mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/62442 For PythonMethodWrapper::setArgumentNames, make sure to use the correct method specified by method_name_ rather than using the parent model_ obj which itself _is_ callable, but that callable is not the right signature to extract. For Python vs Script, unify the behavior to avoid the 'self' parameter, so we only list the argument names to the unbound arguments which is what we need in practice. Test Plan: update unit test and it passes Reviewed By: alanwaketan Differential Revision: D29965283 fbshipit-source-id: a4e6a1d0f393f2a41c3afac32285548832da3fb4
641 lines
21 KiB
C++
641 lines
21 KiB
C++
#include <ATen/core/interned_strings.h>
|
|
#include <ATen/record_function.h>
|
|
#include <c10/util/Exception.h>
|
|
#include <c10/util/StringUtil.h>
|
|
#include <c10/util/irange.h>
|
|
#include <torch/csrc/autograd/generated/variable_factories.h>
|
|
#include <torch/csrc/jit/api/module.h>
|
|
#include <torch/csrc/jit/frontend/error_report.h>
|
|
#include <torch/csrc/jit/frontend/ir_emitter.h>
|
|
#include <torch/csrc/jit/frontend/schema_matching.h>
|
|
#include <torch/csrc/jit/jit_log.h>
|
|
#include <torch/csrc/jit/passes/dead_code_elimination.h>
|
|
#include <torch/csrc/jit/passes/freeze_module.h>
|
|
#include <torch/csrc/jit/passes/frozen_conv_add_relu_fusion.h>
|
|
#include <torch/csrc/jit/passes/frozen_graph_optimizations.h>
|
|
#include <torch/csrc/jit/passes/frozen_ops_to_mkldnn.h>
|
|
#include <torch/csrc/jit/passes/inliner.h>
|
|
#include <torch/csrc/jit/runtime/operator.h>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
namespace {
|
|
|
|
std::string getInputDebugName(const Node& n, const int idx) {
|
|
return n.inputs().at(idx)->debugName();
|
|
}
|
|
|
|
std::vector<Node*> findAllNodes(
|
|
c10::ArrayRef<torch::jit::Block*> blocks,
|
|
Symbol kind,
|
|
bool recurse) {
|
|
std::vector<Node*> ret;
|
|
for (Block* block : blocks) {
|
|
for (Node* n : block->nodes()) {
|
|
if (n->kind() == kind) {
|
|
ret.push_back(n);
|
|
}
|
|
if (recurse) {
|
|
auto nodes = findAllNodes(n->blocks(), kind, recurse);
|
|
ret.insert(ret.end(), nodes.begin(), nodes.end());
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void assert_ignored_methods_not_called(
|
|
torch::jit::Function* fn,
|
|
const std::unordered_set<std::string>& ignored_methods) {
|
|
if (ignored_methods.empty()) {
|
|
return;
|
|
}
|
|
const bool recurse = true;
|
|
std::vector<Node*> all_nodes =
|
|
findAllNodes({fn->graph()->block()}, c10::prim::CallMethod, recurse);
|
|
|
|
// Extract method names from these nodes.
|
|
std::unordered_set<std::string> encountered_ignored_methods;
|
|
|
|
for (Node* n : all_nodes) {
|
|
if (ignored_methods.count(n->s(attr::name)) > 0 &&
|
|
getInputDebugName(*n, 0) == "self") {
|
|
encountered_ignored_methods.insert(
|
|
getInputDebugName(*n, 0) + "." + n->s(attr::name));
|
|
}
|
|
}
|
|
if (encountered_ignored_methods.empty()) {
|
|
return;
|
|
}
|
|
|
|
const std::string encountered_ignored_methods_str =
|
|
c10::Join(", ", encountered_ignored_methods);
|
|
|
|
TORCH_CHECK(
|
|
false,
|
|
"Preserved method '",
|
|
fn->name(),
|
|
"' references ignored method(s) '",
|
|
encountered_ignored_methods_str,
|
|
"'. This is not permitted.");
|
|
}
|
|
|
|
void assert_ignored_attributes_not_referenced(
|
|
torch::jit::Function* fn,
|
|
const std::unordered_set<std::string>& ignored_attributes) {
|
|
if (ignored_attributes.empty()) {
|
|
return;
|
|
}
|
|
|
|
const bool recurse = true;
|
|
std::vector<Node*> all_nodes =
|
|
findAllNodes({fn->graph()->block()}, c10::prim::GetAttr, recurse);
|
|
|
|
// Extract attribute names from these nodes.
|
|
std::unordered_set<std::string> encountered_ignored_attributes;
|
|
|
|
for (Node* n : all_nodes) {
|
|
if (ignored_attributes.count(n->s(attr::name)) > 0 &&
|
|
getInputDebugName(*n, 0) == "self") {
|
|
encountered_ignored_attributes.insert(
|
|
getInputDebugName(*n, 0) + "." + n->s(attr::name));
|
|
}
|
|
}
|
|
if (encountered_ignored_attributes.empty()) {
|
|
return;
|
|
}
|
|
|
|
const std::string encountered_ignored_attributes_str =
|
|
c10::Join(", ", encountered_ignored_attributes);
|
|
|
|
TORCH_CHECK(
|
|
false,
|
|
"Preserved method '",
|
|
fn->name(),
|
|
"' references ignored attribute(s) '",
|
|
encountered_ignored_attributes_str,
|
|
"'. This is not permitted.");
|
|
}
|
|
|
|
} // namespace
|
|
|
|
static ObjectPtr create_module_object(
|
|
c10::QualifiedName class_name,
|
|
std::shared_ptr<CompilationUnit> cu,
|
|
bool shouldMangle = false) {
|
|
// If the name is unqualified, prepend a `__torch__`, similar to what Python
|
|
// does with `__main__` for top-level code.
|
|
if (class_name.prefix().empty()) {
|
|
class_name = c10::QualifiedName("__torch__", class_name.name());
|
|
}
|
|
if (shouldMangle && cu->get_class(class_name) != nullptr) {
|
|
class_name = cu->mangle(class_name);
|
|
}
|
|
auto cls = ClassType::create(std::move(class_name), cu, /*is_module=*/true);
|
|
cu->register_type(cls);
|
|
return c10::ivalue::Object::create(
|
|
c10::StrongTypePtr(std::move(cu), std::move(cls)), 0);
|
|
}
|
|
|
|
Module::Module(c10::QualifiedName class_name)
|
|
: Object(create_module_object(
|
|
std::move(class_name),
|
|
std::make_shared<CompilationUnit>())) {}
|
|
|
|
Module::Module(
|
|
std::shared_ptr<CompilationUnit> cu,
|
|
const c10::ClassTypePtr& type)
|
|
: Object(c10::ivalue::Object::create(
|
|
c10::StrongTypePtr(std::move(cu), type),
|
|
type->numAttributes())) {}
|
|
|
|
Module::Module(
|
|
c10::QualifiedName class_name,
|
|
std::shared_ptr<CompilationUnit> cu,
|
|
bool shouldMangle)
|
|
: Object(create_module_object(
|
|
std::move(class_name),
|
|
std::move(cu),
|
|
shouldMangle)) {}
|
|
|
|
// first class mode runs models as first class objects,
|
|
// and does not force inlining everywhere. This is experimental
|
|
// as we bring up the system since it will degrade performance
|
|
// and may introduce bugs. test_jit.py provides context managers
|
|
// that enable it for specific tests.
|
|
thread_local bool inline_everything = false;
|
|
bool& getInlineEverythingMode() {
|
|
return inline_everything;
|
|
}
|
|
|
|
void Module::to(at::Device device, at::ScalarType dtype, bool non_blocking) {
|
|
to_impl(device, dtype, non_blocking);
|
|
}
|
|
|
|
void Module::to(at::ScalarType dtype, bool non_blocking) {
|
|
to_impl(/*device=*/c10::nullopt, dtype, non_blocking);
|
|
}
|
|
|
|
void Module::to(at::Device device, bool non_blocking) {
|
|
to_impl(device, /*dtype=*/c10::nullopt, non_blocking);
|
|
}
|
|
|
|
void module_state_to(
|
|
const autograd::Variable& variable,
|
|
const c10::optional<at::Device>& device,
|
|
const c10::optional<at::ScalarType>& dtype,
|
|
bool non_blocking) {
|
|
// Need to access the `at::Tensor` as a `Variable` here.
|
|
// Use the data's original device or dtype if not supplied here.
|
|
auto new_data = variable.to(
|
|
device.value_or(variable.device()),
|
|
dtype.value_or(variable.scalar_type()),
|
|
non_blocking);
|
|
variable.set_data(new_data);
|
|
}
|
|
|
|
void Module::to_impl(
|
|
const c10::optional<at::Device>& device,
|
|
const c10::optional<at::ScalarType>& dtype,
|
|
bool non_blocking) {
|
|
for (at::Tensor e : parameters()) {
|
|
module_state_to(e, device, dtype, non_blocking);
|
|
}
|
|
for (at::Tensor e : buffers()) {
|
|
module_state_to(e, device, dtype, non_blocking);
|
|
}
|
|
}
|
|
|
|
Method::Method(ModulePtr owner, Function* function)
|
|
: owner_(std::move(owner)), function_(function) {}
|
|
|
|
Module Method::owner() const {
|
|
return Module(owner_);
|
|
}
|
|
void Method::run(Stack& stack) {
|
|
stack.insert(stack.begin(), owner()._ivalue()); // self
|
|
RECORD_TORCHSCRIPT_FUNCTION(name(), stack);
|
|
function_->run(stack);
|
|
}
|
|
|
|
IValue Method::operator()(std::vector<IValue> stack, const Kwargs& kwargs)
|
|
const {
|
|
stack.insert(stack.begin(), owner()._ivalue()); // self
|
|
RECORD_TORCHSCRIPT_FUNCTION(name(), stack);
|
|
return (*function_)(std::move(stack), kwargs);
|
|
}
|
|
|
|
c10::intrusive_ptr<c10::ivalue::Future> Method::run_async(
|
|
std::vector<IValue> stack,
|
|
const Kwargs& kwargs,
|
|
TaskLauncher taskLauncher) {
|
|
stack.insert(stack.begin(), owner()._ivalue());
|
|
RECORD_TORCHSCRIPT_FUNCTION(name(), stack);
|
|
|
|
function_->getSchema().checkAndNormalizeInputs(stack, kwargs);
|
|
return function_->runAsync(stack, std::move(taskLauncher));
|
|
}
|
|
|
|
void Method::setArgumentNames(
|
|
std::vector<std::string>& argumentNamesOut) const {
|
|
TORCH_INTERNAL_ASSERT(function_);
|
|
auto& arguments = function_->getSchema().arguments();
|
|
argumentNamesOut.reserve(arguments.size());
|
|
for (auto& argument : arguments) {
|
|
if (argument.name() == "self") {
|
|
continue;
|
|
}
|
|
argumentNamesOut.push_back(argument.name());
|
|
}
|
|
}
|
|
|
|
IValue Module::operator()(std::vector<IValue> inputs) {
|
|
const auto& pre_forward_hooks = type()->getForwardPreHooks();
|
|
const auto& forward_hooks = type()->getForwardHooks();
|
|
|
|
// call forward pre_hooks
|
|
for (const auto& pre_hook : pre_forward_hooks) {
|
|
auto tuple_input = c10::ivalue::Tuple::create(inputs);
|
|
IValue result = Method(_ivalue(), pre_hook)({tuple_input});
|
|
if (!result.isNone()) {
|
|
if (result.isTuple()) {
|
|
inputs = result.toTuple()->elements();
|
|
} else {
|
|
inputs = {result};
|
|
}
|
|
}
|
|
}
|
|
|
|
// call forward
|
|
auto outputs = forward(inputs);
|
|
|
|
// call forward hooks
|
|
for (const auto& hook : forward_hooks) {
|
|
auto tuple_input = c10::ivalue::Tuple::create(inputs);
|
|
auto hook_result = Method(_ivalue(), hook)({tuple_input, outputs});
|
|
if (!hook_result.isNone()) {
|
|
outputs = hook_result;
|
|
}
|
|
}
|
|
return outputs;
|
|
}
|
|
|
|
void Module::clone_method(
|
|
const Module& orig,
|
|
const Function& method,
|
|
const std::unordered_map<TypePtr, TypePtr>& type_remap) {
|
|
// type remapping - when we copy method implementations from one module
|
|
// singleton to another, we need to update the types of the self arguments
|
|
// to match the new module.
|
|
// XXX - this only handles modules that occur as variables, not modules
|
|
// that appear in aggregate types. Currently this works fine because
|
|
// we restrict how modules can be used during the lowering step. Eventually,
|
|
// we will need to decide what it means for us to 'copy' a module.
|
|
// For instance, we can copy just the state (parameters, attributes),
|
|
// but share the code. Or we can copy the code. If we choose to copy the
|
|
// code, what should we do about aggregate types that contain a module?
|
|
auto type_remap_fn = [&](TypePtr in) {
|
|
auto it = type_remap.find(in);
|
|
if (it == type_remap.end())
|
|
return in;
|
|
return it->second;
|
|
};
|
|
auto graph = method.graph()->copy();
|
|
graph->remapTypes(type_remap_fn);
|
|
auto schema = method.getSchema().cloneWithRemappedTypes(type_remap_fn);
|
|
const auto this_method_name = getNameForMethod(method.name());
|
|
auto copied =
|
|
_ivalue()->compilation_unit()->create_function(this_method_name, graph);
|
|
type()->addMethod(copied);
|
|
copied->setSchema(std::move(schema));
|
|
}
|
|
|
|
void Module::clone_method(const Module& orig, const std::string& name) {
|
|
std::unordered_map<TypePtr, TypePtr> type_remap;
|
|
std::vector<std::pair<Module, Module>> to_scan = {{orig, *this}};
|
|
while (!to_scan.empty()) {
|
|
auto entry = to_scan.back();
|
|
to_scan.pop_back();
|
|
type_remap[entry.first._ivalue()->type()] = entry.second._ivalue()->type();
|
|
for (const NameModule& s : entry.first.named_children()) {
|
|
to_scan.emplace_back(
|
|
s.value, Module(entry.second.attr(s.name).toObject()));
|
|
}
|
|
}
|
|
return clone_method(orig, orig.get_method(name).function(), type_remap);
|
|
}
|
|
|
|
Module Module::copy() const {
|
|
return Module(_ivalue()->copy());
|
|
}
|
|
|
|
Module Module::deepcopy() const {
|
|
return Module(_ivalue()->deepcopy());
|
|
}
|
|
|
|
Module Module::clone(bool inplace) const {
|
|
std::unordered_map<TypePtr, TypePtr> type_remap;
|
|
IValue::HashAliasedIValueMap memo;
|
|
const std::unordered_set<std::string> ignored_methods;
|
|
const std::unordered_set<std::string> ignored_attributes;
|
|
return clone_impl(
|
|
type_remap, inplace, memo, ignored_methods, ignored_attributes);
|
|
}
|
|
|
|
Module Module::clone(
|
|
bool inplace,
|
|
const std::unordered_set<std::string>& ignored_methods,
|
|
const std::unordered_set<std::string>& ignored_attributes) const {
|
|
std::unordered_map<TypePtr, TypePtr> type_remap;
|
|
IValue::HashAliasedIValueMap memo;
|
|
return clone_impl(
|
|
type_remap, inplace, memo, ignored_methods, ignored_attributes);
|
|
}
|
|
|
|
Module Module::clone_impl(
|
|
std::unordered_map<TypePtr, TypePtr>& type_remap,
|
|
bool inplace,
|
|
IValue::HashAliasedIValueMap memo,
|
|
const std::unordered_set<std::string>& ignored_methods,
|
|
const std::unordered_set<std::string>& ignored_attributes) const {
|
|
// Create a new _ivalue in the same compilation unit.
|
|
// Since now we have shared ClassType, we need to preserve the shared
|
|
// ClassType during cloning, so we first need to check if the type
|
|
// is already cloned, if so, we'll create a new module with the cloned
|
|
// ClassType, if not, we'll create a new module and a new ClassType.
|
|
bool type_already_cloned = type_remap.find(type()) != type_remap.end();
|
|
Module r;
|
|
if (type_already_cloned) {
|
|
// if we cloned the class type before, we'll reuse it
|
|
Module new_module(
|
|
_ivalue()->compilation_unit(), type_remap[type()]->cast<ClassType>());
|
|
r = new_module;
|
|
} else {
|
|
Module new_module(*type()->name(), _ivalue()->compilation_unit(), true);
|
|
r = new_module;
|
|
type_remap[type()] = r.type();
|
|
}
|
|
|
|
// Copy slots. If a slot is a module - recursively clone it.
|
|
size_t N = type()->numAttributes();
|
|
for (const auto i : c10::irange(N)) {
|
|
IValue s = _ivalue()->getSlot(i);
|
|
std::string attr_name = type()->getAttributeName(i);
|
|
|
|
// If this attribute is in the list of ignored attributes, skip it
|
|
// (i.e. do not clone it).
|
|
if (ignored_attributes.count(attr_name) != 0) {
|
|
continue;
|
|
}
|
|
|
|
TypePtr attr_type = type()->getAttribute(i);
|
|
if (attr_type->is_module()) {
|
|
const Module& orig = Module(s.toObject());
|
|
const std::unordered_set<std::string> empty_set;
|
|
Module cloned =
|
|
orig.clone_impl(type_remap, inplace, memo, empty_set, empty_set);
|
|
type_remap[orig.type()] = cloned.type();
|
|
// NOTE: why do we need to manually setattr on object instead of using
|
|
// register_module here? because the attr can be a module interface
|
|
// type and hold a Module object still. register_module will not let us
|
|
// correctly set up the type for this attr, so we had to do this manually.
|
|
// In the case it's an interface type, the type will be shared by the new
|
|
// cloned instance in the same compilation unit bc it only contains a list
|
|
// of functionSchema
|
|
r.type()->addOrCheckAttribute(
|
|
attr_name, attr_type->cast<ClassType>() ? cloned.type() : attr_type);
|
|
r._ivalue()->setAttr(attr_name, cloned._ivalue());
|
|
} else {
|
|
// this adds new slot and creates a new attribute for the underlying type
|
|
// if the type is not already cloned, otherwise it will only add a new
|
|
// slot and typecheck
|
|
r.register_attribute(
|
|
type()->getAttributeName(i),
|
|
attr_type,
|
|
// we'll deepcopy the IValue in non inplace option
|
|
inplace ? s : s.deepcopy(memo),
|
|
type()->is_parameter(i),
|
|
type()->is_buffer(i));
|
|
}
|
|
}
|
|
|
|
// only clone the methods if the ClassType is not cloned before
|
|
if (!type_already_cloned) {
|
|
// clone constants
|
|
for (size_t i = 0; i < type()->numConstants(); ++i) {
|
|
r.type()->addConstant(type()->getConstantName(i), type()->getConstant(i));
|
|
}
|
|
// clone methods, remapping the types to the cloned ones.
|
|
for (auto& fn : type()->methods()) {
|
|
// If this method is not in the list of ignored methods, clone it.
|
|
if (ignored_methods.count(fn->name()) == 0) {
|
|
assert_ignored_methods_not_called(fn, ignored_methods);
|
|
assert_ignored_attributes_not_referenced(fn, ignored_attributes);
|
|
r.clone_method(*this, *fn, type_remap);
|
|
}
|
|
}
|
|
|
|
// Execute __setstate__(__getstate__()) to initialize custom class members.
|
|
if (auto setstate_method = r.find_method("__setstate__")) {
|
|
auto getstate_method = r.find_method("__getstate__");
|
|
TORCH_INTERNAL_ASSERT(getstate_method, "expect __getstate__");
|
|
auto state = (*getstate_method)(Stack{});
|
|
(*setstate_method)(Stack{state});
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
|
|
void Module::train(bool on) {
|
|
for (Module m : modules()) {
|
|
if (auto slot = m._ivalue()->type()->findAttributeSlot("training")) {
|
|
m._ivalue()->setSlot(*slot, on);
|
|
} else {
|
|
TORCH_INTERNAL_ASSERT("'training' attribute not found");
|
|
}
|
|
}
|
|
}
|
|
|
|
IValue Module::create_class(const c10::QualifiedName& name, Stack stack) const {
|
|
// Look up the class
|
|
const auto classType =
|
|
_ivalue()->compilation_unit()->get_class(c10::QualifiedName(name));
|
|
if (!classType) {
|
|
AT_ERROR(
|
|
"Could not find class with name: '",
|
|
name.qualifiedName(),
|
|
"' in module.");
|
|
}
|
|
|
|
// Create a bare object with correct number of slots
|
|
const size_t numAttrs = classType->numAttributes();
|
|
auto obj = c10::ivalue::Object::create(
|
|
c10::StrongTypePtr(_ivalue()->compilation_unit(), classType), numAttrs);
|
|
|
|
// Invoke the `__init__()` of the class with the arguments provided.
|
|
Stack stackWithSelf = {obj};
|
|
for (auto& arg : stack) {
|
|
stackWithSelf.push_back(std::move(arg));
|
|
}
|
|
// Note: following Python, `__init__()` modifies its first parameter in-place
|
|
// and returns nothing.
|
|
classType->getMethod("__init__").operator()(std::move(stackWithSelf));
|
|
|
|
return obj;
|
|
}
|
|
|
|
Module freeze(
|
|
const Module& module,
|
|
c10::optional<std::vector<std::string>> preserved_attrs,
|
|
bool optimize_numerics) {
|
|
TORCH_CHECK(
|
|
!module.hasattr("training") || !module.is_training(),
|
|
"Freezing is currently only implemented for modules in eval mode. Please call .eval() before freezing");
|
|
|
|
Module out_mod = freeze_module(
|
|
module, preserved_attrs.value_or(std::vector<std::string>({})));
|
|
auto graph = module.get_method("forward").graph();
|
|
OptimizeFrozenGraph(graph, optimize_numerics);
|
|
return out_mod;
|
|
}
|
|
|
|
Module optimize_for_inference(Module& module) {
|
|
// not frozen yet
|
|
if (module._ivalue()->type()->hasAttribute("training")) {
|
|
auto mod = freeze(module, {}, true);
|
|
}
|
|
|
|
auto graph = module.get_method("forward").graph();
|
|
FuseFrozenConvAddRelu(graph);
|
|
ConvertFrozenOpsToMKLDNN(graph);
|
|
return module;
|
|
}
|
|
|
|
buffer_list Module::buffers(bool recurse) const {
|
|
return buffer_list(*this, recurse, /*return_module=*/false);
|
|
}
|
|
named_buffer_list Module::named_buffers(bool recurse) const {
|
|
return named_buffer_list(*this, recurse, /*return_module=*/false);
|
|
}
|
|
|
|
module_list Module::children() const {
|
|
return module_list(*this, /*recurse=*/false, /*return_module=*/false);
|
|
}
|
|
named_module_list Module::named_children() const {
|
|
return named_module_list(*this, /*recurse=*/false, /*return_module=*/false);
|
|
}
|
|
module_list Module::modules() const {
|
|
return module_list(*this, /*recurse=*/true, /*return_module=*/true);
|
|
}
|
|
named_module_list Module::named_modules() const {
|
|
return named_module_list(*this, /*recurse=*/true, /*return_module=*/true);
|
|
}
|
|
|
|
parameter_list Module::parameters(bool recurse) const {
|
|
return parameter_list(*this, recurse, /*return_module=*/false);
|
|
}
|
|
named_parameter_list Module::named_parameters(bool recurse) const {
|
|
return named_parameter_list(*this, recurse, /*return_module=*/false);
|
|
}
|
|
|
|
attribute_list Module::attributes(bool recurse) const {
|
|
return attribute_list(*this, recurse, /*return_module=*/false);
|
|
}
|
|
named_attribute_list Module::named_attributes(bool recurse) const {
|
|
return named_attribute_list(*this, recurse, /*return_module=*/false);
|
|
}
|
|
|
|
void Module::apply(const std::function<void(Module&)>& fn) {
|
|
for (Module s : modules()) {
|
|
fn(s);
|
|
}
|
|
}
|
|
|
|
std::string Module::dump_to_str(
|
|
bool print_method_bodies,
|
|
bool print_attr_values,
|
|
bool print_param_values) const {
|
|
std::stringstream ss;
|
|
std::stringstream parameters_ss;
|
|
std::stringstream attributes_ss;
|
|
std::stringstream methods_ss;
|
|
std::stringstream submodules_ss;
|
|
|
|
for (const NameTensor& p : named_parameters(/*recurse=*/false)) {
|
|
parameters_ss << p.name << " = ";
|
|
if (print_param_values) {
|
|
parameters_ss << p.value << std::endl;
|
|
} else {
|
|
parameters_ss << "..." << std::endl;
|
|
}
|
|
}
|
|
|
|
for (const NameValue& p : named_attributes(/*recurse=*/false)) {
|
|
attributes_ss << p.name << " = ";
|
|
if (!p.value.isTensor() || print_attr_values) {
|
|
attributes_ss << p.value << std::endl;
|
|
} else {
|
|
attributes_ss << "..." << std::endl;
|
|
}
|
|
}
|
|
|
|
for (const Method& method : get_methods()) {
|
|
methods_ss << " method " << method.name() << " {" << std::endl;
|
|
if (print_method_bodies) {
|
|
methods_ss << torch::jit::jit_log_prefix(
|
|
" ", method.graph()->toString())
|
|
<< std::endl;
|
|
}
|
|
methods_ss << " }" << std::endl;
|
|
}
|
|
|
|
ss << "module " << type()->name()->qualifiedName() << " {" << std::endl;
|
|
ss << " parameters {" << std::endl;
|
|
ss << torch::jit::jit_log_prefix(" ", parameters_ss.str());
|
|
ss << " }" << std::endl;
|
|
ss << " attributes {" << std::endl;
|
|
ss << torch::jit::jit_log_prefix(" ", attributes_ss.str());
|
|
ss << " }" << std::endl;
|
|
ss << " methods {" << std::endl;
|
|
ss << torch::jit::jit_log_prefix(" ", methods_ss.str());
|
|
ss << " }" << std::endl;
|
|
ss << " submodules {" << std::endl;
|
|
for (const NameModule& s : named_children()) {
|
|
// We do 4 spaces here, because one level of indentation comes from
|
|
// 'submodules' scope and the other one goes from a specific submodule we're
|
|
// printing.
|
|
ss << torch::jit::jit_log_prefix(
|
|
" ",
|
|
s.value.dump_to_str(
|
|
print_method_bodies, print_attr_values, print_param_values));
|
|
}
|
|
ss << " }" << std::endl;
|
|
ss << "}" << std::endl;
|
|
|
|
return ss.str();
|
|
}
|
|
|
|
void Module::dump(
|
|
bool print_method_bodies = true,
|
|
bool print_attr_values = true,
|
|
bool print_param_values = true) const {
|
|
std::cout << dump_to_str(
|
|
print_method_bodies, print_attr_values, print_param_values)
|
|
<< std::endl;
|
|
}
|
|
|
|
} // namespace jit
|
|
} // namespace torch
|
|
|
|
namespace c10 {
|
|
|
|
torch::jit::Module IValue::toModule() const {
|
|
return torch::jit::Module(toObject());
|
|
}
|
|
bool IValue::isModule() const {
|
|
return isObject() && toObjectRef().type()->is_module();
|
|
}
|
|
|
|
} // namespace c10
|