mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/31117 After this diff, we will have completely removed the named tensor feature flagging. This means that named tensors are always on and that there is no mechanism to turn them off. There should be no more follow-up diffs. I performed the deletion of the header with ``` find . -type f -print0 | xargs -0 sed -i '/#include <ATen\/core\/EnableNamedTensor.h>/d' ``` Test Plan: - wait for CI Differential Revision: D18934952 Pulled By: zou3519 fbshipit-source-id: 253d059074b910fef15bdf885ebf71e0edf5bea5
667 lines
21 KiB
C++
667 lines
21 KiB
C++
#pragma once
|
|
|
|
// Parse arguments to Python functions implemented in C++
|
|
// This is similar to PyArg_ParseTupleAndKeywords(), but specifically handles
|
|
// the types relevant to PyTorch and distinguishes between overloaded function
|
|
// signatures.
|
|
//
|
|
// Example:
|
|
//
|
|
// static PythonArgParser parser({
|
|
// "norm(Scalar p, int64_t dim, bool keepdim=False)",
|
|
// "norm(Scalar p=2)",
|
|
// });
|
|
// ParsedArgs<3> parsed_args;
|
|
// auto r = parser.parse(args, kwargs, parsed_args);
|
|
// if (r.idx == 0) {
|
|
// norm(r.scalar(0), r.int64(1), r.bool(0));
|
|
// } else {
|
|
// norm(r.scalar(0));
|
|
// }
|
|
//
|
|
// We auto-generate most uses of PythonArgParser; the generated files
|
|
// are torch/csrc/autograd/generated/python_*.cpp
|
|
//
|
|
// Some gotchas that you should watch out for:
|
|
//
|
|
// - Note [Order of overloads matters]
|
|
// Order of overloads matters. A set of input arguments may
|
|
// bind to multiple argument specs; we will always pick the
|
|
// first one in PythonArgParser. However, when you are writing
|
|
// overloads in, e.g., native_functions.yaml, you don't have to
|
|
// worry about what order you write them, because the code
|
|
// generation logic always gives the overloads a canonical
|
|
// order, where Tensor overloads come first, before Scalar overloads.
|
|
// This logic is in sort_declarations in
|
|
// tools/autograd/gen_python_functions.py
|
|
//
|
|
// - Zero-dim tensors (e.g., torch.tensor(2)) bind to both
|
|
// Scalar and Tensor, UNLESS they require grad (in which case
|
|
// they only bind to Tensor).
|
|
|
|
|
|
#include <torch/csrc/python_headers.h>
|
|
|
|
#include <torch/csrc/Device.h>
|
|
#include <torch/csrc/Dtype.h>
|
|
#include <torch/csrc/DynamicTypes.h>
|
|
#include <torch/csrc/Exceptions.h>
|
|
#include <torch/csrc/Generator.h>
|
|
#include <torch/csrc/MemoryFormat.h>
|
|
#include <torch/csrc/QScheme.h>
|
|
#include <torch/csrc/autograd/python_variable.h>
|
|
#include <torch/csrc/jit/tracer.h>
|
|
#include <torch/csrc/jit/ir.h>
|
|
#include <torch/csrc/python_dimname.h>
|
|
#include <torch/csrc/tensor/python_tensor.h>
|
|
#include <torch/csrc/utils/numpy_stub.h>
|
|
#include <torch/csrc/utils/object_ptr.h>
|
|
#include <torch/csrc/utils/pybind.h>
|
|
#include <torch/csrc/utils/python_numbers.h>
|
|
#include <torch/csrc/utils/python_strings.h>
|
|
#include <torch/csrc/utils/six.h>
|
|
#include <torch/csrc/autograd/variable.h>
|
|
|
|
#include <ATen/ATen.h>
|
|
#include <c10/util/Exception.h>
|
|
|
|
#include <array>
|
|
#include <cstddef>
|
|
#include <memory>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace torch {
|
|
|
|
enum class ParameterType {
|
|
TENSOR, SCALAR, INT64, DOUBLE, COMPLEX, TENSOR_LIST, INT_LIST, GENERATOR,
|
|
BOOL, STORAGE, PYOBJECT, SCALARTYPE, LAYOUT, MEMORY_FORMAT, DEVICE, STRING,
|
|
DIMNAME, DIMNAME_LIST, QSCHEME
|
|
};
|
|
|
|
struct FunctionParameter;
|
|
struct FunctionSignature;
|
|
struct PythonArgs;
|
|
|
|
// Contains bound Python arguments in declaration order
|
|
template<int N>
|
|
struct ParsedArgs {
|
|
ParsedArgs() : args() { }
|
|
PyObject* args[N];
|
|
};
|
|
|
|
struct PythonArgParser {
|
|
explicit PythonArgParser(std::vector<std::string> fmts, bool traceable=false);
|
|
|
|
// meant only for `torch` functions.
|
|
template<int N>
|
|
inline PythonArgs parse(PyObject* args, PyObject* kwargs, ParsedArgs<N>& dst);
|
|
|
|
private:
|
|
[[noreturn]]
|
|
void print_error(PyObject* args, PyObject* kwargs, PyObject* parsed_args[]);
|
|
PythonArgs raw_parse(PyObject* args, PyObject* kwargs, PyObject* parsed_args[]);
|
|
|
|
std::vector<FunctionSignature> signatures_;
|
|
std::string function_name;
|
|
ssize_t max_args;
|
|
bool traceable;
|
|
};
|
|
|
|
struct PythonArgs {
|
|
PythonArgs(int idx, bool traceable, const FunctionSignature& signature, PyObject** args)
|
|
: idx(idx)
|
|
, traceable(traceable)
|
|
, signature(signature)
|
|
, args(args) {}
|
|
|
|
int idx;
|
|
bool traceable;
|
|
const FunctionSignature& signature;
|
|
PyObject** args;
|
|
|
|
inline bool has_torch_function();
|
|
inline std::string get_func_name();
|
|
inline at::Tensor tensor(int i);
|
|
inline at::Scalar scalar(int i);
|
|
inline at::Scalar scalarWithDefault(int i, at::Scalar default_scalar);
|
|
inline std::vector<at::Tensor> tensorlist(int i);
|
|
template<int N>
|
|
inline std::array<at::Tensor, N> tensorlist_n(int i);
|
|
inline std::vector<int64_t> intlist(int i);
|
|
inline std::vector<int64_t> intlistWithDefault(int i, std::vector<int64_t> default_intlist);
|
|
inline at::Generator* generator(int i);
|
|
inline at::Storage storage(int i);
|
|
inline at::ScalarType scalartype(int i);
|
|
inline at::ScalarType scalartypeWithDefault(int i, at::ScalarType default_scalartype);
|
|
inline c10::optional<at::ScalarType> scalartypeOptional(int i);
|
|
inline c10::optional<at::Scalar> scalarOptional(int i);
|
|
inline c10::optional<int64_t> toInt64Optional(int i);
|
|
inline c10::optional<bool> toBoolOptional(int i);
|
|
inline const THPLayout& layout(int i);
|
|
inline const THPLayout& layoutWithDefault(int i, const THPLayout& default_layout);
|
|
inline at::Device device(int i);
|
|
inline at::Device deviceWithDefault(int i, const at::Device& default_device);
|
|
inline c10::optional<at::Device> deviceOptional(int i);
|
|
inline at::Dimname dimname(int i);
|
|
inline std::vector<at::Dimname> dimnamelist(int i);
|
|
inline c10::optional<std::vector<at::Dimname>> toDimnameListOptional(int i);
|
|
inline at::MemoryFormat memoryformat(int i);
|
|
inline c10::optional<at::MemoryFormat> memoryformatOptional(int i);
|
|
inline at::QScheme toQScheme(int i);
|
|
inline std::string string(int i);
|
|
inline PyObject* pyobject(int i);
|
|
inline int64_t toInt64(int i);
|
|
inline int64_t toInt64WithDefault(int i, int64_t default_int);
|
|
inline double toDouble(int i);
|
|
inline double toDoubleWithDefault(int i, double default_double);
|
|
inline std::complex<double> toComplex(int i);
|
|
inline std::complex<double> toComplexWithDefault(int i, std::complex<double> default_complex);
|
|
inline bool toBool(int i);
|
|
inline bool toBoolWithDefault(int i, bool default_bool);
|
|
inline bool isNone(int i);
|
|
|
|
private:
|
|
at::Tensor tensor_slow(int i);
|
|
at::Scalar scalar_slow(int i);
|
|
};
|
|
|
|
struct PYBIND11_EXPORT FunctionSignature {
|
|
explicit FunctionSignature(const std::string& fmt);
|
|
|
|
bool parse(PyObject* args, PyObject* kwargs, PyObject* dst[], bool raise_exception);
|
|
|
|
std::string toString() const;
|
|
|
|
std::string name;
|
|
std::vector<FunctionParameter> params;
|
|
std::vector<py::handle> overloaded_args;
|
|
ssize_t min_args;
|
|
ssize_t max_args;
|
|
ssize_t max_pos_args;
|
|
bool hidden;
|
|
bool deprecated;
|
|
};
|
|
|
|
struct FunctionParameter {
|
|
FunctionParameter(const std::string& fmt, bool keyword_only);
|
|
|
|
bool check(PyObject* obj, std::vector<py::handle> &overloaded_args);
|
|
|
|
void set_default_str(const std::string& str);
|
|
std::string type_name() const;
|
|
|
|
ParameterType type_;
|
|
bool optional;
|
|
bool allow_none;
|
|
bool keyword_only;
|
|
bool allow_numbers_as_tensors = false;
|
|
int size;
|
|
std::string name;
|
|
// having this as a raw PyObject * will presumably leak it, but these are only held by static objects
|
|
// anyway, and Py_Finalize can already be called when this is destructed.
|
|
PyObject *python_name;
|
|
at::SmallVector<PyObject *, 5> numpy_python_names;
|
|
at::Scalar default_scalar;
|
|
std::vector<int64_t> default_intlist;
|
|
union {
|
|
bool default_bool;
|
|
int64_t default_int;
|
|
double default_double;
|
|
double default_complex[2]; // see Scalar
|
|
at::ScalarType default_scalartype;
|
|
THPLayout* default_layout;
|
|
};
|
|
};
|
|
|
|
template<int N>
|
|
inline PythonArgs PythonArgParser::parse(PyObject* args, PyObject* kwargs, ParsedArgs<N>& dst) {
|
|
if (N < max_args) {
|
|
throw ValueError("PythonArgParser: dst ParsedArgs buffer does not have enough capacity, expected %d (got %d)",
|
|
(int)max_args, N);
|
|
}
|
|
return raw_parse(args, kwargs, dst.args);
|
|
}
|
|
|
|
inline bool PythonArgs::has_torch_function(){
|
|
return !this->signature.overloaded_args.empty();
|
|
}
|
|
|
|
inline std::string PythonArgs::get_func_name(){
|
|
return signature.name;
|
|
}
|
|
|
|
inline at::Tensor PythonArgs::tensor(int i) {
|
|
if (args[i] && THPVariable_CheckExact(args[i])) {
|
|
return reinterpret_cast<THPVariable*>(args[i])->cdata;
|
|
}
|
|
return tensor_slow(i);
|
|
}
|
|
|
|
inline at::Scalar PythonArgs::scalar(int i) {
|
|
if (!args[i]) return signature.params[i].default_scalar;
|
|
return scalar_slow(i);
|
|
}
|
|
|
|
inline at::Scalar PythonArgs::scalarWithDefault(int i, at::Scalar default_scalar) {
|
|
if (!args[i]) return default_scalar;
|
|
return scalar_slow(i);
|
|
}
|
|
|
|
inline c10::optional<at::Scalar> PythonArgs::scalarOptional(int i) {
|
|
if (!args[i]) return c10::nullopt;
|
|
return scalar_slow(i);
|
|
}
|
|
|
|
inline std::vector<at::Tensor> PythonArgs::tensorlist(int i) {
|
|
if (!args[i]) return std::vector<at::Tensor>();
|
|
auto tuple = six::isTuple(args[i]);
|
|
THPObjectPtr arg = six::maybeAsTuple(args[i]);
|
|
auto size = tuple ? PyTuple_GET_SIZE(arg.get()) : PyList_GET_SIZE(arg.get());
|
|
std::vector<at::Tensor> res(size);
|
|
for (int idx = 0; idx < size; idx++) {
|
|
PyObject* obj = tuple ? PyTuple_GET_ITEM(arg.get(), idx) : PyList_GET_ITEM(arg.get(), idx);
|
|
if (!THPVariable_Check(obj)) {
|
|
throw TypeError("expected Tensor as element %d in argument %d, but got %s",
|
|
idx, i, Py_TYPE(obj)->tp_name);
|
|
}
|
|
res[idx] = reinterpret_cast<THPVariable*>(obj)->cdata;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
template<int N>
|
|
inline std::array<at::Tensor, N> PythonArgs::tensorlist_n(int i) {
|
|
auto res = std::array<at::Tensor, N>();
|
|
if (!args[i]) return res;
|
|
auto tuple = six::isTuple(args[i]);
|
|
THPObjectPtr arg = six::maybeAsTuple(args[i]);
|
|
auto size = tuple ? PyTuple_GET_SIZE(arg.get()) : PyList_GET_SIZE(arg.get());
|
|
if (size != N) {
|
|
throw TypeError("expected tuple of %d elements but got %d", N, (int)size);
|
|
}
|
|
for (int idx = 0; idx < size; idx++) {
|
|
PyObject* obj = tuple ? PyTuple_GET_ITEM(arg.get(), idx) : PyList_GET_ITEM(arg.get(), idx);
|
|
if (!THPVariable_Check(obj)) {
|
|
throw TypeError("expected Tensor as element %d in argument %d, but got %s",
|
|
idx, i, Py_TYPE(obj)->tp_name);
|
|
}
|
|
res[idx] = reinterpret_cast<THPVariable*>(obj)->cdata;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
inline std::vector<int64_t> PythonArgs::intlist(int i) {
|
|
return intlistWithDefault(i, signature.params[i].default_intlist);
|
|
}
|
|
|
|
inline std::vector<int64_t> PythonArgs::intlistWithDefault(int i, std::vector<int64_t> default_intlist) {
|
|
if (!args[i]) return default_intlist;
|
|
PyObject* arg = args[i];
|
|
auto size = signature.params[i].size;
|
|
if (size > 0 && THPUtils_checkLong(arg)) {
|
|
return std::vector<int64_t>(size, THPUtils_unpackIndex(arg));
|
|
}
|
|
auto tuple = PyTuple_Check(arg);
|
|
size = tuple ? PyTuple_GET_SIZE(arg) : PyList_GET_SIZE(arg);
|
|
std::vector<int64_t> res(size);
|
|
for (int idx = 0; idx < size; idx++) {
|
|
PyObject* obj = tuple ? PyTuple_GET_ITEM(arg, idx) : PyList_GET_ITEM(arg, idx);
|
|
try {
|
|
// Elements of torch.Size are tensors during tracing, and we need to record extra
|
|
// information before they are turned into an IntArrayRef
|
|
if (traceable && jit::tracer::isTracing() && THPVariable_Check(obj)) {
|
|
auto & var = THPVariable_Unpack(obj);
|
|
jit::tracer::ArgumentStash::stashIntArrayRefElem(
|
|
signature.params[i].name, size, idx, var);
|
|
res[idx] = var.item<int64_t>();
|
|
continue;
|
|
} else {
|
|
res[idx] = THPUtils_unpackIndex(obj);
|
|
}
|
|
} catch (const std::exception &e) {
|
|
throw TypeError("%s(): argument '%s' must be %s, but found element of type %s at pos %d",
|
|
signature.name.c_str(), signature.params[i].name.c_str(),
|
|
signature.params[i].type_name().c_str(), Py_TYPE(obj)->tp_name, idx + 1);
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
inline at::ScalarType PythonArgs::scalartypeWithDefault(int i, at::ScalarType default_scalartype) {
|
|
if (!args[i]) return default_scalartype;
|
|
return scalartype(i);
|
|
}
|
|
|
|
inline at::ScalarType PythonArgs::scalartype(int i) {
|
|
if (!args[i]) {
|
|
auto scalartype = signature.params[i].default_scalartype;
|
|
return (scalartype == at::ScalarType::Undefined) ?
|
|
torch::tensors::get_default_scalar_type() : scalartype;
|
|
}
|
|
PyObject *obj = args[i];
|
|
if (obj == (PyObject*)&PyFloat_Type) {
|
|
return at::ScalarType::Double;
|
|
}
|
|
if (obj == (PyObject*)&PyBool_Type) {
|
|
return at::ScalarType::Bool;
|
|
}
|
|
if (obj == (PyObject*)&PyLong_Type
|
|
#if PY_MAJOR_VERSION == 2
|
|
|| obj == (PyObject*)&PyInt_Type
|
|
#endif
|
|
) {
|
|
return at::ScalarType::Long;
|
|
}
|
|
return reinterpret_cast<THPDtype*>(obj)->scalar_type;
|
|
}
|
|
|
|
inline c10::optional<at::ScalarType> PythonArgs::scalartypeOptional(int i) {
|
|
if (!args[i])
|
|
return c10::nullopt;
|
|
return scalartype(i);
|
|
}
|
|
|
|
inline const THPLayout& PythonArgs::layout(int i) {
|
|
if (!args[i]) return *signature.params[i].default_layout;
|
|
return *reinterpret_cast<THPLayout*>(args[i]);
|
|
}
|
|
|
|
inline const THPLayout& PythonArgs::layoutWithDefault(int i, const THPLayout& default_layout) {
|
|
if (!args[i]) return default_layout;
|
|
return layout(i);
|
|
}
|
|
|
|
inline at::Device PythonArgs::device(int i) {
|
|
if (!args[i]) {
|
|
return at::Device(backendToDeviceType(tensorTypeIdToBackend(torch::tensors::get_default_tensor_type_id())));
|
|
}
|
|
if (THPDevice_Check(args[i])) {
|
|
const auto device = reinterpret_cast<THPDevice*>(args[i]);
|
|
return device->device;
|
|
}
|
|
if (THPUtils_checkLong(args[i])) {
|
|
const auto device_index = THPUtils_unpackLong(args[i]);
|
|
TORCH_CHECK(device_index >= 0, "Device index must not be negative");
|
|
return at::Device(at::DeviceType::CUDA, device_index);
|
|
}
|
|
const std::string &device_str = THPUtils_unpackString(args[i]);
|
|
return at::Device(device_str);
|
|
}
|
|
|
|
inline at::Device PythonArgs::deviceWithDefault(int i, const at::Device& default_device) {
|
|
if (!args[i]) return default_device;
|
|
return device(i);
|
|
}
|
|
|
|
inline c10::optional<at::Device> PythonArgs::deviceOptional(int i) {
|
|
if (!args[i])
|
|
return c10::nullopt;
|
|
return device(i);
|
|
}
|
|
|
|
inline at::Dimname PythonArgs::dimname(int i) {
|
|
TORCH_INTERNAL_ASSERT(args[i] != nullptr);
|
|
return THPDimname_parse(args[i]);
|
|
}
|
|
|
|
inline std::vector<at::Dimname> parseDimnameList(PyObject* arg) {
|
|
auto tuple = PyTuple_Check(arg);
|
|
auto size = tuple ? PyTuple_GET_SIZE(arg) : PyList_GET_SIZE(arg);
|
|
std::vector<at::Dimname> res;
|
|
res.reserve(size);
|
|
for (int idx = 0; idx < size; idx++) {
|
|
PyObject* obj = tuple ? PyTuple_GET_ITEM(arg, idx) : PyList_GET_ITEM(arg, idx);
|
|
res.push_back(THPDimname_parse(obj));
|
|
}
|
|
return res;
|
|
}
|
|
|
|
inline c10::optional<std::vector<at::Dimname>> PythonArgs::toDimnameListOptional(int i) {
|
|
if (!args[i]) return c10::nullopt;
|
|
return parseDimnameList(args[i]);
|
|
}
|
|
|
|
inline std::vector<at::Dimname> PythonArgs::dimnamelist(int i) {
|
|
TORCH_INTERNAL_ASSERT(args[i]);
|
|
PyObject* arg = args[i];
|
|
auto size = signature.params[i].size;
|
|
TORCH_INTERNAL_ASSERT(size == 0 || size == 1);
|
|
if (size == 1 && THPUtils_checkDimname(arg)) {
|
|
return { THPDimname_parse(arg) };
|
|
}
|
|
return parseDimnameList(arg);
|
|
}
|
|
|
|
inline at::MemoryFormat PythonArgs::memoryformat(int i) {
|
|
if (!args[i]) return at::MemoryFormat::Contiguous;
|
|
TORCH_CHECK(THPMemoryFormat_Check(args[i]), "memory_format arg must be an instance of the torch.memory_format");
|
|
const auto memory_format = reinterpret_cast<THPMemoryFormat*>(args[i]);
|
|
return memory_format->memory_format;
|
|
}
|
|
|
|
inline c10::optional<at::MemoryFormat> PythonArgs::memoryformatOptional(int i) {
|
|
if (!args[i])
|
|
return c10::nullopt;
|
|
return memoryformat(i);
|
|
}
|
|
|
|
inline at::QScheme PythonArgs::toQScheme(int i) {
|
|
if (!args[i]) return at::kPerTensorAffine;
|
|
TORCH_CHECK(THPQScheme_Check(args[i]), "qscheme arg must be an instance of the torch.qscheme");
|
|
const auto qscheme = reinterpret_cast<THPQScheme*>(args[i]);
|
|
return qscheme->qscheme;
|
|
}
|
|
|
|
inline std::string PythonArgs::string(int i) {
|
|
if (!args[i]) return "";
|
|
return THPUtils_unpackString(args[i]);
|
|
}
|
|
|
|
inline int64_t PythonArgs::toInt64(int i) {
|
|
if (!args[i]) return signature.params[i].default_int;
|
|
if (traceable && jit::tracer::isTracing() && THPVariable_Check(args[i])) {
|
|
auto & var = THPVariable_Unpack(args[i]);
|
|
jit::tracer::ArgumentStash::stashValue(
|
|
signature.params[i].name, idx, var, jit::IntType::get());
|
|
}
|
|
return THPUtils_unpackLong(args[i]);
|
|
}
|
|
|
|
inline int64_t PythonArgs::toInt64WithDefault(int i, int64_t default_int) {
|
|
if (!args[i]) return default_int;
|
|
return toInt64(i);
|
|
}
|
|
|
|
inline c10::optional<int64_t> PythonArgs::toInt64Optional(int i) {
|
|
if (!args[i])
|
|
return c10::nullopt;
|
|
return toInt64(i);
|
|
}
|
|
|
|
inline c10::optional<bool> PythonArgs::toBoolOptional(int i) {
|
|
if (!args[i]) {
|
|
return c10::nullopt;
|
|
}
|
|
return toBool(i);
|
|
}
|
|
|
|
inline double PythonArgs::toDouble(int i) {
|
|
if (!args[i]) return signature.params[i].default_double;
|
|
return THPUtils_unpackDouble(args[i]);
|
|
}
|
|
|
|
inline double PythonArgs::toDoubleWithDefault(int i, double default_double) {
|
|
if (!args[i]) return default_double;
|
|
return toDouble(i);
|
|
}
|
|
|
|
inline std::complex<double> PythonArgs::toComplex(int i) {
|
|
std::complex<double> default_value = *const_cast<std::complex<double> *>(
|
|
reinterpret_cast<const std::complex<double> *>(signature.params[i].default_complex));
|
|
if (!args[i]) return default_value;
|
|
return THPUtils_unpackComplexDouble(args[i]);
|
|
}
|
|
|
|
inline std::complex<double> PythonArgs::toComplexWithDefault(int i, std::complex<double> default_value) {
|
|
if (!args[i]) return default_value;
|
|
return toDouble(i);
|
|
}
|
|
|
|
inline bool PythonArgs::toBool(int i) {
|
|
if (!args[i]) return signature.params[i].default_bool;
|
|
return args[i] == Py_True;
|
|
}
|
|
|
|
inline bool PythonArgs::toBoolWithDefault(int i, bool default_bool) {
|
|
if (!args[i]) return default_bool;
|
|
return toBool(i);
|
|
}
|
|
|
|
inline bool PythonArgs::isNone(int i) {
|
|
return args[i] == nullptr;
|
|
}
|
|
|
|
inline at::Generator* PythonArgs::generator(int i) {
|
|
if (!args[i]) return nullptr;
|
|
return reinterpret_cast<THPGenerator*>(args[i])->cdata;
|
|
}
|
|
|
|
inline at::Storage PythonArgs::storage(int i) {
|
|
if (!args[i]) return at::Storage();
|
|
return createStorage(args[i]);
|
|
}
|
|
|
|
inline PyObject* PythonArgs::pyobject(int i) {
|
|
if (!args[i]) return Py_None;
|
|
return args[i];
|
|
}
|
|
|
|
/*
|
|
* Reference: https://github.com/numpy/numpy/blob/f4c497c768e0646df740b647782df463825bfd27/numpy/core/src/common/get_attr_string.h#L42
|
|
*
|
|
* Stripped down version of PyObject_GetAttrString,
|
|
* avoids lookups for None, tuple, and List objects,
|
|
* and doesn't create a PyErr since this code ignores it.
|
|
*
|
|
* This can be much faster then PyObject_GetAttrString where
|
|
* exceptions are not used by caller.
|
|
*
|
|
* 'obj' is the object to search for attribute.
|
|
*
|
|
* 'name' is the attribute to search for.
|
|
*
|
|
* Returns a py::object wrapping the return value. If the attribute lookup failed
|
|
* the value will be NULL.
|
|
*
|
|
*/
|
|
|
|
static py::object PyObject_FastGetAttrString(PyObject *obj, char *name)
|
|
{
|
|
PyTypeObject *tp = Py_TYPE(obj);
|
|
PyObject *res = (PyObject *)NULL;
|
|
|
|
/* Attribute referenced by (char *)name */
|
|
if (tp->tp_getattr != NULL) {
|
|
res = (*tp->tp_getattr)(obj, name);
|
|
if (res == NULL) {
|
|
PyErr_Clear();
|
|
}
|
|
}
|
|
/* Attribute referenced by (PyObject *)name */
|
|
else if (tp->tp_getattro != NULL) {
|
|
PyObject *w = THPUtils_internString(name);
|
|
if (w == NULL) {
|
|
return py::object();
|
|
}
|
|
res = (*tp->tp_getattro)(obj, w);
|
|
Py_DECREF(w);
|
|
if (res == NULL) {
|
|
PyErr_Clear();
|
|
}
|
|
}
|
|
return py::reinterpret_steal<py::object>(res);
|
|
}
|
|
|
|
// Makes sure that we don't check for __torch_function__ on basic Python types
|
|
static bool _is_basic_python_type(PyTypeObject *tp)
|
|
{
|
|
return (
|
|
/* Basic number types */
|
|
tp == &PyBool_Type ||
|
|
|
|
tp == &PyLong_Type ||
|
|
tp == &PyFloat_Type ||
|
|
tp == &PyComplex_Type ||
|
|
|
|
/* Basic sequence types */
|
|
tp == &PyList_Type ||
|
|
tp == &PyTuple_Type ||
|
|
tp == &PyDict_Type ||
|
|
tp == &PySet_Type ||
|
|
tp == &PyFrozenSet_Type ||
|
|
tp == &PyUnicode_Type ||
|
|
tp == &PyBytes_Type ||
|
|
|
|
#if PY_MAJOR_VERSION == 2
|
|
tp == &PyString_Type ||
|
|
#endif
|
|
|
|
/* other builtins */
|
|
tp == &PySlice_Type ||
|
|
tp == Py_TYPE(Py_None) ||
|
|
tp == Py_TYPE(Py_Ellipsis) ||
|
|
tp == Py_TYPE(Py_NotImplemented) ||
|
|
|
|
PyModule_Check(tp) ||
|
|
/* sentinel to swallow trailing || */
|
|
false
|
|
);
|
|
}
|
|
|
|
/*
|
|
* Lookup a special method, following the python approach of looking up
|
|
* on the type object, rather than on the instance itself.
|
|
*
|
|
* Assumes that the special method is a torch-specific one, so does not
|
|
* look at builtin types, nor does it look at a base Tensor.
|
|
*
|
|
* If no special method is found, return NULL, otherwise returns a new
|
|
* reference to the function object
|
|
*
|
|
* In future, could be made more like _Py_LookupSpecial
|
|
*/
|
|
|
|
static py::object PyTorch_LookupSpecial(PyObject *obj, char* name)
|
|
{
|
|
PyTypeObject *tp = Py_TYPE(obj);
|
|
if (THPVariable_CheckExact(obj)) {
|
|
return py::object();
|
|
}
|
|
if (_is_basic_python_type(tp)) {
|
|
return py::object();
|
|
}
|
|
if(PyObject_HasAttrString(obj, name) == 0){
|
|
return py::object();
|
|
}
|
|
return PyObject_FastGetAttrString((PyObject *)tp, name);
|
|
}
|
|
|
|
/*
|
|
* Checks if obj has a __torch_function__ implementation
|
|
*
|
|
* Returns true if an implementation is found and false otherwise
|
|
*
|
|
*/
|
|
static auto check_has_torch_function(PyObject* obj) -> bool
|
|
{
|
|
py::object method = PyTorch_LookupSpecial(obj, "__torch_function__");
|
|
if(method.ptr() != nullptr){
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
} // namespace torch
|