pytorch/test/onnx/test_pytorch_onnx_onnxruntime.py
Spandan Tiwari bc91e19861 Enable ONNX constant folding for opset 11. (#29011)
Summary:
Currently ONNX constant folding (`do_constant_folding=True` arg in `torch.onnx.export` API) supports only opset 9 and 10 of ONNX. Opset 11 support was recently introduced in the ONNX exporter. For opset 11, it is currently a no-op. This change enables ONNX constant folding for opset 11. Specifically there are three main changes:
1) Turn on constant folding ONNX pass for opset 11.
2) Enable constant folding tests in `test/onnx/test_utility_funs.py` and `test/onnx/test_pytorch_onnx_onnxruntime.py` for opset 11.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29011

Reviewed By: hl475

Differential Revision: D18306998

Pulled By: houseroad

fbshipit-source-id: afeed21ca29e01c278612e51dacd93397dd6e2d8
2019-11-05 23:22:39 -08:00

1789 lines
66 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import unittest
import onnxruntime # noqa
import torch
import numpy as np
import io
import itertools
import copy
from torch.nn.utils import rnn as rnn_utils
from model_defs.lstm_flattening_result import LstmFlatteningResult
from model_defs.rnn_model_with_packed_sequence import RnnModelWithPackedSequence
from test_pytorch_common import skipIfUnsupportedMinOpsetVersion, skipIfNoLapack
from test_pytorch_common import BATCH_SIZE
from test_pytorch_common import RNN_BATCH_SIZE, RNN_SEQUENCE_LENGTH, RNN_INPUT_SIZE, RNN_HIDDEN_SIZE
import model_defs.word_language_model as word_language_model
def ort_test_with_input(ort_sess, input, output, rtol, atol):
input, _ = torch.jit._flatten(input)
output, _ = torch.jit._flatten(output)
def to_numpy(tensor):
if tensor.requires_grad:
return tensor.detach().cpu().numpy()
else:
return tensor.cpu().numpy()
inputs = list(map(to_numpy, input))
outputs = list(map(to_numpy, output))
ort_inputs = dict((ort_sess.get_inputs()[i].name, input) for i, input in enumerate(inputs))
ort_outs = ort_sess.run(None, ort_inputs)
# compare onnxruntime and PyTorch results
assert len(outputs) == len(ort_outs), "number of outputs differ"
# compare onnxruntime and PyTorch results
[np.testing.assert_allclose(out, ort_out, rtol=rtol, atol=atol) for out, ort_out in zip(outputs, ort_outs)]
def run_model_test(self, model, batch_size=2, state_dict=None,
input=None, use_gpu=True, rtol=0.001, atol=1e-7,
example_outputs=None, do_constant_folding=True,
dynamic_axes=None, test_with_inputs=None,
input_names=None, output_names=None,
fixed_batch_size=False):
model.eval()
if input is None:
input = torch.randn(batch_size, 3, 224, 224, requires_grad=True)
with torch.no_grad():
if isinstance(input, torch.Tensor):
input = (input,)
# In-place operators will update input tensor data as well.
# Thus inputs are replicated before every forward call.
input_copy = copy.deepcopy(input)
output = model(*input_copy)
if isinstance(output, torch.Tensor):
output = (output,)
# export the model to ONNX
f = io.BytesIO()
input_copy = copy.deepcopy(input)
torch.onnx._export(model, input_copy, f,
opset_version=self.opset_version,
example_outputs=output,
do_constant_folding=do_constant_folding,
keep_initializers_as_inputs=self.keep_initializers_as_inputs,
dynamic_axes=dynamic_axes,
input_names=input_names, output_names=output_names,
fixed_batch_size=fixed_batch_size)
# compute onnxruntime output prediction
ort_sess = onnxruntime.InferenceSession(f.getvalue())
input_copy = copy.deepcopy(input)
ort_test_with_input(ort_sess, input_copy, output, rtol, atol)
# if addiional test inputs are provided run the onnx
# model with these inputs and check the outputs
if test_with_inputs is not None:
for test_input in test_with_inputs:
if isinstance(test_input, torch.Tensor):
test_input = (test_input,)
test_input_copy = copy.deepcopy(test_input)
output = model(*test_input_copy)
if isinstance(output, torch.Tensor):
output = (output,)
ort_test_with_input(ort_sess, test_input, output, rtol, atol)
class TestONNXRuntime(unittest.TestCase):
from torch.onnx.symbolic_helper import _export_onnx_opset_version
opset_version = _export_onnx_opset_version
keep_initializers_as_inputs = True # For IR version 3 type export.
def setUp(self):
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
np.random.seed(seed=0)
def run_test(self, model, input, rtol=1e-3, atol=1e-7, do_constant_folding=False,
batch_size=2, use_gpu=True, dynamic_axes=None, test_with_inputs=None,
input_names=None, output_names=None, fixed_batch_size=False):
return run_model_test(self, model, batch_size=batch_size,
input=input, use_gpu=use_gpu, rtol=rtol, atol=atol,
do_constant_folding=do_constant_folding,
dynamic_axes=dynamic_axes, test_with_inputs=test_with_inputs,
input_names=input_names, output_names=output_names,
fixed_batch_size=fixed_batch_size)
def run_word_language_model(self, model_name):
ntokens = 50
emsize = 5
nhid = 5
nlayers = 5
dropout = 0.2
tied = False
batchsize = 5
model = word_language_model.RNNModel(model_name, ntokens, emsize,
nhid, nlayers, dropout, tied,
batchsize)
x = torch.arange(0, ntokens).long().view(-1, batchsize)
# Only support CPU version, since tracer is not working in GPU RNN.
self.run_test(model, (x, model.hidden))
def test_word_language_model_RNN_TANH(self):
self.run_word_language_model("RNN_TANH")
def test_word_language_model_RNN_RELU(self):
self.run_word_language_model("RNN_RELU")
def test_word_language_model_LSTM(self):
self.run_word_language_model("LSTM")
def test_word_language_model_GRU(self):
self.run_word_language_model("GRU")
def test_index_1d(self):
self._test_index_generic(lambda input: input[0])
def test_index_2d_1dimslice(self):
self._test_index_generic(lambda input: input[0:1, :])
def test_index_2d_sliceint(self):
self._test_index_generic(lambda input: input[1, :])
def test_index_2d_neg_slice(self):
self._test_index_generic(lambda input: input[0:-1, :])
def test_dict(self):
class MyModel(torch.nn.Module):
def forward(self, x_in):
x_out = {}
x_out["test_key_out"] = torch.add(x_in[list(x_in.keys())[0]], list(x_in.keys())[0])
return x_out
x = {torch.tensor(1.): torch.randn(1, 2, 3)}
self.run_test(MyModel(), (x,))
def test_dict_str(self):
class MyModel(torch.nn.Module):
def forward(self, x_in):
x_out = {}
x_out["test_key_out"] = torch.add(x_in["test_key_in"], 2.)
return x_out
x = {"test_key_in": torch.randn(1, 2, 3)}
self.run_test(MyModel(), (x,))
@skipIfUnsupportedMinOpsetVersion(9)
def test_cste_script(self):
class MyModel(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, x):
return torch.zeros(x.size(0)), torch.ones((x.size(1), x.size(0)), dtype=torch.int64)
x = torch.randn(3, 4)
self.run_test(MyModel(), x)
def test_clamp(self):
class ClampModel(torch.nn.Module):
def forward(self, x):
return x.clamp(-0.5, 0.5)
x = torch.randn(3, 4)
self.run_test(ClampModel(), x)
class ClampMinModel(torch.nn.Module):
def forward(self, x):
return x.clamp(min=-0.5)
x = torch.randn(3, 4)
self.run_test(ClampMinModel(), x)
class ClampMaxModel(torch.nn.Module):
def forward(self, x):
return x.clamp(max=0.5)
x = torch.randn(3, 4)
self.run_test(ClampMaxModel(), x)
@skipIfUnsupportedMinOpsetVersion(11)
def test_clamp_dyn(self):
class ClampMaxModel(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, x):
return x.clamp(None, x.size(0))
x = torch.arange(16).view(4, 4).float()
self.run_test(ClampMaxModel(), x)
class ClampMinModel(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, x):
return x.clamp(x.size(0), None)
x = torch.arange(16).view(4, 4).float()
self.run_test(ClampMinModel(), x)
class ClampMinMaxModel(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, x):
return x.clamp(x.size(0), x.size(1))
x = torch.arange(16).view(2, 8).float()
self.run_test(ClampMinMaxModel(), x)
@skipIfUnsupportedMinOpsetVersion(9)
def test_full_trace(self):
class FullModel(torch.nn.Module):
def forward(self, x):
return torch.full((3, 4), x, dtype=torch.long)
x = torch.tensor(12)
self.run_test(FullModel(), x)
@skipIfUnsupportedMinOpsetVersion(9)
def test_full_script(self):
class FullModelScripting(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, x):
return torch.full((3, 4), x, dtype=torch.long)
x = torch.tensor(12)
self.run_test(FullModelScripting(), x)
def test_fuse_addmm(self):
class AddmmModel(torch.nn.Module):
def forward(self, x):
return torch.mm(x, x) + x
x = torch.ones(3, 3)
self.run_test(AddmmModel(), x)
def test_maxpool(self):
model = torch.nn.MaxPool1d(2, stride=1)
x = torch.randn(20, 16, 50)
self.run_test(model, x)
def test_squeeze(self):
class Squeeze(torch.nn.Module):
def forward(self, x):
return torch.torch.squeeze(x, dim=-2)
x = torch.randn(2, 1, 4)
self.run_test(Squeeze(), x)
def test_unsqueeze(self):
class Unsqueeze(torch.nn.Module):
def forward(self, x):
return torch.unsqueeze(x, dim=-2)
x = torch.randn(2, 3, 4)
self.run_test(Unsqueeze(), x)
@skipIfUnsupportedMinOpsetVersion(8)
def test_maxpool_adaptive(self):
model = torch.nn.AdaptiveMaxPool1d((5), return_indices=False)
x = torch.randn(20, 16, 50, requires_grad=True)
self.run_test(model, x)
def test_maxpool_2d(self):
model = torch.nn.MaxPool2d(5, padding=(1, 2))
x = torch.randn(1, 20, 16, 50, requires_grad=True)
self.run_test(model, x)
def test_maxpool_1d_ceil(self):
model = torch.nn.MaxPool1d(3, 2, ceil_mode=True)
x = torch.randn(20, 16, 50)
self.run_test(model, x)
def test_maxpool_2d_ceil(self):
model = torch.nn.MaxPool2d(3, 2, ceil_mode=True)
x = torch.randn(20, 16, 50, 32)
self.run_test(model, x)
def test_maxpool_3d_ceil(self):
model = torch.nn.MaxPool3d(3, 2, ceil_mode=True)
x = torch.randn(20, 16, 50, 44, 31)
self.run_test(model, x)
@skipIfUnsupportedMinOpsetVersion(8)
def test_maxpool_with_indices(self):
model = torch.nn.MaxPool1d(2, stride=1, return_indices=True)
x = torch.randn(20, 16, 50)
self.run_test(model, x)
@skipIfUnsupportedMinOpsetVersion(10)
def test_maxpool_dilation(self):
model = torch.nn.MaxPool1d(2, stride=1, dilation=2)
x = torch.randn(20, 16, 50)
self.run_test(model, x)
def test_avgpool(self):
model = torch.nn.AvgPool1d(2, stride=1)
x = torch.randn(20, 16, 50)
self.run_test(model, x)
def test_avgpool_1d_ceil(self):
model = torch.nn.AvgPool1d(3, 2, ceil_mode=True)
x = torch.randn(1, 1, 7)
self.run_test(model, x)
def test_avgpool_2d_ceil(self):
model = torch.nn.AvgPool2d(3, 2, ceil_mode=True)
x = torch.randn(20, 16, 50, 32)
self.run_test(model, x)
def test_avgpool_3d_ceil(self):
model = torch.nn.AvgPool3d(3, 2, ceil_mode=True)
x = torch.randn(20, 16, 50, 44, 31)
self.run_test(model, x)
def test_arithmetic(self):
class ArithmeticModule(torch.nn.Module):
def forward(self, x):
x = x + 2
x = x - 4
x = x * 6
x = x / 8
return x
x = torch.randn(2, 3, 4)
self.run_test(ArithmeticModule(), x)
def test_slice_trace(self):
class MyModule(torch.nn.Module):
def forward(self, x):
return x[0:1]
x = torch.randn(3)
self.run_test(MyModule(), x)
def test_slice_neg(self):
class NegSlice(torch.nn.Module):
def forward(self, x):
return x[-1:]
x = torch.randn(3, 4, 5)
self.run_test(NegSlice(), x)
def test_slice_neg_large(self):
class NegSlice(torch.nn.Module):
def forward(self, x):
return x[:, :, -3:-1, :, -1]
x = torch.randn(3, 4, 5, 6, 7)
self.run_test(NegSlice(), x)
@unittest.skip('https://github.com/pytorch/pytorch/issues/10984')
def test_slice_neg_large_negone(self):
class NegSlice(torch.nn.Module):
def forward(self, x):
return x[:, :, :, :, -1]
x = torch.randn(3, 4, 5, 6, 7)
self.run_test(NegSlice(), x)
@skipIfUnsupportedMinOpsetVersion(10)
def test_slice_dynamic(self):
class DynamicSliceExportMod(torch.nn.Module):
def forward(self, x):
results = []
for i in range(4):
results.append(x[:x.size(0) - i, i:x.size(2), i:3])
return tuple(results)
x = torch.rand(5, 5, 5)
y = torch.randn(6, 7, 8)
self.run_test(DynamicSliceExportMod(), x, test_with_inputs=[y],
input_names=['input_1'],
output_names=['output_1'],
dynamic_axes={'input_1': [0, 1, 2],
'output_1': [0, 1, 2]})
@skipIfUnsupportedMinOpsetVersion(10)
def test_slice_dynamic_script(self):
class DynamicSliceModel(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, x):
return x[1:x.size(0)]
x = torch.rand(1, 2)
self.run_test(DynamicSliceModel(), x)
@skipIfUnsupportedMinOpsetVersion(10)
def test_slice_dynamic_to_end(self):
class DynamicSliceExportMod(torch.nn.Module):
def forward(self, x):
results = []
for i in range(4):
results.append(x[:, i:, x.size(2) - 5])
return tuple(results)
x = torch.rand(5, 5, 5)
self.run_test(DynamicSliceExportMod(), x,
dynamic_axes={'input_1': [0, 1, 2],
'output_1': [0, 1, 2]})
@skipIfUnsupportedMinOpsetVersion(9)
def test_arange_dynamic(self):
class ArangeModel(torch.nn.Module):
def forward(self, input):
return torch.arange(input.shape[0]), \
torch.arange(12), \
torch.arange(start=input.shape[0], end=input.shape[0] + 5)
x = torch.randn(5, 3, 2)
y = torch.randn(8, 3, 2)
self.run_test(ArangeModel(), x, test_with_inputs=[y],
input_names=['input_1'],
output_names=['output_1', 'output_2', 'output_3'],
dynamic_axes={'input_1': [0],
'output_1': [0]})
@skipIfUnsupportedMinOpsetVersion(11)
def test_arange(self):
class ArangeModel(torch.nn.Module):
def forward(self, start, end):
return torch.arange(start.size(0), end, 1.5, dtype=torch.int64)
x = torch.randn(2, 3, 4)
y = torch.tensor(8.5, dtype=torch.float)
self.run_test(ArangeModel(), (x, y))
@skipIfUnsupportedMinOpsetVersion(11)
def test_arange_no_type(self):
class ArangeModel(torch.nn.Module):
def forward(self, end):
return torch.arange(end), \
torch.arange(0, end)
x = torch.tensor(6.2, dtype=torch.float)
self.run_test(ArangeModel(), x)
@skipIfUnsupportedMinOpsetVersion(9)
def test_size(self):
class SizeModel(torch.nn.Module):
def forward(self, input):
return torch.arange(input.size(0)), torch.arange(input.size(-1))
x = torch.randn(5, 3, 2)
self.run_test(SizeModel(), x)
def _test_index_generic(self, fn):
class MyModel(torch.nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, input):
return fn(input)
m1 = torch.randn(3, 4, 5, 6, 7)
self.run_test(MyModel(), m1)
def test_tensor_index_advanced_indexing(self):
self._test_index_generic(
lambda input: input[:, torch.tensor([[0, 2], [1, 1]]), :, torch.tensor([2, 1]), torch.tensor([0, 3])])
self._test_index_generic(lambda input: input[..., torch.tensor([2, 1]), torch.tensor([0, 3])])
self._test_index_generic(lambda input: input[:, torch.tensor([0, 2]), None, 2:4, torch.tensor([[1, 3], [4, 0]])])
self._test_index_generic(lambda input: input[:, torch.tensor([0, 2]), torch.tensor([1]), 2:4, torch.tensor([[1], [4]])])
def test_tensor_index_advanced_indexing_consecutive(self):
self._test_index_generic(lambda input: input[:, torch.tensor([0, 2]), torch.tensor([[1, 3], [4, 0]]), None])
@skipIfUnsupportedMinOpsetVersion(10)
def test_flip(self):
class MyModule(torch.nn.Module):
def forward(self, x):
return torch.flip(x, dims=[0])
x = torch.tensor(np.arange(6.0).reshape(2, 3))
self.run_test(MyModule(), x)
def _interpolate(self, x, mode, use_size, is_upsample):
class MyModel(torch.nn.Module):
def forward(self, x):
scale = 2.3 if is_upsample else 0.3
if use_size:
size = [int(float(v) * scale) for v in x.size()[2:]]
return torch.nn.functional.interpolate(x, mode=mode, size=size)
return torch.nn.functional.interpolate(x, mode=mode, scale_factor=scale)
self.run_test(MyModel(), x)
def _interpolate_script(self, x, mode, use_size, is_upsample):
class MyModel(torch.jit.ScriptModule):
__constants__ = ['mode', 'use_size', 'is_upsample', 'size', 'scale', 'size_array', 'scale_array']
def __init__(self, mode, use_size, is_upsample):
super(MyModel, self).__init__()
self.mode = mode
self.use_size = use_size
self.is_upsample = is_upsample
self.scale = 2.0 if self.is_upsample else 0.5
self.size = 24 if self.is_upsample else 1
if x.dim() == 3:
self.scale_array = [2.]
self.size_array = [16]
elif x.dim() == 4:
self.scale_array = [2., 3.]
self.size_array = [16, 32]
else:
self.scale_array = [2., 3., 4.]
self.size_array = [16, 32, 64]
@torch.jit.script_method
def forward(self, x):
if self.use_size:
out = torch.nn.functional.interpolate(x, mode=self.mode, size=self.size)
out_array = torch.nn.functional.interpolate(x, mode=self.mode, size=self.size_array)
return out, out_array
out = torch.nn.functional.interpolate(x, mode=self.mode, scale_factor=self.scale)
out_array = torch.nn.functional.interpolate(x, mode=self.mode, scale_factor=self.scale_array)
return out, out_array
model = MyModel(mode, use_size, is_upsample)
self.run_test(model, x)
# TODO: Enable bicubic, linear1d and linear3d when implemented in ORT
def _interpolate_tests(self, is_upsample):
# - cubic mode is not supported for opsets below 11;
# - linear mode does not match for opsets below 11;
# - nearest mode does not match for opsets below 11,
# for some cases where the nearest pixel's index is
# not calculated the same way for ONNX and PyTorch
# (the operation involves a floor in PyTorch vs
# in round_prefer_floor ONNX). (The below tests
# do not show this error for nearest mode for
# all opsets)
modes = ["nearest", "linear"] # TODO : add "bicubic" when enabled in ORT
if self.opset_version < 11:
modes = ["nearest"]
x = [torch.randn(1, 2, 4, requires_grad=True),
torch.randn(1, 2, 4, 4, requires_grad=True),
torch.randn(1, 2, 4, 4, 6, requires_grad=True)]
for mode in modes:
for xi in x:
mode_i = mode
if mode == "bicubic" and xi.dim() != 4:
continue
elif mode == "linear":
if xi.dim() == 3:
# TODO : enable when linear mode is implemented for 1d inputs in ORT
continue
elif xi.dim() == 4:
mode_i = "bilinear"
elif xi.dim() == 5:
# TODO : enable when linear mode is implemented for 3d inputs in ORT
mode_i = "trilinear"
continue
self._interpolate(xi, mode_i, True, is_upsample)
# the following cases, require dynamic sizes/scales,
# which which is not supported for opset_version < 9
if self.opset_version >= 9:
self._interpolate_script(xi, mode_i, True, is_upsample)
self._interpolate(xi, mode_i, False, is_upsample)
self._interpolate_script(xi, mode_i, False, is_upsample)
def test_interpolate_upsample(self):
self._interpolate_tests(True)
@skipIfUnsupportedMinOpsetVersion(10)
def test_interpolate_downsample(self):
self._interpolate_tests(False)
def test_groupnorm(self):
model = torch.nn.GroupNorm(3, 6, 0.002)
x = torch.randn(4, 6, 180, 180, 180)
self.run_test(model, x)
model = torch.nn.GroupNorm(1, 6, 0.002)
x = torch.randn(4, 6, 180, 180)
self.run_test(model, x)
model = torch.nn.GroupNorm(6, 6, 0.002)
x = torch.randn(4, 6, 180, 180)
self.run_test(model, x)
def test_groupnorm_noaffine(self):
model = torch.nn.GroupNorm(4, 8, 0.002, affine=False)
x = torch.randn(3, 8, 224, 224)
self.run_test(model, x)
model = torch.nn.GroupNorm(1, 6, 0.002, affine=False)
x = torch.randn(4, 6, 180, 180)
self.run_test(model, x)
model = torch.nn.GroupNorm(6, 6, 0.002, affine=False)
x = torch.randn(4, 6, 180, 180)
self.run_test(model, x)
def test_std(self):
class StandardDeviation(torch.nn.Module):
def forward(self, input):
return torch.std(input, unbiased=False)
x = torch.randn(2, 3, 4)
model = StandardDeviation()
self.run_test(model, x)
def test_std_along_dims(self):
class StandardDeviation(torch.nn.Module):
def forward(self, input):
return torch.std(input, dim=(0, 1), unbiased=False)
x = torch.randn(2, 3, 4)
model = StandardDeviation()
self.run_test(model, x)
def test_std_keepdim(self):
class StandardDeviation(torch.nn.Module):
def forward(self, input):
return torch.std(input, dim=(0, 1), unbiased=False, keepdim=True)
x = torch.randn(2, 3, 4)
model = StandardDeviation()
self.run_test(model, x)
def test_narrow(self):
class NarrowModel(torch.nn.Module):
def forward(self, input):
return torch.narrow(input, 0, 0, 2)
x = torch.randn(3, 3, requires_grad=True)
self.run_test(NarrowModel(), x)
@skipIfUnsupportedMinOpsetVersion(9)
def test_index_fill(self):
class IndexFillModel(torch.nn.Module):
def forward(self, input):
index = torch.tensor([2, 0])
return input.index_fill(2, index, -1)
x = torch.randn(3, 4, 5, requires_grad=True)
self.run_test(IndexFillModel(), x)
@skipIfUnsupportedMinOpsetVersion(9)
def test_index_copy(self):
class IndexCopyModel(torch.nn.Module):
def forward(self, input):
index = torch.tensor([2, 0])
source = torch.ones(3, 2, 5)
return input.index_copy(1, index, source)
x = torch.randn(3, 4, 5, requires_grad=True)
self.run_test(IndexCopyModel(), x)
# TODO: enable for opset 10 when ONNXRuntime version will be updated
def test_index_select_constant_scaler_index(self):
class IndexSelectScalerIndexModel(torch.nn.Module):
def forward(self, x):
index = 2
return torch.index_select(x, 1, torch.tensor(index))
x = torch.randn(3, 4)
self.run_test(IndexSelectScalerIndexModel(), x)
def test_index_select_scaler_index(self):
class IndexSelectScalerIndexModel(torch.nn.Module):
def __init__(self, index_base):
super(IndexSelectScalerIndexModel, self).__init__()
self.index_base = torch.tensor(index_base)
def forward(self, x, index_offset):
index = self.index_base + index_offset
return torch.index_select(x, 1, index)
x = torch.randn(3, 4)
offset = 2
index_offset = torch.tensor(offset)
base = 1
self.run_test(IndexSelectScalerIndexModel(base), (x, index_offset))
def test_topk(self):
class MyModule(torch.nn.Module):
def forward(self, x):
return torch.topk(x, 3)
x = torch.arange(1., 6., requires_grad=True)
self.run_test(MyModule(), x)
@skipIfUnsupportedMinOpsetVersion(11)
def test_topk_smallest_unsorted(self):
class MyModule(torch.nn.Module):
def forward(self, x, k):
return torch.topk(x, k, largest=False, sorted=False)
x = torch.arange(1., 6., requires_grad=True)
k = torch.tensor(3)
self.run_test(MyModule(), (x, k))
@skipIfUnsupportedMinOpsetVersion(10)
def test_topk_script(self):
class MyModuleDynamic(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, x, k):
return torch.topk(x, k)
x = torch.arange(1., 6., requires_grad=True)
k = torch.tensor(3)
self.run_test(MyModuleDynamic(), [x, k])
def test_layer_norm(self):
model = torch.nn.LayerNorm([10, 10])
x = torch.randn(20, 5, 10, 10)
self.run_test(model, x)
@skipIfUnsupportedMinOpsetVersion(9)
def test_scatter(self):
class ScatterModel(torch.nn.Module):
def forward(self, input, indices, values):
return input.scatter(1, indices, values)
input = torch.tensor([[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]])
indices = torch.tensor([[1, 0], [0, 1], [0, 1]], dtype=torch.int64)
values = torch.tensor([[1.0, 1.1], [2.0, 2.1], [3.0, 3.1]])
self.run_test(ScatterModel(), input=(input, indices, values))
input = torch.tensor([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]])
indices = torch.tensor([[1, 0], [0, 2], [0, 1]], dtype=torch.int64)
values = torch.tensor([[1.0, 1.1], [2.0, 2.1], [3.0, 3.1]])
self.run_test(ScatterModel(), (input, indices, values))
input = torch.zeros(3, 4, 5, 6)
indices = torch.tensor([[1, 0], [0, 2], [0, 1]], dtype=torch.int64)
indices = indices.view(3, 2, 1, 1).expand(3, 2, 5, 6)
values = torch.arange(3 * 2 * 5 * 6, dtype=torch.float32).view(3, 2, 5, 6)
self.run_test(ScatterModel(), (input, indices, values))
input = torch.zeros(3, 4, 2)
indices = torch.tensor([[[1, 0], [0, 2]], [[1, 1], [0, 1]], [[2, 1], [2, 2]]])
values = torch.arange(3 * 2 * 2, dtype=torch.float32).view(3, 2, 2)
self.run_test(ScatterModel(), (input, indices, values))
@skipIfUnsupportedMinOpsetVersion(9)
def test_scatter_add(self):
class ScatterModel(torch.nn.Module):
def forward(self, input, indices, values):
return input.scatter_add(1, indices, values)
input = torch.tensor([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]])
indices = torch.tensor([[1, 0], [0, 1], [0, 1]], dtype=torch.int64)
values = torch.tensor([[1.0, 1.1], [2.0, 2.1], [3.0, 3.1]])
self.run_test(ScatterModel(), input=(input, indices, values))
@skipIfUnsupportedMinOpsetVersion(9)
def test_gather(self):
class GatherModel(torch.nn.Module):
def forward(self, input, indices):
return input.gather(1, indices)
input = torch.tensor([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]])
indices = torch.tensor([[1, 0], [0, 1], [0, 1]], dtype=torch.int64)
self.run_test(GatherModel(), input=(input, indices))
def test_multinomial(self):
class Multinomial(torch.nn.Module):
def forward(self, weight):
return torch.multinomial(weight, 3, replacement=True)
class MultinomialNoReplacement(torch.nn.Module):
def forward(self, weight):
return torch.multinomial(weight, 1)
weight = torch.tensor([[0, 10, 0, 0], [0, 0, 100, 0]], dtype=torch.float)
self.run_test(Multinomial(), (weight,))
self.run_test(MultinomialNoReplacement(), (weight,))
def test_reduce_log_sum_exp(self):
class ReduceLogSumExpModel(torch.nn.Module):
def forward(self, input):
a = torch.logsumexp(input, dim=0)
b = torch.logsumexp(input, dim=(0, 1))
return a + b
x = torch.randn(4, 4, requires_grad=True)
self.run_test(ReduceLogSumExpModel(), x)
@skipIfUnsupportedMinOpsetVersion(9)
def test_lstm(self):
model = torch.nn.LSTM(RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, 1, bidirectional=False)
input = torch.randn(RNN_SEQUENCE_LENGTH, BATCH_SIZE, RNN_INPUT_SIZE)
h0 = torch.randn(1, BATCH_SIZE, RNN_HIDDEN_SIZE)
c0 = torch.randn(1, BATCH_SIZE, RNN_HIDDEN_SIZE)
self.run_test(model, (input, (h0, c0)))
@skipIfUnsupportedMinOpsetVersion(9)
def test_lstm_default_init_state(self):
model = torch.nn.LSTM(RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, 1, bidirectional=False)
input = torch.randn(RNN_SEQUENCE_LENGTH, BATCH_SIZE, RNN_INPUT_SIZE)
self.run_test(model, input)
@skipIfUnsupportedMinOpsetVersion(9)
def test_lstm_fixed_batch_size(self):
class LSTMModel(torch.nn.Module):
def __init__(self):
super(LSTMModel, self).__init__()
self.lstm = torch.nn.LSTM(RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, 1, bidirectional=False)
def forward(self, input):
batch_size = input.size()[1]
h0_np = np.ones([1, batch_size, RNN_HIDDEN_SIZE]).astype(np.float32)
c0_np = np.ones([1, batch_size, RNN_HIDDEN_SIZE]).astype(np.float32)
h0 = torch.from_numpy(h0_np)
c0 = torch.from_numpy(c0_np)
return self.lstm(input, (h0, c0))
input = torch.randn(RNN_SEQUENCE_LENGTH, BATCH_SIZE, RNN_INPUT_SIZE)
# verify with different input of same batch size
input2 = torch.randn(RNN_SEQUENCE_LENGTH, BATCH_SIZE, RNN_INPUT_SIZE)
self.run_test(LSTMModel(), input, fixed_batch_size=True, test_with_inputs=[input2])
@skipIfUnsupportedMinOpsetVersion(9)
def test_lstm_post_fix_init_state(self):
class LSTMModel(torch.nn.Module):
def __init__(self):
super(LSTMModel, self).__init__()
self.lstm = torch.nn.LSTM(RNN_INPUT_SIZE, RNN_HIDDEN_SIZE,
1, bidirectional=False)
def forward(self, input):
batch_size = input.size()[1]
h0_np = np.ones([1, batch_size, RNN_HIDDEN_SIZE]).astype(np.float32)
c0_np = np.ones([1, batch_size, RNN_HIDDEN_SIZE]).astype(np.float32)
h0 = torch.from_numpy(h0_np)
c0 = torch.from_numpy(c0_np)
return self.lstm(input, (h0, c0))
model = LSTMModel()
input = torch.randn(RNN_SEQUENCE_LENGTH, 1, RNN_INPUT_SIZE)
# verify with different input of different batch size
input2 = torch.randn(RNN_SEQUENCE_LENGTH, BATCH_SIZE, RNN_INPUT_SIZE)
self.run_test(model, input, dynamic_axes={'input' : {0 : 'seq', 1 : 'batch'}},
test_with_inputs=[input2])
def test_lstm_constant_folding(self):
class LstmNet(torch.nn.Module):
def __init__(self, input_size, hidden_size, num_layers, bidirectional):
super(LstmNet, self).__init__()
self.lstm = torch.nn.LSTM(input_size, hidden_size, num_layers, bidirectional=bidirectional)
def forward(self, input, initial_state):
return self.lstm(input, initial_state)
def get_LstmNet_model_and_inputs(input_size, hidden_size, num_layers, batch_size,
seq_len, bidirectional):
num_directions = 2 if bidirectional else 1
model = LstmNet(input_size, hidden_size, num_layers, bidirectional)
input = torch.randn(seq_len, batch_size, input_size)
h0 = torch.randn(num_layers * num_directions, batch_size, hidden_size)
c0 = torch.randn(num_layers * num_directions, batch_size, hidden_size)
return model, (input, (h0, c0))
batch_size1 = 3
model1, input1 = get_LstmNet_model_and_inputs(7, 3, 2, batch_size1, 5, True)
self.run_test(model1, input1, do_constant_folding=True)
batch_size2 = 4
model2, input2 = get_LstmNet_model_and_inputs(5, 4, 3, batch_size2, 7, False)
self.run_test(model2, input2, do_constant_folding=True)
def test_gru_constant_folding(self):
class GruNet(torch.nn.Module):
def __init__(self, input_size, hidden_size, num_layers, bidirectional):
super(GruNet, self).__init__()
self.mygru = torch.nn.GRU(input_size, hidden_size, num_layers, bidirectional=bidirectional)
def forward(self, input, initial_state):
out = self.mygru(input, initial_state)
return out
def get_GruNet_model_and_inputs(input_size, hidden_size, num_layers, batch_size,
seq_len, bidirectional):
num_directions = 2 if bidirectional else 1
model = GruNet(input_size, hidden_size, num_layers, bidirectional)
input = torch.randn(seq_len, batch_size, input_size)
h0 = torch.randn(num_layers * num_directions, batch_size, hidden_size)
return model, (input, h0)
batch_size1 = 3
model1, input1 = get_GruNet_model_and_inputs(7, 3, 2, batch_size1, 5, True)
self.run_test(model1, input1, do_constant_folding=True)
batch_size2 = 4
model2, input2 = get_GruNet_model_and_inputs(5, 4, 3, batch_size2, 7, False)
self.run_test(model2, input2, do_constant_folding=True)
@skipIfUnsupportedMinOpsetVersion(8)
def test_max_tensors(self):
class MaxModel(torch.nn.Module):
def forward(self, input, other):
return torch.max(input, other)
model = MaxModel()
x = torch.randn(4, 4, requires_grad=True)
y = torch.randn(4, 1, requires_grad=True)
self.run_test(model, (x, y))
@skipIfUnsupportedMinOpsetVersion(9)
def test_arange_end(self):
class ArangeScript(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, a):
return torch.arange(a.size(0), dtype=torch.float).view(-1, 1) + a
x = torch.randn(3, 4, requires_grad=True)
outputs = ArangeScript()(x)
self.run_test(ArangeScript(), x)
class ArangeModel(torch.nn.Module):
def forward(self, a):
return torch.arange(a.size(0), dtype=torch.float).view(-1, 1) + a
self.run_test(ArangeModel(), x)
@skipIfUnsupportedMinOpsetVersion(11)
def test_arange_end_notype(self):
class ArangeScript(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, a):
return torch.arange(a.size(0))
x = torch.randn(3, 4, requires_grad=True)
outputs = ArangeScript()(x)
self.run_test(ArangeScript(), x)
class ArangeModel(torch.nn.Module):
def forward(self, a):
return torch.arange(a.size(0))
self.run_test(ArangeModel(), x)
@skipIfUnsupportedMinOpsetVersion(9)
def test_arange_start_end(self):
class ArangeScript(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, a):
return torch.arange(2, a.size(0) + 2, dtype=torch.float).view(-1, 1) + a
x = torch.randn(3, 4, requires_grad=True)
self.run_test(ArangeScript(), x)
class ArangeModel(torch.nn.Module):
def forward(self, a):
return torch.arange(2, a.size(0) + 2, dtype=torch.float).view(-1, 1) + a
self.run_test(ArangeModel(), x)
@skipIfUnsupportedMinOpsetVersion(11)
def test_arange_start_end_notype(self):
class ArangeScript(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, a):
return torch.arange(2.7, a.size(0) + 2).view(-1, 1) + a
x = torch.randn(3, 4, requires_grad=True)
self.run_test(ArangeScript(), x)
class ArangeModel(torch.nn.Module):
def forward(self, a):
return torch.arange(2.7, a.size(0) + 2).view(-1, 1) + a
self.run_test(ArangeModel(), x)
@skipIfUnsupportedMinOpsetVersion(9)
def test_arange_start_end_step(self):
class ArangeScript(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, a):
return torch.arange(2, a.size(0) * a.size(1) + 2, a.size(1), dtype=torch.float).view(-1, 1) + a
x = torch.randn(3, 4, requires_grad=True)
self.run_test(ArangeScript(), x)
class ArangeModel(torch.nn.Module):
def forward(self, a):
return torch.arange(2, a.size(0) * a.size(1) + 2, a.size(1), dtype=torch.float).view(-1, 1) + a
self.run_test(ArangeModel(), x)
@skipIfUnsupportedMinOpsetVersion(11)
def test_arange_start_end_step_notype(self):
class ArangeScript(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, a):
return torch.arange(2.7, a.size(0) * a.size(1) + 2, a.size(1)).view(-1, 1) + a
x = torch.randn(3, 4, requires_grad=True)
self.run_test(ArangeScript(), x)
class ArangeModel(torch.nn.Module):
def forward(self, a):
return torch.arange(2.7, a.size(0) * a.size(1) + 2, a.size(1)).view(-1, 1) + a
self.run_test(ArangeModel(), x)
@skipIfUnsupportedMinOpsetVersion(9)
def test__dim_arange(self):
class DimArange(torch.nn.Module):
def forward(self, input):
return torch._dim_arange(input, 1)
x = torch.ones(5, 6)
self.run_test(DimArange(), x)
def test_gt(self):
class GreaterModel(torch.nn.Module):
def forward(self, input, other):
return input > other
x = torch.randn(1, 2, 3, 4, requires_grad=True)
y = torch.randn(1, 2, 3, 4, requires_grad=True)
self.run_test(GreaterModel(), (x, y))
x = torch.randint(10, (3, 4), dtype=torch.int32)
y = torch.randint(10, (3, 4), dtype=torch.int32)
self.run_test(GreaterModel(), (x, y))
def test_gt_scalar(self):
class GreaterModel(torch.nn.Module):
def forward(self, input):
return input > 1
x = torch.randn(1, 2, 3, 4, requires_grad=True)
self.run_test(GreaterModel(), x)
x = torch.randint(10, (3, 4), dtype=torch.int32)
self.run_test(GreaterModel(), x)
def test_lt(self):
class LessModel(torch.nn.Module):
def forward(self, input, other):
return input > other
x = torch.randn(1, 2, 3, 4, requires_grad=True)
y = torch.randn(1, 2, 3, 4, requires_grad=True)
self.run_test(LessModel(), (x, y))
x = torch.randint(10, (3, 4), dtype=torch.int32)
y = torch.randint(10, (3, 4), dtype=torch.int32)
self.run_test(LessModel(), (x, y))
def test_matmul(self):
class MatmulModel(torch.nn.Module):
def forward(self, input, other):
return torch.matmul(input, other)
x = torch.randn(3, 4, requires_grad=True)
y = torch.randn(4, 5, requires_grad=True)
self.run_test(MatmulModel(), (x, y))
x = torch.randint(10, (3, 4))
y = torch.randint(10, (4, 5))
self.run_test(MatmulModel(), (x, y))
def test_matmul_batch(self):
class MatmulModel(torch.nn.Module):
def forward(self, input, other):
return torch.matmul(input, other)
x = torch.randn(2, 3, 4, requires_grad=True)
y = torch.randn(2, 4, 5, requires_grad=True)
self.run_test(MatmulModel(), (x, y))
x = torch.randint(10, (2, 3, 4))
y = torch.randint(10, (2, 4, 5))
self.run_test(MatmulModel(), (x, y))
def test_view(self):
class ViewModel(torch.nn.Module):
def forward(self, input):
return input.view(4, 24)
x = torch.randint(10, (4, 2, 3, 4), dtype=torch.int32)
self.run_test(ViewModel(), x)
def test_flatten(self):
class FlattenModel(torch.nn.Module):
def forward(self, input):
return torch.flatten(input)
x = torch.randint(10, (1, 2, 3, 4))
self.run_test(FlattenModel(), x)
def test_flatten2d(self):
class FlattenModel(torch.nn.Module):
def forward(self, input):
return torch.flatten(input, 1)
x = torch.randint(10, (1, 2, 3, 4))
self.run_test(FlattenModel(), x)
def test_unbind(self):
class UnbindModel(torch.nn.Module):
def forward(self, input):
return input.unbind()
x = torch.randn(3, 4, 5)
self.run_test(UnbindModel(), x)
class UnbindModel2(torch.nn.Module):
def forward(self, input):
_, out, _, _ = input.unbind(1)
return out
x = torch.randn(3, 4, 5)
self.run_test(UnbindModel2(), x)
@skipIfUnsupportedMinOpsetVersion(9)
def test_tensor_factories(self):
class TensorFactory(torch.nn.Module):
def forward(self, x):
return torch.zeros(x.size()) + torch.ones(x.size())
x = torch.randn(2, 3, 4)
self.run_test(TensorFactory(), x)
@skipIfUnsupportedMinOpsetVersion(9)
def test_tensor_factories_script(self):
class TensorFactory(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, x):
return torch.zeros(x.shape, dtype=torch.float) + torch.ones(x.shape, dtype=torch.float)
x = torch.randn(2, 3, 4)
self.run_test(TensorFactory(), x)
@skipIfUnsupportedMinOpsetVersion(9)
def test_tensor_like_factories_script(self):
class TensorFactory(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, x):
zeros = torch.zeros_like(x, dtype=torch.float, layout=torch.strided, device=torch.device('cpu'))
ones = torch.ones_like(x, dtype=torch.float, layout=torch.strided, device=torch.device('cpu'))
return zeros + ones
x = torch.randn(2, 3, 4)
self.run_test(TensorFactory(), x)
def test_sort(self):
class SortModel(torch.nn.Module):
def __init__(self, dim):
super(SortModel, self).__init__()
self.dim = dim
def forward(self, x):
return torch.sort(x, dim=self.dim, descending=True)
dim = 1
x = torch.randn(3, 4)
self.run_test(SortModel(dim), x)
@skipIfUnsupportedMinOpsetVersion(11)
def test_sort_ascending(self):
class SortModel(torch.nn.Module):
def __init__(self, dim):
super(SortModel, self).__init__()
self.dim = dim
def forward(self, x):
return torch.sort(x, dim=self.dim, descending=False)
dim = 1
x = torch.randn(3, 4)
self.run_test(SortModel(dim), x)
@skipIfUnsupportedMinOpsetVersion(9)
def test_masked_fill(self):
class MaskedFillModel(torch.nn.Module):
def forward(self, x):
mask = torch.tensor([[0, 0, 1], [1, 1, 0]], dtype=torch.uint8)
return x.masked_fill(mask, 2)
x = torch.zeros(4, 2, 3, requires_grad=True)
self.run_test(MaskedFillModel(), x)
class MaskedFillModel2(torch.nn.Module):
def forward(self, x):
return x.masked_fill(x > 3, -1)
x = torch.arange(16).view(2, 2, 4).to(torch.float32)
self.run_test(MaskedFillModel2(), x)
@skipIfUnsupportedMinOpsetVersion(11)
def test_masked_scatter(self):
class MaskedScatterModel(torch.nn.Module):
def forward(self, x):
return torch.masked_scatter(x, x.ge(0.5), torch.ones(100, 100) * 5)
x = torch.randn(3, 4, 5, requires_grad=True)
self.run_test(MaskedScatterModel(), x)
@skipIfUnsupportedMinOpsetVersion(11)
def test_masked_select(self):
class MaskedSelectModel(torch.nn.Module):
def forward(self, x):
return torch.masked_select(x, x.ge(0.5))
x = torch.randn(3, 4, 5, requires_grad=True)
self.run_test(MaskedSelectModel(), x)
@unittest.skip("Enable this once depthToSpace attr 'mode' is supported in ORT")
@skipIfUnsupportedMinOpsetVersion(9)
def test_pixel_shuffle(self):
class PixelShuffle(torch.nn.Module):
def forward(self, x):
return torch.pixel_shuffle(x, upscale_factor=2)
x = torch.randn(2, 16, 4, 3, requires_grad=True)
self.run_test(PixelShuffle(), x)
@skipIfUnsupportedMinOpsetVersion(9)
def test_scalar_type(self):
class ArithmeticModel(torch.nn.Module):
def forward(self, x):
return x.size(0) * 2 * x
x = torch.ones(2, 3, dtype=torch.float32)
self.run_test(ArithmeticModel(), x)
class ReciprocalModel(torch.nn.Module):
def forward(self, x):
return torch.reciprocal(x)
x = torch.tensor([2.0, 4.0], dtype=torch.double)
self.run_test(ReciprocalModel(), x)
class ComparisonModel(torch.nn.Module):
def forward(self, x, y):
return x.ge(0.5) & y.le(2)
x = torch.ones(2, 3, dtype=torch.int32)
y = torch.ones(2, 3, dtype=torch.float32)
self.run_test(ComparisonModel(), (x, y))
class MatMulModel(torch.nn.Module):
def forward(self, x):
return (torch.mm(x, x) + x + torch.mm(x, x) + x)
x = torch.ones(3, 3)
self.run_test(MatMulModel(), x)
class AddMMModel(torch.nn.Module):
def forward(self, x):
return torch.mm(x, x) + x
x = torch.ones(3, 3)
self.run_test(AddMMModel(), x)
class FullModel(torch.nn.Module):
# add is used for exporting full
def forward(self, x):
return torch.full((3, 4), x)
x = torch.tensor(12)
self.run_test(FullModel(), x)
def test_frobenius_norm(self):
class NormModel(torch.nn.Module):
def forward(self, x):
return torch.norm(x, p="fro", dim=0, keepdim=False)
x = torch.randn(4, 2, 3, requires_grad=True)
self.run_test(NormModel(), x)
def test_frobenius_norm_keepdim(self):
class NormModel(torch.nn.Module):
def forward(self, x):
return torch.norm(x, p="fro", dim=(0, 1), keepdim=True)
x = torch.randn(4, 2, 3, requires_grad=True)
self.run_test(NormModel(), x)
def test_unfold(self):
class UnfoldModel(torch.nn.Module):
def forward(self, x):
return x.unfold(dimension=2, size=2, step=2)
x = torch.randn(4, 2, 3, requires_grad=True)
self.run_test(UnfoldModel(), x)
def test_remainder(self):
class RemainderModel(torch.nn.Module):
def forward(self, input, other):
return torch.remainder(input, other)
x = torch.randn(4, 2, 3)
y = torch.randn(1, 2, 1)
self.run_test(RemainderModel(), (x, y))
def test_remainder_scalar(self):
class RemainderModel(torch.nn.Module):
def forward(self, input):
return torch.remainder(input, 2.55)
x = torch.randint(10, (2, 3))
self.run_test(RemainderModel(), x)
@skipIfUnsupportedMinOpsetVersion(10)
def test_fmod(self):
class FModModel(torch.nn.Module):
def forward(self, input, other):
return torch.fmod(input, other)
x = torch.randn(4, 2, 3)
y = torch.randn(1, 2, 1)
self.run_test(FModModel(), (x, y))
@skipIfUnsupportedMinOpsetVersion(10)
def test_fmod_scalar(self):
class FModModel(torch.nn.Module):
def forward(self, input):
return torch.fmod(input, 2.55)
x = torch.randint(10, (2, 3))
self.run_test(FModModel(), x)
@skipIfUnsupportedMinOpsetVersion(9)
def test_gelu(self):
class GeluModel(torch.nn.Module):
def forward(self, x):
return torch.nn.functional.gelu(x)
x = torch.randn(2, 4, 5, 6, requires_grad=True)
self.run_test(GeluModel(), x)
def test_add_inplace(self):
class InplaceAddModel(torch.nn.Module):
def forward(self, x):
x += 12
return x
x = torch.randn(4, 2, 3, requires_grad=True)
self.run_test(InplaceAddModel(), x)
def test_rsqrt(self):
class RsqrtModel(torch.nn.Module):
def forward(self, x):
return x.rsqrt()
x = torch.randn(4, 2, 3, requires_grad=True, dtype=torch.float64)
self.run_test(RsqrtModel(), x)
def test_rsqrt_zeros(self):
class RsqrtModel(torch.nn.Module):
def forward(self, x):
return x.rsqrt()
x = torch.zeros(4, 2, 3, requires_grad=True, dtype=torch.float64)
self.run_test(RsqrtModel(), x)
@skipIfUnsupportedMinOpsetVersion(11)
def test_unique(self):
class UniqueModel(torch.nn.Module):
def forward(self, x):
return torch.unique(x, sorted=True, return_inverse=False, return_counts=True)
x = torch.tensor([1, 3, 2, 3], dtype=torch.long)
self.run_test(UniqueModel(), x)
@skipIfUnsupportedMinOpsetVersion(11)
def test_unique_along_dim(self):
class UniqueModel(torch.nn.Module):
def forward(self, x):
return torch.unique(x, dim=0, sorted=True, return_inverse=True, return_counts=False)
x = torch.tensor([1, 3, 2, 3], dtype=torch.long)
self.run_test(UniqueModel(), x)
@skipIfUnsupportedMinOpsetVersion(11)
def test_cumsum(self):
class CumSum(torch.nn.Module):
def forward(self, input):
return torch.cumsum(input, dim=0)
x = torch.randn(2, 3, 4)
model = CumSum()
self.run_test(model, x)
@skipIfUnsupportedMinOpsetVersion(8)
def test_meshgrid(self):
class Meshgrid(torch.nn.Module):
def forward(self, x, y, z):
return torch.meshgrid(x, y, z)
x = torch.randn(3, requires_grad=True)
y = torch.zeros(4, requires_grad=True)
z = torch.randn(5, requires_grad=True)
self.run_test(Meshgrid(), (x, y, z))
@skipIfUnsupportedMinOpsetVersion(8)
def test_meshgrid_scalar(self):
class Meshgrid(torch.nn.Module):
def forward(self, x, y, z):
return torch.meshgrid(x, y, z)
x = torch.ones(3, requires_grad=True)
y = torch.zeros(4, requires_grad=True)
z = torch.tensor(2.0)
self.run_test(Meshgrid(), (x, y, z))
def test_baddbmm(self):
class MyModule(torch.nn.Module):
def forward(self, input, batch1, batch2):
return torch.baddbmm(input, batch1, batch2, alpha=torch.tensor(5), beta=3.5)
x = torch.randn(10, 3, 5)
batch1 = torch.randn(10, 3, 4)
batch2 = torch.randn(10, 4, 5)
model = MyModule()
self.run_test(model, (x, batch1, batch2))
def test_baddbmm_dynamic(self):
class MyModule(torch.nn.Module):
def forward(self, input, batch1, batch2, alpha, beta):
return torch.baddbmm(input, batch1, batch2, alpha=alpha, beta=beta)
x = torch.randn(10, 3, 5)
batch1 = torch.randn(10, 3, 4)
batch2 = torch.randn(10, 4, 5)
alpha = torch.tensor(5)
beta = torch.tensor(3.5)
model = MyModule()
self.run_test(model, (x, batch1, batch2, alpha, beta))
def test_log(self):
class Log(torch.nn.Module):
def forward(self, input):
return torch.log(input)
x = torch.rand(2, 3, 4)
model = Log()
self.run_test(model, x)
def test_log1p(self):
class Log1p(torch.nn.Module):
def forward(self, input):
return torch.log1p(input)
x = torch.rand(2, 3, 4)
model = Log1p()
self.run_test(model, x)
@skipIfUnsupportedMinOpsetVersion(11)
def test_round(self):
class Round(torch.nn.Module):
def forward(self, x):
return torch.round(x)
x = torch.tensor([0.9920, -1.0362, -1.5000, 3.5000], requires_grad=True)
self.run_test(Round(), x)
def test_constant_pad(self):
model = torch.nn.ConstantPad1d(2, 3.5)
x = torch.randn(2, 4, 4)
self.run_test(model, x)
model = torch.nn.ConstantPad2d((3, 0, 2, 1), 3.5)
x = torch.randn(2, 2, 4, 4)
self.run_test(model, x)
# Dynamic padding is added in opset 11
@skipIfUnsupportedMinOpsetVersion(11)
def test_pad_types(self):
# Test for different pad integer types
class Pad(torch.nn.Module):
def forward(self, x, pad):
return torch.nn.functional.pad(x, pad)
x = torch.randn(2, 2, 4, 4)
y = pad = (torch.tensor(2, dtype=torch.int32), torch.tensor(4, dtype=torch.int32))
self.run_test(Pad(), (x, y))
y = pad = (torch.tensor(2, dtype=torch.int64), torch.tensor(4, dtype=torch.int64))
self.run_test(Pad(), (x, y))
def test_reflection_pad(self):
model = torch.nn.ReflectionPad1d(2)
x = torch.randn(2, 4, 4)
self.run_test(model, x)
model = torch.nn.ReflectionPad2d((3, 0, 2, 1))
x = torch.randn(2, 2, 4, 4)
self.run_test(model, x)
def test_replication_pad(self):
model = torch.nn.ReplicationPad1d(2)
x = torch.randn(2, 4, 4)
self.run_test(model, x)
model = torch.nn.ReplicationPad2d((3, 0, 2, 1))
x = torch.randn(2, 2, 4, 4)
self.run_test(model, x)
@skipIfNoLapack
@skipIfUnsupportedMinOpsetVersion(11)
def test_det(self):
class Det(torch.nn.Module):
def forward(self, x):
return torch.det(x)
x = torch.randn(2, 3, 5, 5)
self.run_test(Det(), x)
def _dispatch_rnn_test(self, name, *args, **kwargs):
if name == 'elman':
self._elman_rnn_test(*args, **kwargs)
if name == 'lstm':
self._lstm_test(*args, **kwargs)
if name == 'gru':
self._gru_test(*args, **kwargs)
def _elman_rnn_test(self, layers, nonlinearity, bidirectional,
initial_state, packed_sequence, dropout):
batch_first = True if packed_sequence == 2 else False
model = torch.nn.RNN(RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, layers, nonlinearity=nonlinearity,
bidirectional=bidirectional, dropout=dropout, batch_first=batch_first)
if packed_sequence == 1:
model = RnnModelWithPackedSequence(model, False)
if packed_sequence == 2:
model = RnnModelWithPackedSequence(model, True)
def make_input(batch_size):
seq_lengths = np.random.randint(1, RNN_SEQUENCE_LENGTH + 1, size=batch_size)
seq_lengths = list(reversed(sorted(map(int, seq_lengths))))
inputs = [torch.randn(l, RNN_INPUT_SIZE) for l in seq_lengths]
inputs = rnn_utils.pad_sequence(inputs, batch_first=batch_first)
inputs = [inputs]
directions = 2 if bidirectional else 1
if initial_state:
h0 = torch.randn(directions * layers, batch_size, RNN_HIDDEN_SIZE)
inputs.append(h0)
if packed_sequence != 0:
inputs.append(torch.IntTensor(seq_lengths))
if len(inputs) == 1:
input = inputs[0]
else:
input = tuple(inputs)
return input
input = make_input(RNN_BATCH_SIZE)
self.run_test(model, input, batch_size=RNN_BATCH_SIZE)
# test that the model still runs with a different batch size
other_input = make_input(RNN_BATCH_SIZE + 1)
self.run_test(model, other_input, batch_size=RNN_BATCH_SIZE + 1)
def _lstm_test(self, layers, bidirectional, initial_state,
packed_sequence, dropout):
batch_first = True if packed_sequence == 2 else False
model = LstmFlatteningResult(
RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, layers,
bidirectional=bidirectional, dropout=dropout, batch_first=batch_first)
if packed_sequence == 1:
model = RnnModelWithPackedSequence(model, False)
if packed_sequence == 2:
model = RnnModelWithPackedSequence(model, True)
def make_input(batch_size):
seq_lengths = np.random.randint(1, RNN_SEQUENCE_LENGTH + 1, size=batch_size)
seq_lengths = list(reversed(sorted(map(int, seq_lengths))))
inputs = [torch.randn(l, RNN_INPUT_SIZE) for l in seq_lengths]
inputs = rnn_utils.pad_sequence(inputs, batch_first=batch_first)
inputs = [inputs]
directions = 2 if bidirectional else 1
if initial_state:
h0 = torch.randn(directions * layers, batch_size, RNN_HIDDEN_SIZE)
c0 = torch.randn(directions * layers, batch_size, RNN_HIDDEN_SIZE)
inputs.append((h0, c0))
if packed_sequence != 0:
inputs.append(torch.IntTensor(seq_lengths))
if len(inputs) == 1:
input = inputs[0]
else:
input = tuple(inputs)
return input
input = make_input(RNN_BATCH_SIZE)
self.run_test(model, input, batch_size=RNN_BATCH_SIZE)
# test that the model still runs with a different batch size
other_input = make_input(RNN_BATCH_SIZE + 1)
self.run_test(model, other_input, batch_size=RNN_BATCH_SIZE + 1)
def _gru_test(self, layers, bidirectional, initial_state,
packed_sequence, dropout):
batch_first = True if packed_sequence == 2 else False
model = torch.nn.GRU(RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, layers, bidirectional=bidirectional, dropout=dropout,
batch_first=batch_first)
if packed_sequence == 1:
model = RnnModelWithPackedSequence(model, False)
if packed_sequence == 2:
model = RnnModelWithPackedSequence(model, True)
def make_input(batch_size):
seq_lengths = np.random.randint(1, RNN_SEQUENCE_LENGTH + 1, size=batch_size)
seq_lengths = list(reversed(sorted(map(int, seq_lengths))))
inputs = [torch.randn(l, RNN_INPUT_SIZE) for l in seq_lengths]
inputs = rnn_utils.pad_sequence(inputs, batch_first=batch_first)
inputs = [inputs]
directions = 2 if bidirectional else 1
if initial_state:
h0 = torch.randn(directions * layers, batch_size, RNN_HIDDEN_SIZE)
inputs.append(h0)
if packed_sequence != 0:
inputs.append(torch.IntTensor(seq_lengths))
if len(inputs) == 1:
input = inputs[0]
else:
input = tuple(inputs)
return input
input = make_input(RNN_BATCH_SIZE)
self.run_test(model, input, batch_size=RNN_BATCH_SIZE)
# test that the model still runs with a different batch size
other_input = make_input(RNN_BATCH_SIZE + 1)
self.run_test(model, other_input, batch_size=RNN_BATCH_SIZE + 1)
def make_test(name, base, layer, bidirectional, initial_state,
variable_length, dropout,
**extra_kwargs):
test_name = str('_'.join([
'test', name, layer[1],
bidirectional[1], initial_state[1],
variable_length[1], dropout[1]
]))
# Cannot export with older opsets because of 'ConstantFill' op
# ConstantFill was a temp op removed at opset 8. This is no longer supported by onnxruntime
@skipIfUnsupportedMinOpsetVersion(9)
def f(self):
self._dispatch_rnn_test(
base,
layers=layer[0],
bidirectional=bidirectional[0],
initial_state=initial_state[0],
packed_sequence=variable_length[0],
dropout=dropout[0],
**extra_kwargs)
f.__name__ = test_name
setattr(TestONNXRuntime, f.__name__, f)
def setup_rnn_tests():
layers_opts = [
(1, 'unilayer'),
(3, 'trilayer')
]
bidirectional_opts = [
(False, 'forward'),
(True, 'bidirectional')
]
initial_state_opts = [
(True, 'with_initial_state'),
(False, 'no_initial_state')
]
variable_length_opts = [
(0, 'without_sequence_lengths'),
(1, 'with_variable_length_sequences'),
(2, 'with_batch_first_sequence_lengths')
]
dropout_opts = [
(0.2, 'with_dropout'),
(0.0, 'without_dropout')
]
test_count = 0
for (layer, bidirectional, initial_state, variable_length, dropout) in \
itertools.product(
layers_opts,
bidirectional_opts,
initial_state_opts,
variable_length_opts,
dropout_opts,
):
for base, name, extra_kwargs in (
('elman', 'elman_relu', {'nonlinearity': u'relu'}),
('elman', 'elman_tanh', {'nonlinearity': u'tanh'}),
('lstm', 'lstm', {}),
('gru', 'gru', {})
):
# This is a hack to skip elman_rnn bidirectional tests for now
# TODO: Revert this once elman_rnn bidirectional issue is fixed
if base == 'elman' and bidirectional[1] == 'bidirectional':
continue
make_test(name, base, layer, bidirectional, initial_state,
variable_length, dropout,
**extra_kwargs)
test_count += 1
# sanity check that a representative example does exist
TestONNXRuntime.test_gru_trilayer_forward_with_initial_state_without_sequence_lengths_with_dropout
# make sure no one accidentally disables all the tests without
# noticing
# assert test_count == 192, test_count
# TODO: Revert this once elman_rnn bidirectional issue is fixed
if test_count != 144:
raise ValueError('Expected 144 tests but found {}'.format(test_count))
setup_rnn_tests()
# opset 7 tests
TestONNXRuntime_opset7 = type(str("TestONNXRuntime_opset7"),
(unittest.TestCase,),
dict(TestONNXRuntime.__dict__, opset_version=7))
# opset 8 tests
TestONNXRuntime_opset8 = type(str("TestONNXRuntime_opset8"),
(unittest.TestCase,),
dict(TestONNXRuntime.__dict__, opset_version=8))
# opset 10 tests
TestONNXRuntime_opset10 = type(str("TestONNXRuntime_opset10"),
(unittest.TestCase,),
dict(TestONNXRuntime.__dict__, opset_version=10))
# opset 11 tests
TestONNXRuntime_opset11 = type(str("TestONNXRuntime_opset11"),
(unittest.TestCase,),
dict(TestONNXRuntime.__dict__, opset_version=11))
# opset 9 tests, with keep_initializers_as_inputs=False for
# IR version 4 style export.
TestONNXRuntime_opset9_IRv4 = type(str("TestONNXRuntime_opset9_IRv4"),
(unittest.TestCase,),
dict(TestONNXRuntime.__dict__,
keep_initializers_as_inputs=False))
# opset 10 tests, with keep_initializers_as_inputs=False for
# IR version 4 style export.
TestONNXRuntime_opset10_IRv4 = type(str("TestONNXRuntime_opset10_IRv4"),
(unittest.TestCase,),
dict(TestONNXRuntime.__dict__, opset_version=10,
keep_initializers_as_inputs=False))
# opset 11 tests, with keep_initializers_as_inputs=False for
# IR version 4 style export.
TestONNXRuntime_opset11_IRv4 = type(str("TestONNXRuntime_opset11_IRv4"),
(unittest.TestCase,),
dict(TestONNXRuntime.__dict__, opset_version=11,
keep_initializers_as_inputs=False))
if __name__ == '__main__':
unittest.main()