
|
@requires_process_group_agent
|
|
def test_nested_rref(self):
|
|
n = self.rank + 1
|
|
dst_rank1 = n % self.world_size
|
|
dst_rank2 = (n + 1) % self.world_size
|
|
rref_of_rrefs = dist.remote(
|
|
"worker{}".format(dst_rank1),
|
|
nested_rref,
|
|
args=("worker{}".format(dst_rank2),),
|
|
)
|
|
rrefs = rref_of_rrefs.to_here()
|
|
self.assertEqual(len(rrefs), 2)
|
|
self.assertEqual(rrefs[0].to_here(), torch.ones(2, 2) + 1)
|
|
self.assertEqual(rrefs[1].to_here(), torch.ones(2, 2) + 2)
|
|
|
|
@dist_init
|
|
@requires_process_group_agent
|
|
def test_nested_rref_stress(self):
|
|
n = self.rank + 1
|
|
dst_rank1 = n % self.world_size
|
|
dst_rank2 = (n + 1) % self.world_size
|
|
all_rrefs = []
|
|
for _ in range(20):
|
|
all_rrefs.append(
|
|
dist.remote(
|
|
"worker{}".format(dst_rank1),
|
|
nested_rref,
|
|
args=("worker{}".format(dst_rank2),),
|
|
)
|
|
)
|
|
|
|
for i in range(20):
|
|
rref_of_rrefs = all_rrefs[i]
|
|
rrefs = rref_of_rrefs.to_here()
|
|
self.assertEqual(len(rrefs), 2)
|
|
self.assertEqual(rrefs[0].to_here(), torch.ones(2, 2) + 1)
|
|
self.assertEqual(rrefs[1].to_here(), torch.ones(2, 2) + 2)
|
|
|
|
@dist_init
|
|
@requires_process_group_agent
|
|
def test_multi_layer_nested_async_rpc(self):
|
|
# This test will exit right away, but there will be a chain of async
|
|
# RPCs. The termination algorithm should detect those messages properly.
|
|
# Otherwise, some peer could exit early, leaving others to timeout
|
|
# errors or connection closed errors.
|
|
ttl = 20
|
|
n = self.rank + 1
|
|
dst_rank = n % self.world_size
|
|
|
|
multi_layer_nested_async_rpc(dst_rank, self.world_size, ttl)
|
|
|
|
@dist_init
|
|
@requires_process_group_agent
|
|
def test_remote_with_exception(self):
|
|
n = self.rank + 1
|
|
dst_rank = n % self.world_size
|
|
rref = dist.remote("worker{}".format(dst_rank), raise_func)
|
|
with self.assertRaisesRegex(Exception, "ValueError"):
|
|
rref.to_here()
|
|
|
|
@dist_init
|
|
@requires_process_group_agent
|
|
def test_rpc_return_rref(self):
|
|
n = self.rank + 1
|
|
dst_rank1 = n % self.world_size
|
|
dst_rank2 = (n + 1) % self.world_size
|
|
rref = dist.rpc_sync(
|
|
"worker{}".format(dst_rank1),
|
|
rpc_return_rref,
|
|
args=("worker{}".format(dst_rank2),),
|
|
)
|
|
self.assertEqual(rref.to_here(), torch.ones(2, 2) + 1)
|
|
|
|
@dist_init
|
|
@requires_process_group_agent
|
|
def test_rref_forward_chain(self):
|
|
ttl = 8
|
|
n = self.rank + 1
|
|
dst_rank = n % self.world_size
|
|
|
|
rref = dist.remote(
|
|
"worker{}".format(dst_rank), torch.add, args=(torch.ones(n, n), 1)
|
|
)
|
|
|
|
ret_rref = rref_forward_chain(dst_rank, self.world_size, rref, ttl)
|
|
|
|
for i in range(ttl):
|
|
self.assertEqual(len(ret_rref), 1)
|
|
ret_rref = ret_rref[0].to_here()
|
|
|
|
ret = ret_rref
|
|
self.assertEqual(ret, torch.add(torch.ones(n, n), 1))
|
|
|
|
@dist_init
|
|
@requires_process_group_agent
|
|
def test_remote_same_worker(self):
|
|
n = self.rank + 1
|
|
dst_rank = n % self.world_size
|
|
rref_a = dist.remote(
|
|
"worker{}".format(dst_rank), torch.add, args=(torch.ones(n, n), 2)
|
|
)
|
|
rref_b = dist.remote(
|
|
"worker{}".format(dst_rank), torch.add, args=(torch.ones(n, n), 1)
|
|
)
|
|
rref_c = dist.remote(
|
|
"worker{}".format(dst_rank), my_rref_function, args=(rref_a, rref_b)
|
|
)
|
|
self.assertEqual(rref_c.to_here(), torch.ones(n, n) + 4)
|