mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
This patch effectively ignores traceable_tensor_subclasses, allowing Dynamo to always try tracing into the `__torch_function__` of tensor subclass. This helps us with 2 things: 1. allowing users to directly benefit from better compilation of tensor subclass, by just upgrading pytorch, without having to change legacy library code (see earlier patches in the stack for examples). 2. potentially exposing more issues in compiling tensor subclass, so we can get signals and improve them. As a consequence, it exposed and fixes 2 subtle bugs: 1. In `build_torch_function_fn`, we could get `torch._C._disabled_torch_function_impl` because we have a `Parameter` subclass without `__torch_function__` override or if we have a tensor subclass with `__torch_dispatch__` override. We graph break on this for now, and plan to add support -- the logic for simulating `torch._C._disabled_torch_function_impl` is already in `SuperVariable`, we just need to reuse it. 2. Sometimes we create `SyntheticLocalSource` and need to remove all the guards installed on it, but we only removed the ones whose source _is_ the created synthetic source `s`, but forgot about chained source like `s.foo`, this showed up as `SYNTHETIC_LOCAL['tmp_0'].__torch_function__.__func__`. Differential Revision: [D71906141](https://our.internmc.facebook.com/intern/diff/D71906141) Pull Request resolved: https://github.com/pytorch/pytorch/pull/149792 Approved by: https://github.com/jansel, https://github.com/mlazos ghstack dependencies: #149482, #149483, #149484
1580 lines
57 KiB
Python
1580 lines
57 KiB
Python
# mypy: ignore-errors
|
|
|
|
"""
|
|
This module contains variable tracker classes for handling tensors and tensor-related operations in Dynamo.
|
|
|
|
The main class is TensorVariable which represents torch.Tensor inputs and intermediate values in the FX graph.
|
|
It handles tensor operations, method calls, and maintains metadata about tensor properties like dtype, device, etc.
|
|
|
|
Other key classes include:
|
|
- SymNodeVariable: Represents symbolic scalars (int/float/bool) used for size computation and unspecialized values
|
|
- NumpyNdarrayVariable: Handles numpy array interop through torch._numpy
|
|
- UnspecializedPythonVariable: Represents unspecialized Python numeric values as 1-element tensors
|
|
- TensorSubclassVariable: Handles tensor subclasses with __torch_function__ overrides
|
|
- UntypedStorageVariable: Represents tensor storage objects
|
|
- DataPtrVariable: Handles tensor data pointer operations
|
|
|
|
These classes work together to track tensor operations and properties during Dynamo's tracing process.
|
|
"""
|
|
|
|
import functools
|
|
import inspect
|
|
import logging
|
|
import operator
|
|
import textwrap
|
|
import traceback
|
|
import types
|
|
import unittest
|
|
from typing import TYPE_CHECKING
|
|
|
|
import sympy
|
|
|
|
import torch._numpy as tnp
|
|
import torch.fx
|
|
import torch.random
|
|
from torch._dynamo import compiled_autograd
|
|
from torch._subclasses.meta_utils import is_sparse_any
|
|
from torch.fx.experimental.symbolic_shapes import (
|
|
guard_scalar,
|
|
GuardOnDataDependentSymNode,
|
|
has_free_symbols,
|
|
is_symbolic,
|
|
SymTypes,
|
|
)
|
|
from torch.utils._python_dispatch import is_traceable_wrapper_subclass
|
|
|
|
from .. import config, graph_break_hints, variables
|
|
from .._trace_wrapped_higher_order_op import trace_wrapped
|
|
from ..exc import (
|
|
unimplemented,
|
|
unimplemented_v2,
|
|
UnknownPropertiesDuringBackwardTrace,
|
|
UserError,
|
|
UserErrorType,
|
|
)
|
|
from ..external_utils import call_hook_from_backward_state
|
|
from ..guards import GuardBuilder, install_guard
|
|
from ..source import AttrSource
|
|
from ..utils import (
|
|
fqn,
|
|
get_custom_getattr,
|
|
get_fake_value,
|
|
get_real_value,
|
|
guard_if_dyn,
|
|
object_has_getattribute,
|
|
product,
|
|
proxy_args_kwargs,
|
|
set_example_value,
|
|
tensortype_to_dtype,
|
|
)
|
|
from .base import AttributeMutationNew, VariableTracker
|
|
from .constant import ConstantVariable
|
|
from .lists import SizeVariable
|
|
from .user_defined import UserDefinedClassVariable
|
|
|
|
|
|
try:
|
|
import numpy as np
|
|
except ModuleNotFoundError:
|
|
np = None
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from torch._dynamo.symbolic_convert import InstructionTranslator
|
|
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
# Ops that allow tensor <op> tensor
|
|
supported_tensor_comparison_ops = {
|
|
">": operator.gt,
|
|
"<": operator.lt,
|
|
">=": operator.ge,
|
|
"<=": operator.le,
|
|
"==": operator.eq,
|
|
"!=": operator.ne,
|
|
"is": operator.is_,
|
|
"is not": operator.is_not,
|
|
}
|
|
# Ops that allow tensor <op> None
|
|
supported_const_comparison_ops = {
|
|
"is": operator.is_,
|
|
"is not": operator.is_not,
|
|
"==": operator.eq,
|
|
"!=": operator.ne,
|
|
}
|
|
supported_comparison_ops = {
|
|
**supported_tensor_comparison_ops,
|
|
**supported_const_comparison_ops,
|
|
}
|
|
supported_tensor_comparison_op_values = dict.fromkeys(
|
|
supported_tensor_comparison_ops.values()
|
|
)
|
|
supported_const_comparison_op_values = dict.fromkeys(
|
|
supported_const_comparison_ops.values()
|
|
)
|
|
|
|
|
|
def is_bound_tensor_method(value):
|
|
return (
|
|
callable(value)
|
|
and not torch._dynamo.utils.object_has_getattribute(value)
|
|
and hasattr(value, "__self__")
|
|
and isinstance(value.__self__, torch.Tensor)
|
|
and getattr(value.__self__, value.__name__, None)
|
|
)
|
|
|
|
|
|
class TensorVariable(VariableTracker):
|
|
"""A torch.Tensor input or an intermediate value in the FX graph"""
|
|
|
|
_nonvar_fields = {
|
|
"proxy",
|
|
"dtype",
|
|
"device",
|
|
"layout",
|
|
"ndim",
|
|
"size",
|
|
"stride",
|
|
"requires_grad",
|
|
"is_quantized",
|
|
"is_contiguous",
|
|
"is_nested",
|
|
"is_sparse",
|
|
"class_type",
|
|
"specialized_value",
|
|
"_is_name_set",
|
|
*VariableTracker._nonvar_fields,
|
|
}
|
|
|
|
def get_real_value(self):
|
|
"""
|
|
Get the actual value represented by this variable if computation is run
|
|
using the user-provided inputs.
|
|
NOTE: this runs actual tensor computation and may be
|
|
slow and memory-intensive.
|
|
"""
|
|
return get_real_value(self.proxy.node, self.proxy.tracer)
|
|
|
|
def __init__(
|
|
self,
|
|
proxy: torch.fx.Proxy,
|
|
*,
|
|
dtype,
|
|
device,
|
|
layout,
|
|
ndim,
|
|
requires_grad,
|
|
is_nested,
|
|
is_quantized,
|
|
is_sparse,
|
|
class_type,
|
|
has_grad_fn,
|
|
_size=None,
|
|
stride=None,
|
|
is_contiguous=None,
|
|
_is_name_set=None,
|
|
**kwargs,
|
|
) -> None:
|
|
super().__init__(**kwargs)
|
|
self.proxy = proxy
|
|
self.dtype = dtype
|
|
self.device = device
|
|
self.layout = layout
|
|
self.ndim = ndim
|
|
self._size = _size # this is accessed as a property for validation
|
|
self.stride = stride
|
|
self.requires_grad = requires_grad
|
|
self.is_quantized = is_quantized
|
|
self.is_contiguous = is_contiguous
|
|
self.is_nested = is_nested
|
|
self.is_sparse = is_sparse
|
|
self.class_type = class_type
|
|
self.has_grad_fn = has_grad_fn
|
|
if _is_name_set is None:
|
|
# no need to rename inputs
|
|
_is_name_set = self.proxy.node.op == "placeholder"
|
|
self._is_name_set: bool = _is_name_set
|
|
|
|
def debug_repr(self):
|
|
# TODO: strip off fake tensor from repr here
|
|
return repr(self.proxy.node.meta["example_value"])
|
|
|
|
def as_proxy(self):
|
|
return self.proxy
|
|
|
|
def python_type(self):
|
|
return self.class_type
|
|
|
|
@staticmethod
|
|
def specialize(value: torch.Tensor):
|
|
props = {
|
|
"dtype": value.dtype,
|
|
"device": value.device,
|
|
"layout": value.layout,
|
|
"ndim": int(value.ndim),
|
|
"requires_grad": value.requires_grad,
|
|
"is_nested": value.is_nested,
|
|
"is_quantized": value.is_quantized,
|
|
"is_sparse": value.is_sparse,
|
|
"class_type": type(value),
|
|
}
|
|
try:
|
|
props["has_grad_fn"] = value.grad_fn is not None
|
|
except Exception:
|
|
# Workaround for issues with create_parameter_op in Dynamo. Reading
|
|
# grad_fn should never cause an issue.
|
|
props["has_grad_fn"] = False
|
|
|
|
if is_sparse_any(value) and not has_free_symbols(value):
|
|
props["_size"] = tuple(
|
|
[int(s) if is_symbolic(s) else s for s in value.size()]
|
|
)
|
|
elif not has_free_symbols(value):
|
|
# this is a fully static shape, and the keys on props here inform specialization.
|
|
# We have to cast to int here, because these might get accessed as ConstantVariable, which has
|
|
# a strict no-symint policy. If we got here due to not having free symbols, this is a known constant
|
|
# already. We could remove the discrepancy here, by having ConstantVariable be more permissive for
|
|
# constant backed SymInts, but that assert being strict has led to some good signal in hunting bugs, and
|
|
# I'd like to keep it around for now.
|
|
props["_size"] = tuple(
|
|
# the non is_symbolic case applies to the jagged layout
|
|
# NestedTensor case as singleton ints are not symbolic
|
|
[int(s) if is_symbolic(s) else s for s in value.size()]
|
|
)
|
|
props["stride"] = tuple(value.stride())
|
|
if torch._C._functorch.is_batchedtensor(value):
|
|
# Batched tensors does not support contiguity patterns, so
|
|
# we refrain from computing the `is_contiguous` property
|
|
props["is_contiguous"] = None
|
|
else:
|
|
props["is_contiguous"] = tuple(
|
|
[
|
|
x
|
|
for x in torch._prims_common._memory_formats
|
|
if value.is_contiguous(memory_format=x)
|
|
]
|
|
)
|
|
return props
|
|
|
|
def dynamic_getattr(self, tx: "InstructionTranslator", name):
|
|
fake_val = self.proxy.node.meta["example_value"]
|
|
# For getattrs on tensors without sources,
|
|
# we can do better than the default (creating a GetAttrVariable)
|
|
# if:
|
|
# (1) the tensor is a traceable tensor subclass
|
|
# (2) We are getattr'ing an inner tensor from that subclass
|
|
if not self.source and is_traceable_wrapper_subclass(fake_val):
|
|
attrs, _ctx = fake_val.__tensor_flatten__()
|
|
proxy = getattr(self.as_proxy(), name)
|
|
example_value = getattr(fake_val, name)
|
|
if name in attrs:
|
|
# attrs returned from tensor_flatten are always tensors
|
|
assert isinstance(example_value, torch.Tensor)
|
|
from .builder import wrap_fx_proxy
|
|
|
|
return wrap_fx_proxy(tx=tx, proxy=proxy, example_value=example_value)
|
|
# any other attributes on the subclass (that are not methods)
|
|
# are assumed to be constant metadata.
|
|
elif not callable(example_value):
|
|
return VariableTracker.build(tx, example_value)
|
|
|
|
if not (self.source and self.source.subguards_allowed()):
|
|
raise NotImplementedError
|
|
|
|
# For local source, we associate the real value. We use this real value
|
|
# for implementing getattr fallthrough on the variable tracker base class.
|
|
|
|
# Note - this scope construction is mirrored in guards
|
|
# A subsequent PR will introduce a util.
|
|
scope = {"L": tx.output.local_scope, "G": tx.output.global_scope}
|
|
try:
|
|
# We raise in case we get a typerror bug w/ SuperSource.
|
|
# SuperSource has bugs in it atm, and can produce code like
|
|
# eval("super(L['mod'].model.model.encoder.embed_positions.forward__class__,
|
|
# L['mod'].model.model.encoder.embed_positions)", scope)
|
|
# Which is incorrect, and violates the invariant that all sources should be eval()-able against the scope.
|
|
_input_associated_real_value = eval(self.source.name(), scope)
|
|
except Exception as exc:
|
|
raise NotImplementedError from exc
|
|
|
|
if _input_associated_real_value is None:
|
|
raise NotImplementedError
|
|
|
|
if object_has_getattribute(_input_associated_real_value):
|
|
raise NotImplementedError
|
|
|
|
if get_custom_getattr(_input_associated_real_value):
|
|
raise NotImplementedError
|
|
|
|
real_value = getattr(_input_associated_real_value, name)
|
|
|
|
attr_source = AttrSource(self.source, name)
|
|
install_guard(attr_source.make_guard(GuardBuilder.HASATTR))
|
|
|
|
# Typically we'd want to use variable builder here
|
|
# but unfortunately id(real_value.__self__) is not id(<original value>)
|
|
if is_bound_tensor_method(real_value):
|
|
from .misc import GetAttrVariable
|
|
|
|
return GetAttrVariable(
|
|
self, name, source=attr_source, py_type=type(real_value)
|
|
)
|
|
|
|
return VariableTracker.build(tx, real_value, attr_source)
|
|
|
|
def method_attr_ndim(self, tx):
|
|
if self.ndim is not None:
|
|
return ConstantVariable.create(self.ndim)
|
|
else:
|
|
return self.call_method(tx, "dim", [], {})
|
|
|
|
def method_attr_dtype(self, tx):
|
|
if self.dtype is not None:
|
|
return ConstantVariable.create(self.dtype)
|
|
|
|
def method_attr_device(self, tx):
|
|
if self.device is not None:
|
|
return ConstantVariable.create(self.device)
|
|
|
|
def method_attr_layout(self, tx):
|
|
if self.layout is not None:
|
|
return ConstantVariable.create(self.layout)
|
|
|
|
def method_attr_is_cuda(self, tx):
|
|
if self.device is not None:
|
|
return ConstantVariable.create(self.device.type == "cuda")
|
|
|
|
def method_attr_shape(self, tx):
|
|
if self.valid_size():
|
|
sizes = [variables.ConstantVariable.create(x) for x in self.size]
|
|
return SizeVariable(sizes)
|
|
else:
|
|
return self.call_method(tx, "size", [], {})
|
|
|
|
def method_attr_requires_grad(self, tx):
|
|
if self.requires_grad is not None:
|
|
return ConstantVariable.create(self.requires_grad)
|
|
|
|
def method_attr_is_quantized(self, tx):
|
|
if self.is_quantized is not None:
|
|
return ConstantVariable.create(self.is_quantized)
|
|
|
|
def method_attr_is_sparse(self, tx):
|
|
if self.is_sparse is not None:
|
|
return ConstantVariable.create(self.is_sparse)
|
|
|
|
def method_attr_is_nested(self, tx):
|
|
if self.is_nested is not None:
|
|
return ConstantVariable.create(self.is_nested)
|
|
|
|
def method_attr_retain_grad(self, tx):
|
|
unimplemented("retain_grad does not work with AOTDispatcher")
|
|
|
|
def method_attr_data(self, tx):
|
|
return variables.TorchInGraphFunctionVariable(
|
|
torch._C._autograd._get_data_attr
|
|
).call_function(tx, [self], {})
|
|
|
|
def method_attr_grad_fn(self, tx):
|
|
if self.has_grad_fn:
|
|
unimplemented("TensorVariable has a grad_fn")
|
|
else:
|
|
return variables.ConstantVariable(None)
|
|
|
|
def method_attr__version(self, tx):
|
|
from ..tensor_version_op import _tensor_version
|
|
|
|
return variables.TorchInGraphFunctionVariable(_tensor_version).call_function(
|
|
tx, [self], {}
|
|
)
|
|
|
|
def call_obj_hasattr(self, tx: "InstructionTranslator", name):
|
|
from . import GetAttrVariable
|
|
from .builtin import BuiltinVariable
|
|
|
|
try:
|
|
var = BuiltinVariable(getattr).call_function(
|
|
tx, [self, ConstantVariable(name)], {}
|
|
)
|
|
# in the event that TensorVariable returns NotImplemented
|
|
# BuiltinVariable.call_getattr returns GetAttrVariable
|
|
ret_val = not isinstance(var, GetAttrVariable)
|
|
except AttributeError:
|
|
ret_val = False
|
|
|
|
if self.source:
|
|
install_guard(
|
|
AttrSource(self.source, name).make_guard(GuardBuilder.HASATTR)
|
|
)
|
|
|
|
return ConstantVariable(ret_val)
|
|
|
|
def var_getattr(self, tx: "InstructionTranslator", name):
|
|
if self.is_strict_mode(tx):
|
|
if name in self._strict_mode_banned_ops():
|
|
unimplemented(
|
|
f"Getattr invocation {name} in strict mode is not supported"
|
|
)
|
|
elif name in self._strict_mode_conditional_banned_ops():
|
|
raise UnknownPropertiesDuringBackwardTrace(
|
|
f"Unknown property {name} during speculating backward, dynamo will insert contiguous call ahead and speculate it again" # noqa: B950
|
|
)
|
|
|
|
if name == "__class__":
|
|
return UserDefinedClassVariable(self.python_type())
|
|
|
|
handler = getattr(self, f"method_attr_{name}", None)
|
|
result = handler(tx) if handler is not None else None
|
|
|
|
# Add a guard for type matching, these guards are checked before tensor guards
|
|
# In some cases, a <tensor>.<attr> guard can be evaluated first, and break if
|
|
# <tensor> is later changed to another type
|
|
if (
|
|
result is not None
|
|
and self.source
|
|
and self.source.subguards_allowed()
|
|
and not (
|
|
name not in ("grad", "requires_grad") and result.is_python_constant()
|
|
)
|
|
):
|
|
install_guard(self.make_guard(GuardBuilder.TYPE_MATCH))
|
|
result.source = AttrSource(self.source, name)
|
|
|
|
# It's hard to get inplace view (metadata mutation) on graph input work properly across
|
|
# dynamo/aot/inductor, just fall back.
|
|
if self.source is not None and hasattr(torch.ops.aten, name):
|
|
fn = getattr(torch.ops.aten, name)
|
|
if (
|
|
hasattr(fn, "overloads")
|
|
and hasattr(fn, fn.overloads()[0])
|
|
and torch.Tag.inplace_view in getattr(fn, fn.overloads()[0]).tags
|
|
):
|
|
# Delay the graph break to the actual call of unsqueeze_/resize_/resize_as_ etc.
|
|
return variables.misc.DelayGraphBreakVariable(
|
|
source=AttrSource(self.source, name),
|
|
msg="Getting an inplace view on a graph input is not supported",
|
|
)
|
|
|
|
# For attributes (not methods) that were not caught in the special handling above,
|
|
# (e.g. tensor.real), we handle these generically, assuming that the output type is
|
|
# a tensor.
|
|
if result is None and name != "grad":
|
|
|
|
def try_generic_attr_handling():
|
|
from .builder import wrap_fx_proxy
|
|
from .misc import GetAttrVariable
|
|
|
|
try:
|
|
static_attr = inspect.getattr_static(torch.Tensor, name)
|
|
except AttributeError:
|
|
return None
|
|
|
|
# Make sure this is an attribute, not a method.
|
|
# type(torch.Tensor.H) should be "getset_descriptor"
|
|
# This is a because of CPython implementation, see THPVariableType:
|
|
# these attributes are implemented under tp_getset, which appear
|
|
# as `getset_descriptor`s, (compared to, say, methods which appear
|
|
# as `method_descriptor`s)
|
|
if type(static_attr) != types.GetSetDescriptorType:
|
|
return None
|
|
|
|
proxy = GetAttrVariable.create_getattr_proxy(self.as_proxy(), name)
|
|
if self.source is not None:
|
|
return wrap_fx_proxy(
|
|
tx=tx, proxy=proxy, source=AttrSource(self.source, name)
|
|
)
|
|
else:
|
|
return wrap_fx_proxy(tx=tx, proxy=proxy)
|
|
|
|
result = try_generic_attr_handling()
|
|
|
|
if result is None:
|
|
result = self.dynamic_getattr(tx, name)
|
|
|
|
if result is None:
|
|
raise NotImplementedError
|
|
return result
|
|
|
|
def call_id(self, tx):
|
|
if not self.source:
|
|
unimplemented("call_id not supported for sourceless TensorVariable")
|
|
|
|
# For local source, we associate the real value. We use this real value
|
|
scope = {"L": tx.output.local_scope, "G": tx.output.global_scope}
|
|
try:
|
|
_input_associated_real_value = eval(self.source.name(), scope)
|
|
except Exception as exc:
|
|
unimplemented(f"error getting associated real value: {exc}")
|
|
|
|
if _input_associated_real_value is None:
|
|
unimplemented("call_id without associated real value")
|
|
|
|
install_guard(self.source.make_guard(GuardBuilder.ID_MATCH))
|
|
id_value = id(_input_associated_real_value)
|
|
return ConstantVariable.create(id_value)
|
|
|
|
def has_unpack_var_sequence(self, tx):
|
|
return self.ndim > 0
|
|
|
|
def unpack_var_sequence(self, tx: "InstructionTranslator", idxes=None):
|
|
from .builder import wrap_fx_proxy_cls
|
|
|
|
if self.valid_size():
|
|
size_len = len(self.size)
|
|
else:
|
|
size_var = self.call_method(tx, "size", [], {})
|
|
assert isinstance(size_var, SizeVariable)
|
|
size_len = len(size_var.items)
|
|
# Ensure we don't unpack a scalar tensor.
|
|
assert size_len != 0, "Can't unpack scalar tensors."
|
|
|
|
if self.valid_size():
|
|
length = self.size[0]
|
|
else:
|
|
dyn_length = self.call_method(tx, "size", [ConstantVariable.create(0)], {})
|
|
# SymNodeVariable for symbolic sizes, ConstantVariable for constants OR values produced through
|
|
# symbolic_shapes, but that end up as int/sympy.Integer
|
|
assert isinstance(dyn_length, (SymNodeVariable, ConstantVariable))
|
|
if isinstance(dyn_length, SymNodeVariable):
|
|
length = dyn_length.evaluate_expr(tx.output)
|
|
else:
|
|
length = dyn_length.value
|
|
|
|
if idxes is None:
|
|
idxes = range(length)
|
|
else:
|
|
assert len(idxes) == length, (
|
|
f"Can't unpack a tensor of {length} rows into a tuple of {len(idxes)} elements."
|
|
)
|
|
return [
|
|
wrap_fx_proxy_cls(target_cls=type(self), tx=tx, proxy=self.as_proxy()[i])
|
|
for i in idxes
|
|
]
|
|
|
|
def valid_size(self):
|
|
return self._size is not None
|
|
|
|
@property
|
|
def size(self):
|
|
assert self._size is not None, "accessing None size in TensorVariable"
|
|
return self._size
|
|
|
|
def _strict_mode_banned_ops(self):
|
|
return torch._dynamo.config._autograd_backward_strict_mode_banned_ops
|
|
|
|
def _strict_mode_conditional_banned_ops(self):
|
|
return (
|
|
torch._dynamo.config._autograd_backward_strict_mode_conditional_banned_ops
|
|
)
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: "list[VariableTracker]",
|
|
kwargs: "dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
from .builder import SourcelessBuilder, VariableBuilder
|
|
from .torch_function import can_dispatch_torch_function, dispatch_torch_function
|
|
|
|
if self.is_strict_mode(tx) and name in self._strict_mode_banned_ops():
|
|
unimplemented(f"Illegal method invocation {name} in strict mode")
|
|
|
|
# Only override builtin tensor methods
|
|
# The user can manually add override handling
|
|
# with a decorator for other methods (e.g. a dispatch subclass with other methods)
|
|
is_base_tensor_method = False
|
|
try:
|
|
inspect.getattr_static(torch.Tensor, name)
|
|
is_base_tensor_method = True
|
|
except AttributeError:
|
|
is_base_tensor_method = False
|
|
|
|
if (
|
|
can_dispatch_torch_function(tx, tuple([self] + list(args)), kwargs)
|
|
and is_base_tensor_method
|
|
):
|
|
if self.source:
|
|
func_var = VariableBuilder(
|
|
tx, AttrSource(AttrSource(self.source, "__class__"), name)
|
|
)(inspect.getattr_static(torch.Tensor, name))
|
|
else:
|
|
func_var = SourcelessBuilder.create(tx, getattr(torch.Tensor, name))
|
|
|
|
return dispatch_torch_function(
|
|
tx, func_var, tuple([self] + list(args)), kwargs
|
|
)
|
|
|
|
"""
|
|
Dispatch to a method-specific handler defined below. If the
|
|
handler returns None (or doesn't exist) we put the method call
|
|
in the graph.
|
|
"""
|
|
|
|
# This is seen in inspect signature where we check if the value is a default value
|
|
if name == "__eq__" and isinstance(args[0], UserDefinedClassVariable):
|
|
return variables.ConstantVariable(False)
|
|
|
|
try:
|
|
handler_method = getattr(self, f"method_{name}")
|
|
except AttributeError:
|
|
pass
|
|
else:
|
|
try:
|
|
result = handler_method(*args, **kwargs)
|
|
if result:
|
|
return result
|
|
except TypeError as e:
|
|
unimplemented(f"unhandled args for {name}: {e}")
|
|
|
|
from .builder import wrap_fx_proxy
|
|
|
|
return wrap_fx_proxy(
|
|
tx,
|
|
tx.output.create_proxy(
|
|
"call_method",
|
|
name,
|
|
*proxy_args_kwargs([self, *args], kwargs),
|
|
),
|
|
)
|
|
|
|
def method_size(self, *args, **kwargs):
|
|
return self._method_size_stride("size", *args, **kwargs)
|
|
|
|
def method_stride(self, *args, **kwargs):
|
|
return self._method_size_stride("stride", *args, **kwargs)
|
|
|
|
def _method_size_stride(self, name, dim=None):
|
|
dim = guard_if_dyn(dim)
|
|
|
|
def make_const_size_variable(x, **options):
|
|
return SizeVariable(
|
|
[ConstantVariable.create(y, **options) for y in x], **options
|
|
)
|
|
|
|
RetVariable = (
|
|
make_const_size_variable if name == "size" else ConstantVariable.create
|
|
)
|
|
|
|
# Technically, this should not be necessary, but I'm including it
|
|
# for enhanced BC, in case example_value is sometimes not set
|
|
# (it really should always be set though!)
|
|
if name != "size":
|
|
r = getattr(self, name)
|
|
elif name == "size" and self.valid_size():
|
|
r = self.size
|
|
else:
|
|
r = None
|
|
|
|
if r is not None:
|
|
if dim is None:
|
|
return RetVariable(r)
|
|
else:
|
|
return ConstantVariable.create(r[dim])
|
|
|
|
# It might still be constant! Consult the fake tensor and see
|
|
if (fake := self.proxy.node.meta.get("example_value")) is not None:
|
|
if dim is None:
|
|
fake_r = getattr(fake, name)()
|
|
if not has_free_symbols(fake_r):
|
|
# int conversion for safety, in case a SymInt refined
|
|
# to constant
|
|
return RetVariable(tuple(int(r) for r in fake_r))
|
|
else:
|
|
fake_r = getattr(fake, name)(dim)
|
|
if not has_free_symbols(fake_r):
|
|
return ConstantVariable.create(int(fake_r))
|
|
|
|
def method_numel(self):
|
|
if self.valid_size():
|
|
return ConstantVariable.create(product(self.size))
|
|
|
|
# It might still be constant! Consult the fake tensor and see
|
|
if (fake := self.proxy.node.meta.get("example_value")) is not None:
|
|
fake_r = fake.numel()
|
|
if not has_free_symbols(fake_r):
|
|
return ConstantVariable.create(int(fake_r))
|
|
|
|
method_nelement = method_numel
|
|
|
|
def method_dim(self):
|
|
if self.ndim is not None:
|
|
return ConstantVariable.create(self.ndim)
|
|
|
|
method_ndimension = method_dim
|
|
|
|
def method_is_floating_point(self):
|
|
if self.dtype is not None:
|
|
return ConstantVariable.create(self.dtype.is_floating_point)
|
|
|
|
def method_is_inference(self):
|
|
if config.fake_tensor_disable_inference_mode:
|
|
unimplemented_v2(
|
|
gb_type="Encountered tensor.is_inference() during tracing",
|
|
context="",
|
|
explanation="tensor.is_inference() is not supported",
|
|
hints=[
|
|
*graph_break_hints.FUNDAMENTAL,
|
|
*graph_break_hints.INFERENCE_MODE,
|
|
],
|
|
)
|
|
if (fake := self.proxy.node.meta.get("example_value")) is not None:
|
|
return ConstantVariable.create(fake.is_inference())
|
|
|
|
def method_is_complex(self):
|
|
if self.dtype is not None:
|
|
return ConstantVariable.create(self.dtype.is_complex)
|
|
|
|
def method_is_contiguous(self, memory_format=None):
|
|
memory_format = (
|
|
memory_format.as_python_constant()
|
|
if memory_format is not None
|
|
else torch.contiguous_format
|
|
)
|
|
if self.is_contiguous is not None:
|
|
return ConstantVariable.create(memory_format in self.is_contiguous)
|
|
elif (fake := self.proxy.node.meta.get("example_value")) is not None:
|
|
return ConstantVariable.create(
|
|
fake.is_contiguous(memory_format=memory_format)
|
|
)
|
|
|
|
def method_type(self, dtype=None, non_blocking=False, **kwargs):
|
|
if (
|
|
dtype is None
|
|
and self.dtype is not None
|
|
and isinstance(self.device, torch.device)
|
|
):
|
|
tensortype = next(
|
|
k for k, v in tensortype_to_dtype.items() if self.dtype in v
|
|
)
|
|
if self.device.type == "cpu":
|
|
return ConstantVariable.create(f"torch.{tensortype.__name__}")
|
|
else:
|
|
return ConstantVariable.create(
|
|
f"torch.{self.device.type}.{tensortype.__name__}"
|
|
)
|
|
elif (
|
|
dtype is not None
|
|
and fqn(type(dtype.as_python_constant())) == "torch.tensortype"
|
|
):
|
|
# torch.FloatTensor, etc. are all of type "torch.tensortype".
|
|
# torch.fx's tracer fails on these types, because it doesn't support arguments of torch.tensortype type.
|
|
# So, we pass it in as a string (which is also supported, see above implementation for .type() with 0 args)
|
|
tensor_type = dtype.as_python_constant()
|
|
tensor_type_const = ConstantVariable.create(fqn(tensor_type))
|
|
|
|
from ..symbolic_convert import InstructionTranslator
|
|
from .builder import wrap_fx_proxy
|
|
|
|
tx = InstructionTranslator.current_tx()
|
|
|
|
if non_blocking:
|
|
kwargs = {"non_blocking": non_blocking, **kwargs}
|
|
|
|
return wrap_fx_proxy(
|
|
tx,
|
|
tx.output.create_proxy(
|
|
"call_method",
|
|
"type",
|
|
*proxy_args_kwargs([self, tensor_type_const], kwargs),
|
|
),
|
|
)
|
|
|
|
def method_as_subclass(self, cls):
|
|
if isinstance(cls, TensorSubclassVariable) and cls.source:
|
|
from ..symbolic_convert import InstructionTranslator
|
|
from .torch_function import TensorWithTFOverrideVariable
|
|
|
|
tx = InstructionTranslator.current_tx()
|
|
py_cls = cls.as_python_constant()
|
|
var = TensorWithTFOverrideVariable.from_tensor_var(
|
|
tx, self, py_cls, cls.source
|
|
)
|
|
# See NOTE [Side effect tracking for newly constructed tensor]
|
|
tx.output.side_effects._track_obj(
|
|
object(), var, mutation_type_cls=AttributeMutationNew
|
|
)
|
|
return var
|
|
unimplemented_v2(
|
|
gb_type="Argument of `as_subclass` must be a non-dispatcher-style tensor subclass",
|
|
context=f"{self}.as_subclass({cls})",
|
|
explanation="Currently not supported",
|
|
hints=[
|
|
"Avoid this call or move it outside `torch.compile` regione",
|
|
*graph_break_hints.SUPPORTABLE,
|
|
],
|
|
)
|
|
|
|
def method_get_device(self):
|
|
if isinstance(self.device, torch.device):
|
|
index = self.device.index if self.device.type != "cpu" else -1
|
|
return ConstantVariable.create(index)
|
|
|
|
def method_element_size(self):
|
|
return ConstantVariable.create(self.dtype.itemsize)
|
|
|
|
def method_numpy(self, *, force=False):
|
|
if not config.trace_numpy:
|
|
unimplemented("Tensor.numpy(). config.trace_numpy is False")
|
|
if not np:
|
|
unimplemented("Tensor.numpy(). NumPy is not available")
|
|
if self.layout != torch.strided:
|
|
raise TypeError(
|
|
f"can't convert {self.layout} layout tensor to numpy. Use Tensor.dense() first"
|
|
)
|
|
from ..symbolic_convert import InstructionTranslator
|
|
|
|
tx = InstructionTranslator.current_tx()
|
|
|
|
# We don't check that the tensor is on CPU when force is False, as this
|
|
# allows us to execute NumPy code on CUDA. Same for requires_grad=True
|
|
if force and force.as_python_constant():
|
|
# If the user set force=True we try to preserve the semantics (no gradients, move to CPU...)
|
|
t = self.call_method(tx, "detach", [], {})
|
|
proxy = tx.output.create_proxy("call_method", "cpu", (t.as_proxy(),), {})
|
|
else:
|
|
# Hacky way to create a view of self that will be marked as NumpyNdarrayVariable
|
|
proxy = tx.output.create_proxy(
|
|
"call_method", "view_as", *proxy_args_kwargs([self, self], {})
|
|
)
|
|
return NumpyNdarrayVariable.create(tx, proxy)
|
|
|
|
def method_tolist(self):
|
|
from ..symbolic_convert import InstructionTranslator
|
|
from .builder import wrap_fx_proxy
|
|
|
|
tx = InstructionTranslator.current_tx()
|
|
|
|
def tolist(tensor, sub_proxy):
|
|
def wrap(i, sub_proxy):
|
|
# Sigh, we forgot to gate this, so this data dependent is on
|
|
# by default and is load bearing in CI
|
|
with unittest.mock.patch.object(
|
|
tx.fake_mode, "allow_scalar_outputs", True
|
|
):
|
|
return wrap_fx_proxy(
|
|
tx,
|
|
sub_proxy.item(),
|
|
)
|
|
|
|
if tensor.dtype not in [
|
|
torch.int8,
|
|
torch.int16,
|
|
torch.int32,
|
|
torch.int64,
|
|
]:
|
|
unimplemented("Input tensor for tolist must be an integer tensor")
|
|
|
|
if tensor.dim() == 0:
|
|
return wrap(tensor, sub_proxy)
|
|
|
|
if tensor.dim() == 1:
|
|
return [wrap(val, sub_proxy[i]) for i, val in enumerate(tensor)]
|
|
|
|
return [
|
|
tolist(sub_tensor, sub_proxy=sub_proxy[i])
|
|
for i, sub_tensor in enumerate(tensor)
|
|
]
|
|
|
|
tensor = self.as_proxy().node.meta["example_value"]
|
|
out = tolist(tensor, self.as_proxy())
|
|
return VariableTracker.build(tx, out)
|
|
|
|
def method_backward(self, *args, **kwargs):
|
|
unimplemented("Tensor.backward")
|
|
|
|
def method_data_ptr(self, *args, **kwargs):
|
|
return DataPtrVariable(self)
|
|
|
|
def method_item(self, *args, **kwargs):
|
|
if not config.capture_scalar_outputs:
|
|
self._warn_capture_scalar_outputs()
|
|
unimplemented("Tensor.item")
|
|
|
|
def method___getitem__(self, *args, **kwargs):
|
|
from ..symbolic_convert import InstructionTranslator
|
|
from .builder import wrap_fx_proxy
|
|
|
|
tx = InstructionTranslator.current_tx()
|
|
if isinstance(args[0], SymNodeVariable):
|
|
# Standard indexing will force specialization due to
|
|
# __index__. Rewrite as a regular torch op which will
|
|
# trace fine
|
|
fn, args = (
|
|
torch.select,
|
|
[
|
|
variables.ConstantVariable.create(0),
|
|
args[0],
|
|
],
|
|
)
|
|
else:
|
|
fn = operator.getitem
|
|
|
|
proxy = tx.output.create_proxy(
|
|
"call_function",
|
|
fn,
|
|
*proxy_args_kwargs([self] + list(args), kwargs),
|
|
)
|
|
|
|
return wrap_fx_proxy(tx, proxy)
|
|
|
|
@staticmethod
|
|
@functools.lru_cache(None)
|
|
def _warn_capture_scalar_outputs():
|
|
user_stack = torch._guards.TracingContext.extract_stack()
|
|
user_stack_formatted = "".join(traceback.format_list(user_stack))
|
|
log.warning(
|
|
textwrap.dedent(
|
|
"""\
|
|
Graph break from `Tensor.item()`, consider setting:
|
|
torch._dynamo.config.capture_scalar_outputs = True
|
|
or:
|
|
env TORCHDYNAMO_CAPTURE_SCALAR_OUTPUTS=1
|
|
to include these operations in the captured graph.
|
|
|
|
Graph break: from user code at:
|
|
%s
|
|
"""
|
|
),
|
|
user_stack_formatted,
|
|
)
|
|
|
|
def method___len__(self):
|
|
from ..symbolic_convert import InstructionTranslator
|
|
|
|
tx = InstructionTranslator.current_tx()
|
|
return self.call_method(tx, "size", [ConstantVariable.create(0)], {})
|
|
|
|
def method_addcmul_(self, tensor1, tensor2, *, value=None):
|
|
from ..symbolic_convert import InstructionTranslator
|
|
|
|
tx = InstructionTranslator.current_tx()
|
|
if value is not None:
|
|
from .. import polyfills
|
|
|
|
return tx.inline_user_function_return(
|
|
VariableTracker.build(tx, polyfills.addcmul_inplace),
|
|
[self, tensor1, tensor2, value],
|
|
{},
|
|
)
|
|
|
|
def method___setitem__(self, key, value):
|
|
def has_bool_key(v):
|
|
if isinstance(v, TensorVariable):
|
|
return v.dtype in (torch.bool, torch.int8)
|
|
elif isinstance(v, variables.TupleVariable):
|
|
return any(has_bool_key(item) for item in v.items)
|
|
else:
|
|
return False
|
|
|
|
from ..symbolic_convert import InstructionTranslator
|
|
|
|
tx = InstructionTranslator.current_tx()
|
|
tx.output.create_proxy(
|
|
"call_function",
|
|
operator.setitem,
|
|
*proxy_args_kwargs([self, key, value], {}),
|
|
)
|
|
return ConstantVariable.create(None)
|
|
|
|
def method_resize_(self, *args, **kwargs):
|
|
unimplemented("Tensor.resize_")
|
|
|
|
def method_resize_as_(self, *args, **kwargs):
|
|
unimplemented("Tensor.resize_as_")
|
|
|
|
def method_sparse_resize_(self, *args, **kwargs):
|
|
unimplemented("Tensor.sparse_resize_")
|
|
|
|
def method_sparse_resize_and_clear_(self, *args, **kwargs):
|
|
unimplemented("Tensor.sparse_resize_and_clear_")
|
|
|
|
def method_set_(self, *args, **kwargs):
|
|
if len(args) > 1:
|
|
# torch.Tensor.set_() has several overloads.
|
|
# aten::set_.source_Tensor(Tensor) gets special handling
|
|
# in AOTAutograd and functionalization, because it is the most common
|
|
# overload and is used by FSDP.
|
|
# graph-breaking on aten::set_source_Tensor_storage_offset for now,
|
|
# unless we find that we need to make it work.
|
|
unimplemented("Tensor.set_.source_Tensor_storage_offset")
|
|
|
|
def method_add_(self, other, *, alpha=None):
|
|
if alpha is not None:
|
|
from ..symbolic_convert import InstructionTranslator
|
|
|
|
tx = InstructionTranslator.current_tx()
|
|
result = variables.TorchInGraphFunctionVariable(torch.mul).call_function(
|
|
tx, [other, alpha], {}
|
|
)
|
|
return self.call_method(tx, "add_", [result], {})
|
|
|
|
def method_addcdiv_(self, tensor1, tensor2, *, value=None):
|
|
from ..symbolic_convert import InstructionTranslator
|
|
|
|
tx = InstructionTranslator.current_tx()
|
|
if value is not None:
|
|
result = variables.TorchInGraphFunctionVariable(torch.div).call_function(
|
|
tx, [tensor1, tensor2], {}
|
|
)
|
|
result = variables.TorchInGraphFunctionVariable(torch.mul).call_function(
|
|
tx, [result, value], {}
|
|
)
|
|
return self.call_method(tx, "add_", [result], {})
|
|
|
|
def method___contains__(self, arg):
|
|
from ..symbolic_convert import InstructionTranslator
|
|
|
|
tx = InstructionTranslator.current_tx()
|
|
|
|
# Rewrite __contains__ here so that downstream passes can trace through
|
|
# without dealing with unbacked symbool. Roughly the code we translate is:
|
|
# def __contains__(self, x):
|
|
# return (x == self).any().item()
|
|
result = variables.TorchInGraphFunctionVariable(torch.eq).call_function(
|
|
tx, [self, arg], {}
|
|
)
|
|
result = variables.TorchInGraphFunctionVariable(torch.any).call_function(
|
|
tx, [result], {}
|
|
)
|
|
return result.call_method(tx, "item", [], {})
|
|
|
|
def method_redistribute(self, *args, **kwargs):
|
|
from ..symbolic_convert import InstructionTranslator
|
|
|
|
tx = InstructionTranslator.current_tx()
|
|
# rewrite non-primitive args/kwargs to be included in the on-the-fly prim function
|
|
# and rewrite args to have only proxyable args, then insert call_function
|
|
args_as_value = [x.as_python_constant() for x in args]
|
|
kwargs_as_value = {k: v.as_python_constant() for k, v in kwargs.items()}
|
|
|
|
def redistribute_fn_with_prim_types(x):
|
|
return x.redistribute(*args_as_value, **kwargs_as_value)
|
|
|
|
# attach the same function name for better debugging
|
|
redistribute_fn_with_prim_types.__name__ = "prim_redistribute"
|
|
|
|
from .builder import wrap_fx_proxy
|
|
|
|
return wrap_fx_proxy(
|
|
tx=tx,
|
|
proxy=tx.output.create_proxy(
|
|
"call_function",
|
|
redistribute_fn_with_prim_types,
|
|
*proxy_args_kwargs([self], {}),
|
|
),
|
|
)
|
|
|
|
def method_to_local(self, *args, **kwargs):
|
|
from ..symbolic_convert import InstructionTranslator
|
|
|
|
tx = InstructionTranslator.current_tx()
|
|
# rewrite non-primitive args/kwargs to be included in the on-the-fly prim function
|
|
# and rewrite args to have only proxyable args, then insert call_function
|
|
args_as_value = [x.as_python_constant() for x in args]
|
|
kwargs_as_value = {k: v.as_python_constant() for k, v in kwargs.items()}
|
|
|
|
def to_local_fn_with_prim_types(x):
|
|
return x.to_local(*args_as_value, **kwargs_as_value)
|
|
|
|
# attach the same function name for better debugging
|
|
to_local_fn_with_prim_types.__name__ = "prim_to_local"
|
|
|
|
from .builder import wrap_fx_proxy
|
|
|
|
return wrap_fx_proxy(
|
|
tx=tx,
|
|
proxy=tx.output.create_proxy(
|
|
"call_function",
|
|
to_local_fn_with_prim_types,
|
|
*proxy_args_kwargs([self], {}),
|
|
),
|
|
)
|
|
|
|
def method_register_hook(self, *args, **kwargs):
|
|
return self._method_register_hook("register_hook", *args, **kwargs)
|
|
|
|
def method_register_post_accumulate_grad_hook(self, *args, **kwargs):
|
|
return self._method_register_hook(
|
|
"register_post_accumulate_grad_hook", *args, **kwargs
|
|
)
|
|
|
|
def _method_register_hook(self, name: str, hook: VariableTracker):
|
|
# Note - do not arbitrarily add hooks here - make sure they match the same contract
|
|
# see [On tensor.register_hook]
|
|
from ..symbolic_convert import InstructionTranslator
|
|
|
|
tx = InstructionTranslator.current_tx()
|
|
|
|
if not self.source:
|
|
if not compiled_autograd.compiled_autograd_enabled:
|
|
# TODO(voz):
|
|
# We can relax this by speculating the callable and ensuring that it doesn't modify arbitrary
|
|
# python state.
|
|
# We *Must* be in compiled_autograd here because backward hooks can contain anything, and it is unsafe to run
|
|
# them in a compiled bwd without re-entering dynamo as compiled_autograd does.
|
|
#
|
|
# Discussion point 1 - Should we bypass this if nopython/fullgraph = True?
|
|
# No. Because this was going to be a graph break anyway - this check does not
|
|
# introduce new graph breaks where there were none.
|
|
#
|
|
# Discussion point 2 - Should we defer this check to backwards?
|
|
# No. Because compiled autograd is not yet ready for prime time. As such, if we defer, a user
|
|
# would have no recourse - their forward traces just fine, but will fail at backwards unless
|
|
# compiled_autograd is enabled. If compiled_autograd fails (there are a lot of failures today)
|
|
# then they have nothing they can do except disable compile.
|
|
unimplemented(
|
|
"Compilation of intermediate hooks requires compiled autograd"
|
|
)
|
|
|
|
hook_name, bw_state_proxy = tx.output.add_backward_state_hook(hook)
|
|
|
|
def _register_hook_trampoline(tensor, bw_state):
|
|
register_hook = getattr(tensor, name)
|
|
register_hook(
|
|
functools.partial(
|
|
trace_wrapped,
|
|
fn=call_hook_from_backward_state,
|
|
bw_state=bw_state,
|
|
hook_name=hook_name,
|
|
)
|
|
)
|
|
# TODO(jansel): returning None here is wrong, it should be
|
|
# RemovableHandle, but we need some extra work to support
|
|
# this properly.
|
|
return None
|
|
|
|
from .builder import wrap_fx_proxy
|
|
|
|
self_proxy = self.as_proxy()
|
|
self_proxy.node.meta["has_backward_hook"] = True
|
|
|
|
return wrap_fx_proxy(
|
|
tx,
|
|
tx.output.create_proxy(
|
|
"call_function",
|
|
_register_hook_trampoline,
|
|
(self_proxy, bw_state_proxy),
|
|
{},
|
|
),
|
|
)
|
|
|
|
handle_variable = variables.RemovableHandleVariable(
|
|
mutation_type=variables.base.ValueMutationNew(),
|
|
)
|
|
tx.output.side_effects.register_hook(self, hook, handle_variable, name)
|
|
return handle_variable
|
|
|
|
def method_requires_grad_(self, requires_grad=True):
|
|
if requires_grad is not True:
|
|
requires_grad = requires_grad.as_python_constant()
|
|
|
|
if self.as_proxy().node.meta["example_value"].requires_grad != requires_grad:
|
|
unimplemented("Tensor.requires_grad_")
|
|
else:
|
|
return self
|
|
|
|
def method_new(self, *args, **kwargs):
|
|
# Convert x.new(torch.Size) into x.new_empty(torch.Size),
|
|
# as Tensor.new acts differently with a Size input versus a tuple input.
|
|
if (len(args) == 1 and isinstance(args[0], SizeVariable)) or (
|
|
len(args) >= 1
|
|
and all(
|
|
isinstance(a, ConstantVariable) and a.python_type() == int for a in args
|
|
)
|
|
):
|
|
from ..symbolic_convert import InstructionTranslator
|
|
|
|
return self.call_method(
|
|
InstructionTranslator.current_tx(), "new_empty", args, kwargs
|
|
)
|
|
|
|
def method_untyped_storage(self):
|
|
return UntypedStorageVariable(
|
|
self, self.as_proxy().node.meta["example_value"].untyped_storage()
|
|
)
|
|
|
|
def set_name_hint(self, name: str):
|
|
if not self._is_name_set:
|
|
self.proxy.node._rename(name)
|
|
self._is_name_set = True
|
|
|
|
|
|
class SymNodeVariable(VariableTracker):
|
|
"""
|
|
Represents a symbolic scalar, either int, float or bool. This is most commonly used to
|
|
handle symbolic size computation, e.g., tensor.size(0), but it is also used to
|
|
handle logic like float_tensor.item() or unspecialized float inputs.
|
|
"""
|
|
|
|
_nonvar_fields = {
|
|
"proxy",
|
|
"sym_num",
|
|
*VariableTracker._nonvar_fields,
|
|
}
|
|
|
|
def debug_repr(self):
|
|
return repr(self.sym_num)
|
|
|
|
@classmethod
|
|
def create(cls, tx, proxy, sym_num=None, **options):
|
|
if sym_num is None:
|
|
sym_num = get_fake_value(proxy.node, tx)
|
|
if "example_value" in proxy.node.meta:
|
|
assert proxy.node.meta["example_value"] == sym_num
|
|
set_example_value(proxy.node, sym_num)
|
|
|
|
if isinstance(sym_num, (sympy.Integer, int, bool)):
|
|
sym_num = int(sym_num) if isinstance(sym_num, sympy.Integer) else sym_num
|
|
return ConstantVariable.create(sym_num)
|
|
|
|
return SymNodeVariable(proxy, sym_num, **options)
|
|
|
|
def __init__(self, proxy, sym_num, **kwargs) -> None:
|
|
super().__init__(**kwargs)
|
|
self.proxy = proxy
|
|
# TODO: Should we allow non SymTypes here? Today it is allowed
|
|
self.sym_num = sym_num
|
|
self._tensor_var = None
|
|
|
|
def python_type(self):
|
|
if isinstance(self.sym_num, SymTypes):
|
|
return self.sym_num.node.pytype
|
|
else:
|
|
return type(self.sym_num)
|
|
|
|
def as_proxy(self):
|
|
return self.proxy
|
|
|
|
def as_tensor(self, tx, dtype):
|
|
if self._tensor_var is None:
|
|
self._tensor_var = VariableTracker.build(
|
|
tx, torch.scalar_tensor
|
|
).call_function(tx, [self], {"dtype": VariableTracker.build(tx, dtype)})
|
|
return self._tensor_var
|
|
|
|
def evaluate_expr(self, output_graph=None):
|
|
try:
|
|
return guard_scalar(self.sym_num)
|
|
except GuardOnDataDependentSymNode as e:
|
|
if torch.fx.experimental._config.no_data_dependent_graph_break:
|
|
raise
|
|
|
|
raise UserError( # noqa: B904
|
|
UserErrorType.ANTI_PATTERN,
|
|
f"Consider annotating your code using torch._check*(). {str(e)}",
|
|
case_name="constrain_as_size_example",
|
|
)
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: "list[VariableTracker]",
|
|
kwargs: "dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
from .builder import wrap_fx_proxy
|
|
|
|
return wrap_fx_proxy(
|
|
tx,
|
|
tx.output.create_proxy(
|
|
"call_method",
|
|
name,
|
|
*proxy_args_kwargs([self, *args], kwargs),
|
|
),
|
|
)
|
|
|
|
|
|
class NumpyNdarrayVariable(TensorVariable):
|
|
"""
|
|
Represents a np.ndarray, but backed by torch Tensor via torch._numpy.ndarray.
|
|
Use this for Tensor.numpy() call.
|
|
"""
|
|
|
|
@staticmethod
|
|
def create(tx: "InstructionTranslator", proxy, **options):
|
|
from .builder import wrap_fx_proxy_cls
|
|
|
|
return wrap_fx_proxy_cls(
|
|
target_cls=NumpyNdarrayVariable,
|
|
tx=tx,
|
|
proxy=proxy,
|
|
**options,
|
|
)
|
|
|
|
def var_getattr(self, tx: "InstructionTranslator", name):
|
|
# NB: This INTENTIONALLY does not call super(), because there is
|
|
# no intrinsic reason ndarray properties are related to Tensor
|
|
# properties. The inheritance here is for implementation sharing.
|
|
|
|
from ..utils import numpy_attr_wrapper
|
|
from .builder import wrap_fx_proxy
|
|
|
|
result = None
|
|
|
|
example_value = self.as_proxy().node.meta["example_value"]
|
|
example_ndarray = tnp.ndarray(example_value)
|
|
|
|
def insert_into_graph():
|
|
return wrap_fx_proxy(
|
|
tx,
|
|
tx.output.create_proxy(
|
|
"call_function", numpy_attr_wrapper, (self.as_proxy(), name), {}
|
|
),
|
|
)
|
|
|
|
if name in ["T", "real", "imag"]:
|
|
proxy = tx.output.create_proxy(
|
|
"call_function",
|
|
numpy_attr_wrapper,
|
|
(self.as_proxy(), name),
|
|
{},
|
|
)
|
|
result = NumpyNdarrayVariable.create(tx, proxy)
|
|
|
|
# These are awkward to implement. The standard playbook for torch._numpy
|
|
# interop is to trace a call into the torch._numpy wrapper which works for
|
|
# Tensor operations. However, we don't want to do this for calls
|
|
# that don't return Tensors, because in those cases we may not want
|
|
# to trace the attribute access into the graph at all (it is sort
|
|
# of harmless to do so, because AOTAutograd will eliminate them,
|
|
# but it's best not to trace them in to begin with.) But in any
|
|
# case, tracing these into the graph is like trying to fit a square
|
|
# peg into a round hole; best not to do it. So instead we
|
|
# painstakingly implement these by hand
|
|
#
|
|
# NB: only ALWAYS specialized attributes can go here; notably,
|
|
# size/shape not allowed!
|
|
elif name in ("ndim", "itemsize"):
|
|
return ConstantVariable.create(getattr(example_ndarray, name))
|
|
elif name in ("shape", "stride"):
|
|
if not has_free_symbols(r := getattr(example_ndarray, name)):
|
|
return ConstantVariable.create(tuple(int(r) for r in r))
|
|
return insert_into_graph()
|
|
elif name == "size":
|
|
if not has_free_symbols(r := example_ndarray.size):
|
|
return ConstantVariable.create(int(r))
|
|
return insert_into_graph()
|
|
elif name in ["base", "flags", "dtype"]:
|
|
unimplemented(f"TODO: add support for ndarray.{name}")
|
|
elif name in ["__version__"]:
|
|
unimplemented("delegate np.__version__ to NumPy")
|
|
if result is None:
|
|
raise NotImplementedError
|
|
return result
|
|
|
|
@staticmethod
|
|
def patch_args(name, args, kwargs):
|
|
if name == "clip":
|
|
kwargs_rename = {"a_min": "min", "a_max": "max"}
|
|
kwargs = {kwargs_rename.get(k, k): v for k, v in kwargs.items()}
|
|
return args, kwargs
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: "list[VariableTracker]",
|
|
kwargs: "dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
from ..utils import numpy_method_wrapper
|
|
|
|
args, kwargs = self.patch_args(name, args, kwargs)
|
|
|
|
if name in ["__len__", "size", "tolist"]:
|
|
# delegate back to TensorVariable
|
|
return super().call_method(tx, name, args, kwargs)
|
|
if name in ("tostring", "tobytes"):
|
|
unimplemented(f"{name} is not modelled in torch._numpy")
|
|
proxy = tx.output.create_proxy(
|
|
"call_function",
|
|
numpy_method_wrapper(name),
|
|
*proxy_args_kwargs([self] + list(args), kwargs),
|
|
)
|
|
return NumpyNdarrayVariable.create(tx, proxy)
|
|
|
|
def python_type(self):
|
|
return np.ndarray
|
|
|
|
|
|
class UnspecializedPythonVariable(TensorVariable):
|
|
"""
|
|
This is a 1-element tensor represents unspecialized python float/int.
|
|
"""
|
|
|
|
_nonvar_fields = {
|
|
"raw_value",
|
|
"need_unwrap",
|
|
*TensorVariable._nonvar_fields,
|
|
}
|
|
|
|
def __init__(
|
|
self, proxy: torch.fx.Proxy, *, raw_value=None, need_unwrap=True, **kwargs
|
|
) -> None:
|
|
super().__init__(proxy, **kwargs)
|
|
self.raw_value = raw_value
|
|
self.need_unwrap = need_unwrap
|
|
|
|
@classmethod
|
|
def from_tensor_variable(cls, tensor_variable, raw_value, need_unwrap=True):
|
|
# Convert a `TensorVariable` instance into an `UnspecializedPythonVariable` instance.
|
|
return UnspecializedPythonVariable(
|
|
**dict(tensor_variable.__dict__),
|
|
raw_value=raw_value,
|
|
need_unwrap=need_unwrap,
|
|
)
|
|
|
|
|
|
class FakeItemVariable(TensorVariable):
|
|
"""An unspecialized python variable which prevents access to the underlying raw value.
|
|
This is needed if item is called on a FakeTensor."""
|
|
|
|
_nonvar_fields = {
|
|
"need_unwrap",
|
|
*TensorVariable._nonvar_fields,
|
|
}
|
|
|
|
def __init__(self, proxy: torch.fx.Proxy, **kwargs) -> None:
|
|
need_unwrap = kwargs.pop("need_unwrap", False)
|
|
super().__init__(proxy, **kwargs)
|
|
self.need_unwrap = need_unwrap
|
|
|
|
@classmethod
|
|
def from_tensor_variable(cls, tensor_variable):
|
|
return FakeItemVariable(**dict(tensor_variable.__dict__))
|
|
|
|
|
|
class TensorSubclassVariable(UserDefinedClassVariable):
|
|
def call_function(
|
|
self,
|
|
tx: "InstructionTranslator",
|
|
args: list[VariableTracker],
|
|
kwargs: dict[str, VariableTracker],
|
|
) -> VariableTracker:
|
|
# Handle `Subclass(existing_tensor, ...)` calls.
|
|
from .torch_function import TensorWithTFOverrideVariable
|
|
|
|
new_func = self.value.__new__
|
|
if new_func is torch.Tensor.__new__:
|
|
if (
|
|
len(args) == 1
|
|
and isinstance(args[0], TensorVariable)
|
|
and len(kwargs) == 0
|
|
):
|
|
data = args[0]
|
|
# Simulate `torch.Tensor.__new__` as shallow-copying the input
|
|
# tensor data with a new type. TODO polyfill?
|
|
var = TensorWithTFOverrideVariable.from_tensor_var(
|
|
tx, data, self.value, self.source
|
|
)
|
|
else:
|
|
unimplemented_v2(
|
|
gb_type="Calling subclass default constructor with more than tensor argument",
|
|
context=f"{self.value}(args={args}, kwargs={kwargs})",
|
|
explanation="Currently not supported",
|
|
hints=[
|
|
"Avoid this constructor call or move it outside "
|
|
"`torch.compile` regione",
|
|
*graph_break_hints.SUPPORTABLE,
|
|
],
|
|
)
|
|
else:
|
|
# Let Dynamo trace through custom `__new__`
|
|
var = VariableTracker.build(tx, new_func).call_function(
|
|
tx, [self] + args, kwargs
|
|
)
|
|
|
|
# Let Dynamo trace through custom `__init__`
|
|
init_func = self.value.__init__
|
|
# TODO builder should be able to handle `torch.Tensor.__init__`,
|
|
# which is `object.__init__`, so that we can remove this check.
|
|
if init_func is not torch.Tensor.__init__:
|
|
VariableTracker.build(tx, init_func).call_function(tx, [var], kwargs)
|
|
|
|
# See NOTE [Side effect tracking for newly constructed tensor]
|
|
tx.output.side_effects._track_obj(
|
|
object(), var, mutation_type_cls=AttributeMutationNew
|
|
)
|
|
return var
|
|
|
|
def as_python_constant(self):
|
|
return self.value
|
|
|
|
|
|
class UntypedStorageVariable(VariableTracker):
|
|
_nonvar_fields = {
|
|
"example_value",
|
|
*VariableTracker._nonvar_fields,
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
from_tensor: TensorVariable,
|
|
example_value: torch.UntypedStorage,
|
|
**kwargs,
|
|
) -> None:
|
|
super().__init__(**kwargs)
|
|
self.from_tensor = from_tensor
|
|
# Example_value will always have device="meta"
|
|
self.example_value = example_value
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: list[VariableTracker],
|
|
kwargs: dict[str, VariableTracker],
|
|
) -> VariableTracker:
|
|
if name == "size":
|
|
assert not args
|
|
assert not kwargs
|
|
result = self.example_value.size()
|
|
if not has_free_symbols(result):
|
|
# avoid creating a node in the graph
|
|
return ConstantVariable.create(int(result))
|
|
else:
|
|
from ..external_utils import untyped_storage_size
|
|
from .builder import wrap_fx_proxy
|
|
|
|
return wrap_fx_proxy(
|
|
tx,
|
|
tx.output.create_proxy(
|
|
"call_function",
|
|
untyped_storage_size,
|
|
(self.from_tensor.as_proxy(),),
|
|
{},
|
|
),
|
|
)
|
|
if name == "resize_" and len(args) == 1:
|
|
assert not kwargs
|
|
tx.output.create_proxy(
|
|
"call_function",
|
|
torch.ops.inductor.resize_storage_bytes_,
|
|
(self.from_tensor.as_proxy(), args[0].as_proxy()),
|
|
{},
|
|
)
|
|
return self
|
|
|
|
return super().call_method(tx, name, args, kwargs)
|
|
|
|
def reconstruct(self, codegen):
|
|
codegen(self.from_tensor)
|
|
codegen.load_method("untyped_storage")
|
|
codegen.call_method(0)
|
|
|
|
|
|
class DataPtrVariable(VariableTracker):
|
|
def __init__(
|
|
self,
|
|
from_tensor: TensorVariable,
|
|
**kwargs,
|
|
) -> None:
|
|
super().__init__(**kwargs)
|
|
self.from_tensor = from_tensor
|
|
|
|
def reconstruct(self, codegen):
|
|
codegen(self.from_tensor)
|
|
codegen.load_method("data_ptr")
|
|
codegen.call_method(0)
|