pytorch/test/cpp/tensorexpr/test_expr.cpp
Mikhail Zolotukhin bb5181b716 [TensorExpr] Add IR Printer. (#33220)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/33220

Test Plan: Imported from OSS

Differential Revision: D19848379

Pulled By: ZolotukhinM

fbshipit-source-id: 1c6ab4f63080d4506dedc3c47938de92fb4bfba2
2020-02-21 13:10:26 -08:00

209 lines
5.6 KiB
C++

#include "test/cpp/tensorexpr/test_base.h"
#include "test/cpp/tensorexpr/test_utils.h"
#include "torch/csrc/jit/tensorexpr/buffer.h"
#include "torch/csrc/jit/tensorexpr/eval.h"
#include "torch/csrc/jit/tensorexpr/ir.h"
#include "torch/csrc/jit/tensorexpr/ir_printer.h"
#include <cmath>
#include <sstream>
#include <stdexcept>
#include <string>
#include <vector>
namespace torch {
namespace jit {
using namespace torch::jit::tensorexpr;
using SimpleIRExprEval = ExprEval<SimpleIREvaluator>;
void testExprBasicValueTest() {
KernelScope kernel_scope;
Expr a = IntImm::make(2), b = IntImm::make(3);
Expr c = Add::make(a, b);
SimpleIRExprEval eval(c);
EXPECT_EQ(eval.value<int>(), 5);
}
void testExprBasicValueTest02() {
KernelScope kernel_scope;
Expr a(2.0f);
Expr b(3.0f);
Expr c(4.0f);
Expr d(5.0f);
Expr f = (a + b) - (c + d);
SimpleIRExprEval eval(f);
EXPECT_EQ(eval.value<float>(), -4.0f);
}
void testExprLetTest01() {
KernelScope kernel_scope;
Var x("x", kFloat32);
Expr value = Expr(3.f);
Expr body = Expr(2.f) + (x * Expr(3.f) + Expr(4.f));
Expr result = Let::make(x, Expr(3.f), body);
SimpleIRExprEval eval(result);
EXPECT_EQ(eval.value<float>(), 2 + (3 * 3 + 4));
}
void testExprLetTest02() {
KernelScope kernel_scope;
Var x("x", kFloat32);
Var y("y", kFloat32);
Expr value = Expr(3.f);
Expr body = Expr(2.f) + (x * Expr(3.f) + Expr(4.f) * y);
Expr e1 = Let::make(x, Expr(3.f), body);
Expr e2 = Let::make(y, Expr(6.f), e1);
SimpleIRExprEval eval(e2);
EXPECT_EQ(eval.value<float>(), 2 + (3 * 3 + 4 * 6));
}
static Expr test_01(const Expr& expr) {
return expr;
}
void testExprVectorAdd01() {
KernelScope kernel_scope;
const int kVectorSize = 8;
const int kVectorCount = 128;
const int kTotalSize = kVectorSize * kVectorCount;
Buffer a_buf(Var("A", kHandle), kFloat32, {Expr(kTotalSize)});
Buffer b_buf(Var("B", kHandle), kFloat32, {Expr(kTotalSize)});
Buffer c_buf(Var("C", kHandle), kFloat32, {Expr(kTotalSize)});
/*
Build the following:
for (int index = 0; index < kVectorCount; index++) {
store(c_buf, ramp(index * 8, 1, 8),
load(a_buf, ramp(index * 8, 1, 8) +
load(b_buf, ramp(index * 8, 1, 8))))
}
*/
Var index = Var("index", kInt32);
Expr load_a = Load::make(
a_buf,
Ramp::make(index * kVectorSize, 1, kVectorSize),
Broadcast::make(1, kVectorSize));
Expr load_b = Load::make(
b_buf,
Ramp::make(index * kVectorSize, 1, kVectorSize),
Broadcast::make(1, kVectorSize));
Expr value = load_a + load_b;
Stmt store_c = Store::make(
c_buf,
Ramp::make(index * kVectorSize, 1, kVectorSize),
value,
Broadcast::make(1, kVectorSize));
Stmt stmt = For::make(index, 0, kVectorCount, store_c);
EXPECT_EQ(load_a.dtype(), Dtype(kFloat32, kVectorSize));
EXPECT_EQ(load_b.dtype(), Dtype(kFloat32, kVectorSize));
EXPECT_EQ(value.dtype(), Dtype(kFloat32, kVectorSize));
}
void testExprCompareSelectEQ() {
KernelScope kernel_scope;
constexpr int N = 1024;
Buffer a(Var("A", kHandle), kInt32, {N});
Buffer b(Var("B", kHandle), kInt32, {N});
Buffer c(Var("C", kHandle), kInt32, {N});
std::vector<int> a_buffer(N, 1);
std::vector<int> b_buffer(N, 1);
std::vector<int> c_buffer(N, 0);
std::vector<int> c_ref(N, 0);
auto mask = IntImm::make(1);
Var i("i", kInt32);
auto memcpy_expr = For::make(
i,
0,
N,
Store::make(
c,
i,
CompareSelect::make(
Load::make(a, i, mask),
Load::make(b, i, mask),
CompareSelectOperation::kEQ),
mask));
SimpleIREvaluator ir_eval(memcpy_expr, a, b, c);
ir_eval(a_buffer, b_buffer, c_buffer);
ASSERT_EQ(a_buffer.size(), N);
ASSERT_EQ(b_buffer.size(), N);
ASSERT_EQ(c_buffer.size(), N);
assertAllEqual(a_buffer, 1);
assertAllEqual(b_buffer, 1);
assertAllEqual(c_buffer, 1);
}
void testExprSubstitute01() {
KernelScope kernel_scope;
Expr x = Variable::make("x", kFloat32);
Expr y = Variable::make("y", kFloat32);
Expr e = (x - 1.0f) * (x + y + 2.0f);
Expr z = Variable::make("z", kFloat32);
Expr e2 = Substitute(&e, {{x, z + 1.0f}});
Expr e2_ref = ((z + 1.0f) - 1.0f) * ((z + 1.0f) + y + 2.0f);
std::ostringstream oss;
oss << e2;
std::string e2_str = oss.str();
oss.str("");
oss << e2_ref;
std::string e2_ref_str = oss.str();
ASSERT_EQ(e2_str, e2_ref_str);
}
void testExprDynamicShapeAdd() {
KernelScope kernel_scope;
auto testWithSize = [](int32_t size) {
Var n("n", kInt32);
Buffer a(Var("a", kHandle), kFloat32, {n});
Buffer b(Var("b", kHandle), kFloat32, {n});
Buffer c(Var("c", kHandle), kFloat32, {n});
Var i("i", kInt32);
Stmt s = For::make(i, 0, n, Store::make(c, i, a(i) + b(i), 1));
std::vector<float> aData(size, 1.0f);
std::vector<float> bData(size, 2.0f);
std::vector<float> cData(size, 0.0f);
SimpleIREvaluator(s, a, b, c, n)(aData, bData, cData, size);
ExpectAllNear(cData, std::vector<float>(size, 3.0f), 1e-7);
};
testWithSize(1);
testWithSize(16);
testWithSize(37);
}
void testIfThenElse01() {
KernelScope kernel_scope;
Expr v = ifThenElse(Expr(1), Expr(1.0f), Expr(2.0f));
std::ostringstream oss;
oss << v;
ASSERT_EQ(oss.str(), "IfThenElse(1, 1, 2)");
SimpleIRExprEval eval(v);
ASSERT_EQ(eval.value<float>(), 1.0f);
}
void testIfThenElse02() {
KernelScope kernel_scope;
Expr v = ifThenElse(Expr(0), Expr(1.0f), Expr(2.0f));
std::ostringstream oss;
oss << v;
ASSERT_EQ(oss.str(), "IfThenElse(0, 1, 2)");
SimpleIRExprEval eval(v);
ASSERT_EQ(eval.value<float>(), 2.0f);
}
} // namespace jit
} // namespace torch