mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/68183 We do so in favour of `make_fullrank_matrices_with_distinct_singular_values` as this latter one not only has an even longer name, but also generates inputs correctly for them to work with the PR that tests noncontig inputs latter in this stack. We also heavily simplified the generation of samples for the SVD, as it was fairly convoluted and it was not generating the inputs correclty for the noncontiguous test. To do the transition, we also needed to fix the following issue, as it was popping up in the tests: Fixes https://github.com/pytorch/pytorch/issues/66856 cc jianyuh nikitaved pearu mruberry walterddr IvanYashchuk xwang233 Lezcano Test Plan: Imported from OSS Reviewed By: ngimel Differential Revision: D32684853 Pulled By: mruberry fbshipit-source-id: e88189c8b67dbf592eccdabaf2aa6d2e2f7b95a4
3225 lines
132 KiB
Python
3225 lines
132 KiB
Python
r"""Importing this file must **not** initialize CUDA context. test_distributed
|
|
relies on this assumption to properly run. This means that when this is imported
|
|
no CUDA calls shall be made, including torch.cuda.device_count(), etc.
|
|
|
|
torch.testing._internal.common_cuda.py can freely initialize CUDA context when imported.
|
|
"""
|
|
|
|
import sys
|
|
import os
|
|
import platform
|
|
import re
|
|
import gc
|
|
import types
|
|
import math
|
|
from functools import partial
|
|
import inspect
|
|
import io
|
|
import copy
|
|
import operator
|
|
import argparse
|
|
import unittest
|
|
import warnings
|
|
import random
|
|
import contextlib
|
|
import shutil
|
|
import threading
|
|
from pathlib import Path
|
|
import socket
|
|
import subprocess
|
|
import time
|
|
from collections import OrderedDict
|
|
from collections.abc import Sequence
|
|
from contextlib import contextmanager, closing
|
|
from functools import wraps
|
|
from itertools import product
|
|
from copy import deepcopy
|
|
from numbers import Number
|
|
import tempfile
|
|
import json
|
|
import __main__ # type: ignore[import]
|
|
import errno
|
|
import ctypes
|
|
from typing import cast, Any, Dict, Iterable, Iterator, Optional, Union, List, TypeVar
|
|
from unittest.mock import MagicMock
|
|
|
|
import numpy as np
|
|
|
|
import expecttest
|
|
from .._core import \
|
|
(_compare_tensors_internal, _compare_scalars_internal, _compare_return_type)
|
|
|
|
import torch
|
|
import torch.cuda
|
|
from torch.testing import make_tensor
|
|
from torch._utils_internal import get_writable_path
|
|
from torch._six import string_classes
|
|
from torch import Tensor
|
|
import torch.backends.cudnn
|
|
import torch.backends.mkl
|
|
from enum import Enum
|
|
from statistics import mean
|
|
import functools
|
|
from .composite_compliance import no_dispatch
|
|
|
|
torch.backends.disable_global_flags()
|
|
|
|
FILE_SCHEMA = "file://"
|
|
if sys.platform == 'win32':
|
|
FILE_SCHEMA = "file:///"
|
|
|
|
# Environment variable `IN_CI` is set in `.jenkins/common.sh`.
|
|
IS_IN_CI = os.getenv('IN_CI') == '1'
|
|
IS_SANDCASTLE = os.getenv('SANDCASTLE') == '1' or os.getenv('TW_JOB_USER') == 'sandcastle'
|
|
IS_FBCODE = os.getenv('PYTORCH_TEST_FBCODE') == '1'
|
|
IS_REMOTE_GPU = os.getenv('PYTORCH_TEST_REMOTE_GPU') == '1'
|
|
|
|
RETRY_TEST_CASES = os.getenv('PYTORCH_RETRY_TEST_CASES') == '1'
|
|
OVERRIDE_FLAKY_SIGNAL = os.getenv('PYTORCH_OVERRIDE_FLAKY_SIGNAL') == '1'
|
|
MAX_NUM_RETRIES = 3
|
|
|
|
DISABLED_TESTS_FILE = '.pytorch-disabled-tests.json'
|
|
SLOW_TESTS_FILE = '.pytorch-slow-tests.json'
|
|
|
|
slow_tests_dict: Optional[Dict[str, Any]] = None
|
|
disabled_tests_dict: Optional[Dict[str, Any]] = None
|
|
|
|
NATIVE_DEVICES = ('cpu', 'cuda', 'meta')
|
|
|
|
class _TestParametrizer(object):
|
|
"""
|
|
Decorator class for parametrizing a test function, yielding a set of new tests spawned
|
|
from the original generic test, each specialized for a specific set of test inputs. For
|
|
example, parametrizing a test across the set of ops will result in a test function per op.
|
|
|
|
The decision of how to parametrize / what to parametrize over is intended to be implemented
|
|
by each derived class.
|
|
|
|
In the details, the decorator adds a 'parametrize_fn' property to the test function that is called
|
|
during device-specific test instantiation performed in instantiate_device_type_tests(). Because of this,
|
|
there is no need to parametrize over device type, as that is already handled separately.
|
|
|
|
If the decorator is applied to a test function that already has a 'parametrize_fn' property, a new
|
|
composite 'parametrize_fn' will be created that generates tests with the product of the parameters
|
|
generated by the old and new parametrize_fns. This allows for convenient composability of decorators.
|
|
"""
|
|
def _parametrize_test(self, test, generic_cls, device_cls):
|
|
"""
|
|
Parametrizes the given test function across whatever dimension is specified by the derived class.
|
|
Tests can be parametrized over any arbitrary dimension or combination of dimensions, such as all
|
|
ops, all modules, or all ops + their associated dtypes.
|
|
|
|
Args:
|
|
test (fn): Test function to parametrize over
|
|
generic_cls (class): Generic test class object containing tests (e.g. TestFoo)
|
|
device_cls (class): Device-specialized test class object (e.g. TestFooCPU); set to None
|
|
if the tests are not part of a device-specific set
|
|
|
|
Returns:
|
|
Generator object returning 3-tuples of:
|
|
test (fn): Parametrized test function; must support a device arg and args for any params
|
|
test_name (str): Parametrized suffix for the test (e.g. opname_int64); will be appended to
|
|
the base name of the test
|
|
param_kwargs (dict): Param kwargs to pass to the test (e.g. {'op': 'add', 'dtype': torch.int64})
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def __call__(self, fn):
|
|
if hasattr(fn, 'parametrize_fn'):
|
|
# Do composition with the product of args.
|
|
old_parametrize_fn = fn.parametrize_fn
|
|
new_parametrize_fn = self._parametrize_test
|
|
fn.parametrize_fn = compose_parametrize_fns(old_parametrize_fn, new_parametrize_fn)
|
|
else:
|
|
fn.parametrize_fn = self._parametrize_test
|
|
return fn
|
|
|
|
|
|
def compose_parametrize_fns(old_parametrize_fn, new_parametrize_fn):
|
|
"""
|
|
Returns a parametrize_fn that parametrizes over the product of the parameters handled
|
|
by the given parametrize_fns. Each given parametrize_fn should each have the signature
|
|
f(test, generic_cls, device_cls).
|
|
|
|
The test names will be a combination of the names produced by the parametrize_fns in
|
|
"<new_name>_<old_name>" order. This order is done to match intuition for constructed names
|
|
when composing multiple decorators; the names will be built in top to bottom order when stacking
|
|
parametrization decorators.
|
|
|
|
Args:
|
|
old_parametrize_fn (callable) - First parametrize_fn to compose.
|
|
new_parametrize_fn (callable) - Second parametrize_fn to compose.
|
|
"""
|
|
|
|
def composite_fn(test, generic_cls, device_cls,
|
|
old_parametrize_fn=old_parametrize_fn,
|
|
new_parametrize_fn=new_parametrize_fn):
|
|
old_tests = [(test, test_name, param_kwargs) for (test, test_name, param_kwargs) in
|
|
old_parametrize_fn(test, generic_cls, device_cls)]
|
|
for (old_test, old_test_name, old_param_kwargs) in old_tests:
|
|
for (new_test, new_test_name, new_param_kwargs) in \
|
|
new_parametrize_fn(old_test, generic_cls, device_cls):
|
|
redundant_params = set(old_param_kwargs.keys()).intersection(new_param_kwargs.keys())
|
|
if redundant_params:
|
|
raise RuntimeError('Parametrization over the same parameter by multiple parametrization '
|
|
'decorators is not supported. For test "{}", the following parameters '
|
|
'are handled multiple times: {}'.format(
|
|
test.__name__, redundant_params))
|
|
full_param_kwargs = {**old_param_kwargs, **new_param_kwargs}
|
|
merged_test_name = '{}{}{}'.format(new_test_name,
|
|
'_' if old_test_name != '' and new_test_name != '' else '',
|
|
old_test_name)
|
|
yield (new_test, merged_test_name, full_param_kwargs)
|
|
|
|
return composite_fn
|
|
|
|
|
|
def instantiate_parametrized_tests(generic_cls):
|
|
"""
|
|
Instantiates tests that have been decorated with a parametrize_fn. This is generally performed by a
|
|
decorator subclass of _TestParametrizer. The generic test will be replaced on the test class by
|
|
parametrized tests with specialized names.
|
|
|
|
Args:
|
|
generic_cls (class): Generic test class object containing tests (e.g. TestFoo)
|
|
"""
|
|
for attr_name in tuple(dir(generic_cls)):
|
|
class_attr = getattr(generic_cls, attr_name)
|
|
if not hasattr(class_attr, 'parametrize_fn'):
|
|
continue
|
|
|
|
# Remove the generic test from the test class.
|
|
delattr(generic_cls, attr_name)
|
|
|
|
# Add parametrized tests to the test class.
|
|
def instantiate_test_helper(cls, name, test, param_kwargs):
|
|
@wraps(test)
|
|
def instantiated_test(self, param_kwargs=param_kwargs):
|
|
test(self, **param_kwargs)
|
|
|
|
assert not hasattr(generic_cls, name), "Redefinition of test {0}".format(name)
|
|
setattr(generic_cls, name, instantiated_test)
|
|
|
|
for (test, test_suffix, param_kwargs) in class_attr.parametrize_fn(
|
|
class_attr, generic_cls=generic_cls, device_cls=None):
|
|
full_name = '{}_{}'.format(test.__name__, test_suffix)
|
|
instantiate_test_helper(cls=generic_cls, name=full_name, test=test, param_kwargs=param_kwargs)
|
|
|
|
|
|
class subtest(object):
|
|
"""
|
|
Explicit subtest case for use with test parametrization.
|
|
Allows for explicit naming of individual subtest cases as well as applying
|
|
decorators to the parametrized test.
|
|
|
|
Args:
|
|
arg_values (iterable): Iterable of arg values (e.g. range(10)) or
|
|
tuples of arg values (e.g. [(1, 2), (3, 4)]).
|
|
name (str): Optional name to use for the test.
|
|
decorators (iterable): Iterable of decorators to apply to the generated test.
|
|
"""
|
|
__slots__ = ['arg_values', 'name', 'decorators']
|
|
|
|
def __init__(self, arg_values, name=None, decorators=None):
|
|
self.arg_values = arg_values
|
|
self.name = name
|
|
self.decorators = decorators if decorators else []
|
|
|
|
|
|
class parametrize(_TestParametrizer):
|
|
"""
|
|
Decorator for applying generic test parametrizations.
|
|
|
|
The interface for this decorator is modeled after `@pytest.mark.parametrize`.
|
|
Basic usage between this decorator and pytest's is identical. The first argument
|
|
should be a string containing comma-separated names of parameters for the test, and
|
|
the second argument should be an iterable returning values or tuples of values for
|
|
the case of multiple parameters.
|
|
|
|
Beyond this basic usage, the decorator provides some additional functionality that
|
|
pytest does not.
|
|
|
|
1. Parametrized tests end up as generated test functions on unittest test classes.
|
|
Since this differs from how pytest works, this decorator takes on the additional
|
|
responsibility of naming these test functions. The default test names consists of
|
|
the test's base name followed by each parameter name + value (e.g. "test_bar_x_1_y_foo"),
|
|
but custom names can be defined using `name_fn` or the `subtest` structure (see below).
|
|
|
|
2. The decorator specially handles parameter values of type `subtest`, which allows for
|
|
more fine-grained control over both test naming and test execution. In particular, it can
|
|
be used to tag subtests with explicit test names or apply arbitrary decorators (see examples
|
|
below).
|
|
|
|
Examples::
|
|
|
|
@parametrize("x", range(5))
|
|
def test_foo(self, x):
|
|
...
|
|
|
|
@parametrize("x,y", [(1, 'foo'), (2, 'bar'), (3, 'baz')])
|
|
def test_bar(self, x, y):
|
|
...
|
|
|
|
@parametrize("x,y", [(1, 'foo'), (2, 'bar'), (3, 'baz')],
|
|
name_fn=lambda x, y: '{}_{}'.format(x, y))
|
|
def test_bar_custom_names(self, x, y):
|
|
...
|
|
|
|
@parametrize("x, y", [subtest((1, 2), name='double'),
|
|
subtest((1, 3), name='triple', decorators=[unittest.expectedFailure]),
|
|
subtest((1, 4), name='quadruple')])
|
|
def test_baz(self, x, y):
|
|
...
|
|
|
|
Args:
|
|
arg_str (str): String of arg names separate by commas (e.g. "x,y").
|
|
arg_values (iterable): Iterable of arg values (e.g. range(10)) or
|
|
tuples of arg values (e.g. [(1, 2), (3, 4)]).
|
|
name_fn (callable): Optional function that takes in parameters and returns subtest name.
|
|
"""
|
|
def __init__(self, arg_str, arg_values, name_fn=None):
|
|
self.arg_names = arg_str.split(',')
|
|
self.arg_values = arg_values
|
|
self.name_fn = name_fn
|
|
|
|
def _formatted_str_repr(self, name, value):
|
|
""" Returns a string representation for the given arg that is suitable for use in test function names. """
|
|
if isinstance(value, torch.dtype):
|
|
return dtype_name(value)
|
|
elif isinstance(value, torch.device):
|
|
return str(value)
|
|
# Can't use isinstance as it would cause a circular import
|
|
elif value.__class__.__name__ == 'OpInfo' or value.__class__.__name__ == 'ModuleInfo':
|
|
return value.formatted_name
|
|
else:
|
|
# Include name and value separated by underscore.
|
|
return '{}_{}'.format(name, str(value).replace('.', '_'))
|
|
|
|
def _default_subtest_name(self, values):
|
|
return '_'.join([self._formatted_str_repr(a, v) for a, v in zip(self.arg_names, values)])
|
|
|
|
def _get_subtest_name(self, values, explicit_name=None):
|
|
if explicit_name:
|
|
subtest_name = explicit_name
|
|
elif self.name_fn:
|
|
subtest_name = self.name_fn(*values)
|
|
else:
|
|
subtest_name = self._default_subtest_name(values)
|
|
return subtest_name
|
|
|
|
def _parametrize_test(self, test, generic_cls, device_cls):
|
|
if len(self.arg_names) == 0:
|
|
# No additional parameters needed for the test.
|
|
test_name = ''
|
|
yield (test, test_name, {})
|
|
else:
|
|
# Each "values" item is expected to be either:
|
|
# * A tuple of values with one for each arg. For a single arg, a single item is expected.
|
|
# * A subtest instance with arg_values matching the previous.
|
|
for values in self.arg_values:
|
|
maybe_name = None
|
|
if isinstance(values, subtest):
|
|
sub = values
|
|
values = sub.arg_values
|
|
maybe_name = sub.name
|
|
|
|
# Apply decorators.
|
|
@wraps(test)
|
|
def test_wrapper(*args, **kwargs):
|
|
return test(*args, **kwargs)
|
|
|
|
for decorator in sub.decorators:
|
|
test_wrapper = decorator(test_wrapper)
|
|
|
|
gen_test = test_wrapper
|
|
else:
|
|
gen_test = test
|
|
|
|
values = list(values) if len(self.arg_names) > 1 else [values]
|
|
if len(values) != len(self.arg_names):
|
|
raise RuntimeError('Expected # values == # arg names, but got: {} '
|
|
'values and {} names for test "{}"'.format(
|
|
len(values), len(self.arg_names), test.__name__))
|
|
|
|
param_kwargs = {
|
|
name: value for name, value in zip(self.arg_names, values)
|
|
}
|
|
|
|
test_name = self._get_subtest_name(values, explicit_name=maybe_name)
|
|
if '.' in test_name:
|
|
raise RuntimeError('Test name cannot contain periods, but got: {}'.format(test_name))
|
|
|
|
yield (gen_test, test_name, param_kwargs)
|
|
|
|
|
|
class ProfilingMode(Enum):
|
|
LEGACY = 1
|
|
SIMPLE = 2
|
|
PROFILING = 3
|
|
|
|
def cppProfilingFlagsToProfilingMode():
|
|
old_prof_exec_state = torch._C._jit_set_profiling_executor(True)
|
|
old_prof_mode_state = torch._C._jit_set_profiling_mode(True)
|
|
torch._C._jit_set_profiling_executor(old_prof_exec_state)
|
|
torch._C._jit_set_profiling_mode(old_prof_mode_state)
|
|
|
|
if old_prof_exec_state:
|
|
if old_prof_mode_state:
|
|
return ProfilingMode.PROFILING
|
|
else:
|
|
return ProfilingMode.SIMPLE
|
|
else:
|
|
return ProfilingMode.LEGACY
|
|
|
|
@contextmanager
|
|
def enable_profiling_mode_for_profiling_tests():
|
|
if GRAPH_EXECUTOR == ProfilingMode.PROFILING:
|
|
old_prof_exec_state = torch._C._jit_set_profiling_executor(True)
|
|
old_prof_mode_state = torch._C._jit_set_profiling_mode(True)
|
|
try:
|
|
yield
|
|
finally:
|
|
if GRAPH_EXECUTOR == ProfilingMode.PROFILING:
|
|
torch._C._jit_set_profiling_executor(old_prof_exec_state)
|
|
torch._C._jit_set_profiling_mode(old_prof_mode_state)
|
|
|
|
@contextmanager
|
|
def enable_profiling_mode():
|
|
old_prof_exec_state = torch._C._jit_set_profiling_executor(True)
|
|
old_prof_mode_state = torch._C._jit_set_profiling_mode(True)
|
|
try:
|
|
yield
|
|
finally:
|
|
torch._C._jit_set_profiling_executor(old_prof_exec_state)
|
|
torch._C._jit_set_profiling_mode(old_prof_mode_state)
|
|
|
|
@contextmanager
|
|
def num_profiled_runs(num_runs):
|
|
old_num_runs = torch._C._jit_set_num_profiled_runs(num_runs)
|
|
try:
|
|
yield
|
|
finally:
|
|
torch._C._jit_set_num_profiled_runs(old_num_runs)
|
|
|
|
func_call = torch._C.ScriptFunction.__call__
|
|
meth_call = torch._C.ScriptMethod.__call__
|
|
|
|
def prof_callable(callable, *args, **kwargs):
|
|
if 'profile_and_replay' in kwargs:
|
|
del kwargs['profile_and_replay']
|
|
if GRAPH_EXECUTOR == ProfilingMode.PROFILING:
|
|
with enable_profiling_mode_for_profiling_tests():
|
|
callable(*args, **kwargs)
|
|
return callable(*args, **kwargs)
|
|
|
|
return callable(*args, **kwargs)
|
|
|
|
def prof_func_call(*args, **kwargs):
|
|
return prof_callable(func_call, *args, **kwargs)
|
|
|
|
def prof_meth_call(*args, **kwargs):
|
|
return prof_callable(meth_call, *args, **kwargs)
|
|
|
|
# TODO fix when https://github.com/python/mypy/issues/2427 is address
|
|
torch._C.ScriptFunction.__call__ = prof_func_call # type: ignore[assignment]
|
|
torch._C.ScriptMethod.__call__ = prof_meth_call # type: ignore[assignment]
|
|
|
|
def _get_test_report_path():
|
|
# allow users to override the test file location. We need this
|
|
# because the distributed tests run the same test file multiple
|
|
# times with different configurations.
|
|
override = os.environ.get('TEST_REPORT_SOURCE_OVERRIDE')
|
|
test_source = override if override is not None else 'python-unittest'
|
|
return os.path.join('test-reports', test_source)
|
|
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--subprocess', action='store_true',
|
|
help='whether to run each test in a subprocess')
|
|
parser.add_argument('--seed', type=int, default=1234)
|
|
parser.add_argument('--accept', action='store_true')
|
|
parser.add_argument('--jit_executor', type=str)
|
|
parser.add_argument('--repeat', type=int, default=1)
|
|
parser.add_argument('--test_bailouts', action='store_true')
|
|
parser.add_argument('--save-xml', nargs='?', type=str,
|
|
const=_get_test_report_path(),
|
|
default=_get_test_report_path() if IS_IN_CI else None)
|
|
parser.add_argument('--discover-tests', action='store_true')
|
|
parser.add_argument('--log-suffix', type=str, default="")
|
|
parser.add_argument('--run-parallel', type=int, default=1)
|
|
parser.add_argument('--import-slow-tests', type=str, nargs='?', const=SLOW_TESTS_FILE)
|
|
parser.add_argument('--import-disabled-tests', type=str, nargs='?', const=DISABLED_TESTS_FILE)
|
|
|
|
# Only run when -h or --help flag is active to display both unittest and parser help messages.
|
|
def run_unittest_help(argv):
|
|
unittest.main(argv=argv)
|
|
|
|
if '-h' in sys.argv or '--help' in sys.argv:
|
|
help_thread = threading.Thread(target=run_unittest_help, args=(sys.argv,))
|
|
help_thread.start()
|
|
help_thread.join()
|
|
|
|
args, remaining = parser.parse_known_args()
|
|
if args.jit_executor == 'legacy':
|
|
GRAPH_EXECUTOR = ProfilingMode.LEGACY
|
|
elif args.jit_executor == 'profiling':
|
|
GRAPH_EXECUTOR = ProfilingMode.PROFILING
|
|
elif args.jit_executor == 'simple':
|
|
GRAPH_EXECUTOR = ProfilingMode.SIMPLE
|
|
else:
|
|
# infer flags based on the default settings
|
|
GRAPH_EXECUTOR = cppProfilingFlagsToProfilingMode()
|
|
|
|
|
|
IMPORT_SLOW_TESTS = args.import_slow_tests
|
|
IMPORT_DISABLED_TESTS = args.import_disabled_tests
|
|
LOG_SUFFIX = args.log_suffix
|
|
RUN_PARALLEL = args.run_parallel
|
|
TEST_BAILOUTS = args.test_bailouts
|
|
TEST_DISCOVER = args.discover_tests
|
|
TEST_IN_SUBPROCESS = args.subprocess
|
|
TEST_SAVE_XML = args.save_xml
|
|
REPEAT_COUNT = args.repeat
|
|
SEED = args.seed
|
|
if not expecttest.ACCEPT:
|
|
expecttest.ACCEPT = args.accept
|
|
UNITTEST_ARGS = [sys.argv[0]] + remaining
|
|
torch.manual_seed(SEED)
|
|
|
|
# CI Prefix path used only on CI environment
|
|
CI_TEST_PREFIX = str(Path(os.getcwd()))
|
|
|
|
def wait_for_process(p):
|
|
try:
|
|
return p.wait()
|
|
except KeyboardInterrupt:
|
|
# Give `p` a chance to handle KeyboardInterrupt. Without this,
|
|
# `pytest` can't print errors it collected so far upon KeyboardInterrupt.
|
|
exit_status = p.wait(timeout=5)
|
|
if exit_status is not None:
|
|
return exit_status
|
|
else:
|
|
p.kill()
|
|
raise
|
|
except: # noqa: B001,E722, copied from python core library
|
|
p.kill()
|
|
raise
|
|
finally:
|
|
# Always call p.wait() to ensure exit
|
|
p.wait()
|
|
|
|
def shell(command, cwd=None, env=None):
|
|
sys.stdout.flush()
|
|
sys.stderr.flush()
|
|
# The following cool snippet is copied from Py3 core library subprocess.call
|
|
# only the with
|
|
# 1. `except KeyboardInterrupt` block added for SIGINT handling.
|
|
# 2. In Py2, subprocess.Popen doesn't return a context manager, so we do
|
|
# `p.wait()` in a `final` block for the code to be portable.
|
|
#
|
|
# https://github.com/python/cpython/blob/71b6c1af727fbe13525fb734568057d78cea33f3/Lib/subprocess.py#L309-L323
|
|
assert not isinstance(command, torch._six.string_classes), "Command to shell should be a list or tuple of tokens"
|
|
p = subprocess.Popen(command, universal_newlines=True, cwd=cwd, env=env)
|
|
return wait_for_process(p)
|
|
|
|
|
|
# Used to run the same test with different tensor types
|
|
def repeat_test_for_types(dtypes):
|
|
def repeat_helper(f):
|
|
@wraps(f)
|
|
def call_helper(self, *args):
|
|
for dtype in dtypes:
|
|
with TestCase.subTest(self, dtype=dtype):
|
|
f(self, *args, dtype=dtype)
|
|
|
|
return call_helper
|
|
return repeat_helper
|
|
|
|
|
|
|
|
def discover_test_cases_recursively(suite_or_case):
|
|
if isinstance(suite_or_case, unittest.TestCase):
|
|
return [suite_or_case]
|
|
rc = []
|
|
for element in suite_or_case:
|
|
print(element)
|
|
rc.extend(discover_test_cases_recursively(element))
|
|
return rc
|
|
|
|
def get_test_names(test_cases):
|
|
return ['.'.join(case.id().split('.')[-2:]) for case in test_cases]
|
|
|
|
def _print_test_names():
|
|
suite = unittest.TestLoader().loadTestsFromModule(__main__)
|
|
test_cases = discover_test_cases_recursively(suite)
|
|
for name in get_test_names(test_cases):
|
|
print(name)
|
|
|
|
def chunk_list(lst, nchunks):
|
|
return [lst[i::nchunks] for i in range(nchunks)]
|
|
|
|
# sanitize filename e.g., distributed/pipeline/sync/skip/test_api.py -> distributed.pipeline.sync.skip.test_api
|
|
def sanitize_test_filename(filename):
|
|
# inspect.getfile returns absolute path in some CI jobs, converting it to relative path if needed
|
|
if filename.startswith(CI_TEST_PREFIX):
|
|
filename = filename[len(CI_TEST_PREFIX) + 1:]
|
|
strip_py = re.sub(r'.py$', '', filename)
|
|
return re.sub('/', r'.', strip_py)
|
|
|
|
def lint_test_case_extension(suite):
|
|
succeed = True
|
|
for test_case_or_suite in suite:
|
|
test_case = test_case_or_suite
|
|
if isinstance(test_case_or_suite, unittest.TestSuite):
|
|
first_test = test_case_or_suite._tests[0] if len(test_case_or_suite._tests) > 0 else None
|
|
if first_test is not None and isinstance(first_test, unittest.TestSuite):
|
|
return succeed and lint_test_case_extension(test_case_or_suite)
|
|
test_case = first_test
|
|
|
|
if test_case is not None:
|
|
test_class = test_case.id().split('.', 1)[1].split('.')[0]
|
|
if not isinstance(test_case, TestCase):
|
|
err = "This test class should extend from torch.testing._internal.common_utils.TestCase but it doesn't."
|
|
print(f"{test_class} - failed. {err}")
|
|
succeed = False
|
|
return succeed
|
|
|
|
def run_tests(argv=UNITTEST_ARGS):
|
|
# import test files.
|
|
if IMPORT_SLOW_TESTS:
|
|
if os.path.exists(IMPORT_SLOW_TESTS):
|
|
global slow_tests_dict
|
|
with open(IMPORT_SLOW_TESTS, 'r') as fp:
|
|
slow_tests_dict = json.load(fp)
|
|
else:
|
|
print(f'[WARNING] slow test file provided but not found: {IMPORT_SLOW_TESTS}')
|
|
if IMPORT_DISABLED_TESTS:
|
|
if os.path.exists(IMPORT_DISABLED_TESTS):
|
|
global disabled_tests_dict
|
|
with open(IMPORT_DISABLED_TESTS, 'r') as fp:
|
|
disabled_tests_dict = json.load(fp)
|
|
else:
|
|
print(f'[WARNING] disabled test file provided but not found: {IMPORT_DISABLED_TESTS}')
|
|
# Determine the test launch mechanism
|
|
if TEST_DISCOVER:
|
|
_print_test_names()
|
|
return
|
|
|
|
# Before running the tests, lint to check that every test class extends from TestCase
|
|
suite = unittest.TestLoader().loadTestsFromModule(__main__)
|
|
if not lint_test_case_extension(suite):
|
|
sys.exit(1)
|
|
|
|
if TEST_IN_SUBPROCESS:
|
|
failed_tests = []
|
|
test_cases = discover_test_cases_recursively(suite)
|
|
for case in test_cases:
|
|
test_case_full_name = case.id().split('.', 1)[1]
|
|
other_args = []
|
|
if IMPORT_DISABLED_TESTS:
|
|
other_args.append('--import-disabled-tests')
|
|
if IMPORT_SLOW_TESTS:
|
|
other_args.append('--import-slow-tests')
|
|
cmd = [sys.executable] + [argv[0]] + other_args + argv[1:] + [test_case_full_name]
|
|
string_cmd = " ".join(cmd)
|
|
exitcode = shell(cmd)
|
|
if exitcode != 0:
|
|
# This is sort of hacky, but add on relevant env variables for distributed tests.
|
|
if 'TestDistBackendWithSpawn' in test_case_full_name:
|
|
backend = os.environ.get("BACKEND", "")
|
|
world_size = os.environ.get("WORLD_SIZE", "")
|
|
env_prefix = f"BACKEND={backend} WORLD_SIZE={world_size}"
|
|
string_cmd = env_prefix + " " + string_cmd
|
|
# Log the command to reproduce the failure.
|
|
print(f"Test exited with non-zero exitcode {exitcode}. Command to reproduce: {string_cmd}")
|
|
failed_tests.append(test_case_full_name)
|
|
|
|
assert len(failed_tests) == 0, "{} unit test(s) failed:\n\t{}".format(
|
|
len(failed_tests), '\n\t'.join(failed_tests))
|
|
elif RUN_PARALLEL > 1:
|
|
test_cases = discover_test_cases_recursively(suite)
|
|
test_batches = chunk_list(get_test_names(test_cases), RUN_PARALLEL)
|
|
processes = []
|
|
for i in range(RUN_PARALLEL):
|
|
command = [sys.executable] + argv + ['--log-suffix=-shard-{}'.format(i + 1)] + test_batches[i]
|
|
processes.append(subprocess.Popen(command, universal_newlines=True))
|
|
failed = False
|
|
for p in processes:
|
|
failed |= wait_for_process(p) != 0
|
|
assert not failed, "Some test shards have failed"
|
|
elif TEST_SAVE_XML is not None:
|
|
# import here so that non-CI doesn't need xmlrunner installed
|
|
import xmlrunner # type: ignore[import]
|
|
test_filename = sanitize_test_filename(inspect.getfile(sys._getframe(1)))
|
|
test_report_path = TEST_SAVE_XML + LOG_SUFFIX
|
|
test_report_path = os.path.join(test_report_path, test_filename)
|
|
os.makedirs(test_report_path, exist_ok=True)
|
|
verbose = '--verbose' in argv or '-v' in argv
|
|
if verbose:
|
|
print('Test results will be stored in {}'.format(test_report_path))
|
|
unittest.main(argv=argv, testRunner=xmlrunner.XMLTestRunner(output=test_report_path, verbosity=2 if verbose else 1))
|
|
elif REPEAT_COUNT > 1:
|
|
for _ in range(REPEAT_COUNT):
|
|
if not unittest.main(exit=False, argv=argv).result.wasSuccessful():
|
|
sys.exit(-1)
|
|
else:
|
|
unittest.main(argv=argv)
|
|
|
|
IS_LINUX = sys.platform == "linux"
|
|
IS_WINDOWS = sys.platform == "win32"
|
|
IS_MACOS = sys.platform == "darwin"
|
|
IS_PPC = platform.machine() == "ppc64le"
|
|
|
|
def is_avx512_vnni_supported():
|
|
if sys.platform != 'linux':
|
|
return False
|
|
with open("/proc/cpuinfo", encoding="ascii") as f:
|
|
lines = f.read()
|
|
return "vnni" in lines
|
|
|
|
IS_AVX512_VNNI_SUPPORTED = is_avx512_vnni_supported()
|
|
|
|
if IS_WINDOWS:
|
|
@contextmanager
|
|
def TemporaryFileName(*args, **kwargs):
|
|
# Ideally we would like to not have to manually delete the file, but NamedTemporaryFile
|
|
# opens the file, and it cannot be opened multiple times in Windows. To support Windows,
|
|
# close the file after creation and try to remove it manually
|
|
if 'delete' in kwargs:
|
|
if kwargs['delete'] is not False:
|
|
raise UserWarning("only TemporaryFileName with delete=False is supported on Windows.")
|
|
else:
|
|
kwargs['delete'] = False
|
|
f = tempfile.NamedTemporaryFile(*args, **kwargs)
|
|
try:
|
|
f.close()
|
|
yield f.name
|
|
finally:
|
|
os.unlink(f.name)
|
|
else:
|
|
@contextmanager # noqa: T484
|
|
def TemporaryFileName(*args, **kwargs):
|
|
with tempfile.NamedTemporaryFile(*args, **kwargs) as f:
|
|
yield f.name
|
|
|
|
if IS_WINDOWS:
|
|
@contextmanager
|
|
def TemporaryDirectoryName(suffix=None):
|
|
# On Windows the directory created by TemporaryDirectory is likely to be removed prematurely,
|
|
# so we first create the directory using mkdtemp and then remove it manually
|
|
try:
|
|
dir_name = tempfile.mkdtemp(suffix=suffix)
|
|
yield dir_name
|
|
finally:
|
|
shutil.rmtree(dir_name)
|
|
else:
|
|
@contextmanager # noqa: T484
|
|
def TemporaryDirectoryName(suffix=None):
|
|
with tempfile.TemporaryDirectory(suffix=suffix) as d:
|
|
yield d
|
|
|
|
IS_FILESYSTEM_UTF8_ENCODING = sys.getfilesystemencoding() == 'utf-8'
|
|
|
|
def _check_module_exists(name: str) -> bool:
|
|
r"""Returns if a top-level module with :attr:`name` exists *without**
|
|
importing it. This is generally safer than try-catch block around a
|
|
`import X`. It avoids third party libraries breaking assumptions of some of
|
|
our tests, e.g., setting multiprocessing start method when imported
|
|
(see librosa/#747, torchvision/#544).
|
|
"""
|
|
try:
|
|
import importlib.util
|
|
spec = importlib.util.find_spec(name)
|
|
return spec is not None
|
|
except ImportError:
|
|
return False
|
|
|
|
TEST_NUMPY = _check_module_exists('numpy')
|
|
TEST_SCIPY = _check_module_exists('scipy')
|
|
TEST_MKL = torch.backends.mkl.is_available()
|
|
TEST_NUMBA = _check_module_exists('numba')
|
|
|
|
TEST_DILL = _check_module_exists('dill')
|
|
|
|
TEST_LIBROSA = _check_module_exists('librosa')
|
|
|
|
BUILD_WITH_CAFFE2 = _check_module_exists("caffe2.python.caffe2_pybind11_state")
|
|
|
|
# Python 2.7 doesn't have spawn
|
|
NO_MULTIPROCESSING_SPAWN = os.environ.get('NO_MULTIPROCESSING_SPAWN', '0') == '1'
|
|
TEST_WITH_ASAN = os.getenv('PYTORCH_TEST_WITH_ASAN', '0') == '1'
|
|
TEST_WITH_DEV_DBG_ASAN = os.getenv('PYTORCH_TEST_WITH_DEV_DBG_ASAN', '0') == '1'
|
|
TEST_WITH_TSAN = os.getenv('PYTORCH_TEST_WITH_TSAN', '0') == '1'
|
|
TEST_WITH_UBSAN = os.getenv('PYTORCH_TEST_WITH_UBSAN', '0') == '1'
|
|
TEST_WITH_ROCM = os.getenv('PYTORCH_TEST_WITH_ROCM', '0') == '1'
|
|
|
|
# TODO: Remove PYTORCH_MIOPEN_SUGGEST_NHWC once ROCm officially supports NHWC in MIOpen
|
|
# See #64427
|
|
TEST_WITH_MIOPEN_SUGGEST_NHWC = os.getenv('PYTORCH_MIOPEN_SUGGEST_NHWC', '0') == '1'
|
|
|
|
# Enables tests that are slow to run (disabled by default)
|
|
TEST_WITH_SLOW = os.getenv('PYTORCH_TEST_WITH_SLOW', '0') == '1'
|
|
|
|
# Disables non-slow tests (these tests enabled by default)
|
|
# This is usually used in conjunction with TEST_WITH_SLOW to
|
|
# run *only* slow tests. (I could have done an enum, but
|
|
# it felt a little awkward.
|
|
TEST_SKIP_FAST = os.getenv('PYTORCH_TEST_SKIP_FAST', '0') == '1'
|
|
|
|
# Disables noarch tests; all but one CI configuration disables these. We don't
|
|
# disable them for local runs because you still want to run them
|
|
# (unlike slow tests!)
|
|
TEST_SKIP_NOARCH = os.getenv('PYTORCH_TEST_SKIP_NOARCH', '0') == '1'
|
|
|
|
# Determine whether to enable cuda memory leak check.
|
|
# CUDA mem leak check is expensive and thus we don't want to execute it on every
|
|
# test case / configuration.
|
|
# If this is True then CUDA memory leak checks are skipped. If this is false
|
|
# then CUDA memory leak checks are performed.
|
|
# See: https://github.com/pytorch/pytorch/pull/59402#issuecomment-858811135
|
|
TEST_SKIP_CUDA_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_SKIP_CUDA_MEM_LEAK_CHECK', '0') == '1'
|
|
|
|
# Disables tests for when on Github Actions
|
|
ON_GHA = os.getenv('GITHUB_ACTIONS', '0') == '1'
|
|
|
|
# True if CI is running TBB-enabled Pytorch
|
|
IS_TBB = "tbb" in os.getenv("BUILD_ENVIRONMENT", "")
|
|
|
|
# Dict of NumPy dtype -> torch dtype (when the correspondence exists)
|
|
numpy_to_torch_dtype_dict = {
|
|
np.bool_ : torch.bool,
|
|
np.uint8 : torch.uint8,
|
|
np.int8 : torch.int8,
|
|
np.int16 : torch.int16,
|
|
np.int32 : torch.int32,
|
|
np.int64 : torch.int64,
|
|
np.float16 : torch.float16,
|
|
np.float32 : torch.float32,
|
|
np.float64 : torch.float64,
|
|
np.complex64 : torch.complex64,
|
|
np.complex128 : torch.complex128
|
|
}
|
|
|
|
if IS_WINDOWS:
|
|
# Size of `np.intc` is platform defined.
|
|
# It is returned by functions like `bitwise_not`.
|
|
# On Windows `int` is 32-bit
|
|
# https://docs.microsoft.com/en-us/cpp/cpp/data-type-ranges?view=msvc-160
|
|
numpy_to_torch_dtype_dict[np.intc] = torch.int
|
|
|
|
# Dict of torch dtype -> NumPy dtype
|
|
torch_to_numpy_dtype_dict = {value : key for (key, value) in numpy_to_torch_dtype_dict.items()}
|
|
|
|
ALL_TENSORTYPES = [torch.float,
|
|
torch.double,
|
|
torch.half]
|
|
|
|
# bfloat16 bringup is currently only available on ROCm
|
|
# ALL_TENSORTYPES2 will eventually be unified with ALL_TENSORTYPES
|
|
# when bfloat16 bringup is complete on all platforms
|
|
if TEST_WITH_ROCM:
|
|
ALL_TENSORTYPES2 = [torch.float,
|
|
torch.double,
|
|
torch.half,
|
|
torch.bfloat16]
|
|
else:
|
|
ALL_TENSORTYPES2 = ALL_TENSORTYPES
|
|
|
|
def skipIfRocm(fn):
|
|
@wraps(fn)
|
|
def wrapper(*args, **kwargs):
|
|
if TEST_WITH_ROCM:
|
|
raise unittest.SkipTest("test doesn't currently work on the ROCm stack")
|
|
else:
|
|
fn(*args, **kwargs)
|
|
return wrapper
|
|
|
|
# Skips a test on CUDA if ROCm is unavailable or its version is lower than requested.
|
|
def skipIfRocmVersionLessThan(version=None):
|
|
def dec_fn(fn):
|
|
@wraps(fn)
|
|
def wrap_fn(self, *args, **kwargs):
|
|
if not TEST_WITH_ROCM:
|
|
reason = "ROCm not available"
|
|
raise unittest.SkipTest(reason)
|
|
rocm_version = str(torch.version.hip)
|
|
rocm_version = rocm_version.split("-")[0] # ignore git sha
|
|
rocm_version_tuple = tuple(int(x) for x in rocm_version.split("."))
|
|
if rocm_version_tuple is None or version is None or rocm_version_tuple < tuple(version):
|
|
reason = "ROCm {0} is available but {1} required".format(rocm_version_tuple, version)
|
|
raise unittest.SkipTest(reason)
|
|
return fn(self, *args, **kwargs)
|
|
return wrap_fn
|
|
return dec_fn
|
|
|
|
def skipIfNotMiopenSuggestNHWC(fn):
|
|
@wraps(fn)
|
|
def wrapper(*args, **kwargs):
|
|
if not TEST_WITH_MIOPEN_SUGGEST_NHWC:
|
|
raise unittest.SkipTest("test doesn't currently work without MIOpen NHWC activation")
|
|
else:
|
|
fn(*args, **kwargs)
|
|
return wrapper
|
|
|
|
# Context manager for setting deterministic flag and automatically
|
|
# resetting it to its original value
|
|
class DeterministicGuard:
|
|
def __init__(self, deterministic, *, warn_only=False):
|
|
self.deterministic = deterministic
|
|
self.warn_only = warn_only
|
|
|
|
def __enter__(self):
|
|
self.deterministic_restore = torch.are_deterministic_algorithms_enabled()
|
|
self.warn_only_restore = torch.is_deterministic_algorithms_warn_only_enabled()
|
|
torch.use_deterministic_algorithms(
|
|
self.deterministic,
|
|
warn_only=self.warn_only)
|
|
|
|
def __exit__(self, exception_type, exception_value, traceback):
|
|
torch.use_deterministic_algorithms(
|
|
self.deterministic_restore,
|
|
warn_only=self.warn_only_restore)
|
|
|
|
# Context manager for setting cuda sync debug mode and reset it
|
|
# to original value
|
|
# we are not exposing it to the core because sync debug mode is
|
|
# global and thus not thread safe
|
|
class CudaSyncGuard:
|
|
def __init__(self, sync_debug_mode):
|
|
self.mode = sync_debug_mode
|
|
|
|
def __enter__(self):
|
|
self.debug_mode_restore = torch.cuda.get_sync_debug_mode()
|
|
torch.cuda.set_sync_debug_mode(self.mode)
|
|
|
|
def __exit__(self, exception_type, exception_value, traceback):
|
|
torch.cuda.set_sync_debug_mode(self.debug_mode_restore)
|
|
|
|
# This decorator can be used for API tests that call
|
|
# torch.use_deterministic_algorithms(). When the test is finished, it will
|
|
# restore the previous deterministic flag setting.
|
|
#
|
|
# If CUDA >= 10.2, this will set the environment variable
|
|
# CUBLAS_WORKSPACE_CONFIG=:4096:8 so that the error associated with that
|
|
# setting is not thrown during the test unless the test changes that variable
|
|
# on purpose. The previous CUBLAS_WORKSPACE_CONFIG setting will also be
|
|
# restored once the test is finished.
|
|
#
|
|
# Note that if a test requires CUDA to actually register the changed
|
|
# CUBLAS_WORKSPACE_CONFIG variable, a new subprocess must be created, because
|
|
# CUDA only checks the variable when the runtime initializes. Tests can be
|
|
# run inside a subprocess like so:
|
|
#
|
|
# import subprocess, sys, os
|
|
# script = '''
|
|
# # Test code should go here
|
|
# '''
|
|
# try:
|
|
# subprocess.check_output(
|
|
# [sys.executable, '-c', script],
|
|
# stderr=subprocess.STDOUT,
|
|
# cwd=os.path.dirname(os.path.realpath(__file__)),
|
|
# env=os.environ.copy())
|
|
# except subprocess.CalledProcessError as e:
|
|
# error_message = e.output.decode('utf-8')
|
|
# # Handle exceptions raised by the subprocess here
|
|
#
|
|
def wrapDeterministicFlagAPITest(fn):
|
|
@wraps(fn)
|
|
def wrapper(*args, **kwargs):
|
|
with DeterministicGuard(
|
|
torch.are_deterministic_algorithms_enabled(),
|
|
warn_only=torch.is_deterministic_algorithms_warn_only_enabled()):
|
|
class CuBLASConfigGuard:
|
|
cublas_var_name = 'CUBLAS_WORKSPACE_CONFIG'
|
|
|
|
def __enter__(self):
|
|
self.is_cuda10_2_or_higher = (
|
|
(torch.version.cuda is not None)
|
|
and ([int(x) for x in torch.version.cuda.split(".")] >= [10, 2]))
|
|
if self.is_cuda10_2_or_higher:
|
|
self.cublas_config_restore = os.environ.get(self.cublas_var_name)
|
|
os.environ[self.cublas_var_name] = ':4096:8'
|
|
|
|
def __exit__(self, exception_type, exception_value, traceback):
|
|
if self.is_cuda10_2_or_higher:
|
|
cur_cublas_config = os.environ.get(self.cublas_var_name)
|
|
if self.cublas_config_restore is None:
|
|
if cur_cublas_config is not None:
|
|
del os.environ[self.cublas_var_name]
|
|
else:
|
|
os.environ[self.cublas_var_name] = self.cublas_config_restore
|
|
with CuBLASConfigGuard():
|
|
fn(*args, **kwargs)
|
|
return wrapper
|
|
|
|
def skipIfCompiledWithoutNumpy(fn):
|
|
# Even if the numpy module is present, if `USE_NUMPY=0` is used during the
|
|
# build, numpy tests will fail
|
|
numpy_support = TEST_NUMPY
|
|
if numpy_support:
|
|
try:
|
|
# The numpy module is present, verify that PyTorch is compiled with
|
|
# numpy support
|
|
torch.from_numpy(np.array([2, 2]))
|
|
except RuntimeError:
|
|
numpy_support = False
|
|
|
|
@wraps(fn)
|
|
def wrapper(*args, **kwargs):
|
|
if not numpy_support:
|
|
raise unittest.SkipTest("PyTorch was compiled without numpy support")
|
|
else:
|
|
fn(*args, **kwargs)
|
|
return wrapper
|
|
|
|
def _test_function(fn, device):
|
|
def run_test_function(self):
|
|
return fn(self, device)
|
|
return run_test_function
|
|
|
|
|
|
def skipIfNoLapack(fn):
|
|
@wraps(fn)
|
|
def wrapper(*args, **kwargs):
|
|
if not torch._C.has_lapack:
|
|
raise unittest.SkipTest('PyTorch compiled without Lapack')
|
|
else:
|
|
fn(*args, **kwargs)
|
|
return wrapper
|
|
|
|
|
|
def skipIfNotRegistered(op_name, message):
|
|
"""Wraps the decorator to hide the import of the `core`.
|
|
|
|
Args:
|
|
op_name: Check if this op is registered in `core._REGISTERED_OPERATORS`.
|
|
message: message to fail with.
|
|
|
|
Usage:
|
|
@skipIfNotRegistered('MyOp', 'MyOp is not linked!')
|
|
This will check if 'MyOp' is in the caffe2.python.core
|
|
"""
|
|
if not BUILD_WITH_CAFFE2:
|
|
return unittest.skip("Pytorch is compiled without Caffe2")
|
|
try:
|
|
from caffe2.python import core
|
|
skipper = unittest.skipIf(op_name not in core._REGISTERED_OPERATORS,
|
|
message)
|
|
except ImportError:
|
|
skipper = unittest.skip("Cannot import `caffe2.python.core`")
|
|
return skipper
|
|
|
|
|
|
def skipIfNoSciPy(fn):
|
|
@wraps(fn)
|
|
def wrapper(*args, **kwargs):
|
|
if not TEST_SCIPY:
|
|
raise unittest.SkipTest("test require SciPy, but SciPy not found")
|
|
else:
|
|
fn(*args, **kwargs)
|
|
return wrapper
|
|
|
|
|
|
def skipIfOnGHA(fn):
|
|
@wraps(fn)
|
|
def wrapper(*args, **kwargs):
|
|
if ON_GHA:
|
|
raise unittest.SkipTest("Test disabled for GHA")
|
|
else:
|
|
fn(*args, **kwargs)
|
|
return wrapper
|
|
|
|
|
|
def skipIfTBB(message="This test makes TBB sad"):
|
|
def dec_fn(fn):
|
|
@wraps(fn)
|
|
def wrapper(*args, **kwargs):
|
|
if IS_TBB:
|
|
raise unittest.SkipTest(message)
|
|
else:
|
|
fn(*args, **kwargs)
|
|
return wrapper
|
|
return dec_fn
|
|
|
|
|
|
def slowTest(fn):
|
|
@wraps(fn)
|
|
def wrapper(*args, **kwargs):
|
|
if not TEST_WITH_SLOW:
|
|
raise unittest.SkipTest("test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test")
|
|
else:
|
|
fn(*args, **kwargs)
|
|
wrapper.__dict__['slow_test'] = True
|
|
return wrapper
|
|
|
|
|
|
# noarch tests are tests that should be only run on one CI configuration,
|
|
# because they don't exercise any interesting platform specific code
|
|
# and so if run once, indicate the test should pass everywhere.
|
|
# See https://github.com/pytorch/pytorch/issues/53743
|
|
def noarchTest(fn):
|
|
@wraps(fn)
|
|
def wrapper(*args, **kwargs):
|
|
if TEST_SKIP_NOARCH:
|
|
raise unittest.SkipTest("test is noarch: we are skipping noarch tests due to TEST_SKIP_NOARCH")
|
|
else:
|
|
fn(*args, **kwargs)
|
|
return wrapper
|
|
|
|
|
|
def slowAwareTest(fn):
|
|
fn.__dict__['slow_test'] = True
|
|
return fn
|
|
|
|
|
|
def skipCUDAMemoryLeakCheckIf(condition):
|
|
def dec(fn):
|
|
if getattr(fn, '_do_cuda_memory_leak_check', True): # if current True
|
|
fn._do_cuda_memory_leak_check = not condition
|
|
return fn
|
|
return dec
|
|
|
|
def skipCUDANonDefaultStreamIf(condition):
|
|
def dec(fn):
|
|
if getattr(fn, '_do_cuda_non_default_stream', True): # if current True
|
|
fn._do_cuda_non_default_stream = not condition
|
|
return fn
|
|
return dec
|
|
|
|
def suppress_warnings(fn):
|
|
@wraps(fn)
|
|
def wrapper(*args, **kwargs):
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
fn(*args, **kwargs)
|
|
return wrapper
|
|
|
|
|
|
def to_gpu(obj, type_map=None):
|
|
if type_map is None:
|
|
type_map = {}
|
|
if isinstance(obj, torch.Tensor):
|
|
assert obj.is_leaf
|
|
t = type_map.get(obj.dtype, obj.dtype)
|
|
with torch.no_grad():
|
|
res = obj.clone().to(dtype=t, device="cuda")
|
|
res.requires_grad = obj.requires_grad
|
|
return res
|
|
elif torch.is_storage(obj):
|
|
return obj.new().resize_(obj.size()).copy_(obj)
|
|
elif isinstance(obj, list):
|
|
return [to_gpu(o, type_map) for o in obj]
|
|
elif isinstance(obj, tuple):
|
|
return tuple(to_gpu(o, type_map) for o in obj)
|
|
else:
|
|
return deepcopy(obj)
|
|
|
|
|
|
def get_function_arglist(func):
|
|
return inspect.getfullargspec(func).args
|
|
|
|
|
|
def set_rng_seed(seed):
|
|
torch.manual_seed(seed)
|
|
random.seed(seed)
|
|
if TEST_NUMPY:
|
|
np.random.seed(seed)
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def freeze_rng_state():
|
|
# no_dispatch needed for test_composite_compliance
|
|
# Some OpInfos use freeze_rng_state for rng determinism, but
|
|
# test_composite_compliance overrides dispatch for all torch functions
|
|
# which we need to disable to get and set rng state
|
|
with no_dispatch():
|
|
rng_state = torch.get_rng_state()
|
|
if torch.cuda.is_available():
|
|
cuda_rng_state = torch.cuda.get_rng_state()
|
|
try:
|
|
yield
|
|
finally:
|
|
with no_dispatch():
|
|
if torch.cuda.is_available():
|
|
torch.cuda.set_rng_state(cuda_rng_state)
|
|
torch.set_rng_state(rng_state)
|
|
|
|
@contextlib.contextmanager
|
|
def set_default_dtype(dtype):
|
|
saved_dtype = torch.get_default_dtype()
|
|
torch.set_default_dtype(dtype)
|
|
try:
|
|
yield
|
|
finally:
|
|
torch.set_default_dtype(saved_dtype)
|
|
|
|
def iter_indices(tensor):
|
|
if tensor.dim() == 0:
|
|
return range(0)
|
|
if tensor.dim() == 1:
|
|
return range(tensor.size(0))
|
|
return product(*(range(s) for s in tensor.size()))
|
|
|
|
|
|
def is_iterable(obj):
|
|
try:
|
|
iter(obj)
|
|
return True
|
|
except TypeError:
|
|
return False
|
|
|
|
|
|
def is_iterable_of_tensors(iterable, include_empty=False):
|
|
""" Returns True if iterable is an iterable of tensors and False o.w.
|
|
|
|
If the iterable is empty, the return value is :attr:`include_empty`
|
|
"""
|
|
# Tensor itself is iterable so we check this first
|
|
if isinstance(iterable, torch.Tensor):
|
|
return False
|
|
|
|
try:
|
|
if len(iterable) == 0:
|
|
return include_empty
|
|
|
|
for t in iter(iterable):
|
|
if not isinstance(t, torch.Tensor):
|
|
return False
|
|
|
|
except TypeError as te:
|
|
return False
|
|
|
|
return True
|
|
|
|
|
|
class CudaNonDefaultStream():
|
|
def __enter__(self):
|
|
# Before starting CUDA test save currently active streams on all
|
|
# CUDA devices and set new non default streams to all CUDA devices
|
|
# to ensure CUDA tests do not use default stream by mistake.
|
|
beforeDevice = torch.cuda.current_device()
|
|
self.beforeStreams = []
|
|
for d in range(torch.cuda.device_count()):
|
|
self.beforeStreams.append(torch.cuda.current_stream(d))
|
|
deviceStream = torch.cuda.Stream(device=d)
|
|
torch._C._cuda_setStream(deviceStream._cdata)
|
|
torch._C._cuda_setDevice(beforeDevice)
|
|
|
|
def __exit__(self, exec_type, exec_value, traceback):
|
|
# After completing CUDA test load previously active streams on all
|
|
# CUDA devices.
|
|
beforeDevice = torch.cuda.current_device()
|
|
for d in range(torch.cuda.device_count()):
|
|
torch._C._cuda_setStream(self.beforeStreams[d]._cdata)
|
|
torch._C._cuda_setDevice(beforeDevice)
|
|
|
|
class CudaMemoryLeakCheck():
|
|
def __init__(self, testcase, name=None):
|
|
self.name = testcase.id() if name is None else name
|
|
self.testcase = testcase
|
|
|
|
# initialize context & RNG to prevent false positive detections
|
|
# when the test is the first to initialize those
|
|
from torch.testing._internal.common_cuda import initialize_cuda_context_rng
|
|
initialize_cuda_context_rng()
|
|
|
|
# Stores CUDA memory data provided by PyTorch's caching allocator and
|
|
# the CUDA driver.
|
|
#
|
|
# NOTE: The undocumented torch.cuda.mem_get_info() returns
|
|
# (#free bytes, #total bytes available) on the GPU
|
|
def __enter__(self):
|
|
self.caching_allocator_befores = []
|
|
self.driver_befores = []
|
|
|
|
# Performs a gc if required (required if any CUDA memory is held)
|
|
num_devices = torch.cuda.device_count()
|
|
for i in range(num_devices):
|
|
caching_allocator_mem_allocated = torch.cuda.memory_allocated(i)
|
|
# NOTE: gc is based exclusively on caching allocator memory
|
|
# because the driver will always have some bytes in use (context size?)
|
|
if caching_allocator_mem_allocated > 0:
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
break
|
|
|
|
# Acquires caching allocator and driver statistics before the test is run
|
|
for i in range(num_devices):
|
|
self.caching_allocator_befores.append(torch.cuda.memory_allocated(i))
|
|
bytes_free, bytes_total = torch.cuda.mem_get_info(i)
|
|
driver_mem_allocated = bytes_total - bytes_free
|
|
self.driver_befores.append(driver_mem_allocated)
|
|
|
|
def __exit__(self, exec_type, exec_value, traceback):
|
|
# Don't check for leaks if an exception was thrown
|
|
if exec_type is not None:
|
|
return
|
|
|
|
# Compares caching allocator before/after statistics
|
|
# An increase in allocated memory is a discrepancy indicating a possible
|
|
# memory leak
|
|
discrepancy_detected = False
|
|
num_devices = torch.cuda.device_count()
|
|
for i in range(num_devices):
|
|
caching_allocator_mem_allocated = torch.cuda.memory_allocated(i)
|
|
|
|
if caching_allocator_mem_allocated > self.caching_allocator_befores[i]:
|
|
discrepancy_detected = True
|
|
break
|
|
|
|
# Short-circuits if no discrepancy detected
|
|
if not discrepancy_detected:
|
|
return
|
|
|
|
# Validates the discrepancy persists after garbage collection and
|
|
# is confirmed by the driver API
|
|
|
|
# NOTE: driver API iscrepancies alone are ignored because with the jiterator
|
|
# some tests may permanently increase the CUDA context size and
|
|
# that will appear as a driver memory leak but is the expected behavior.
|
|
|
|
# GCs and clears the cache
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
for i in range(num_devices):
|
|
caching_allocator_mem_allocated = torch.cuda.memory_allocated(i)
|
|
bytes_free, bytes_total = torch.cuda.mem_get_info(i)
|
|
driver_mem_allocated = bytes_total - bytes_free
|
|
|
|
caching_allocator_discrepancy = False
|
|
driver_discrepancy = False
|
|
|
|
if caching_allocator_mem_allocated > self.caching_allocator_befores[i]:
|
|
caching_allocator_discrepancy = True
|
|
|
|
if driver_mem_allocated > self.driver_befores[i]:
|
|
driver_discrepancy = True
|
|
|
|
if caching_allocator_discrepancy and not driver_discrepancy:
|
|
# Just raises a warning if the leak is not validated by the
|
|
# driver API
|
|
# NOTE: this may be a problem with how the caching allocator collects its
|
|
# statistics or a leak too small to trigger the allocation of an
|
|
# additional block of memory by the CUDA driver
|
|
msg = ("CUDA caching allocator reports a memory leak not "
|
|
"verified by the driver API in {}! "
|
|
"Caching allocator allocated memory was {} and is now reported as {} "
|
|
"on device {}. "
|
|
"CUDA driver allocated memory was {} and is now {}.").format(
|
|
self.name,
|
|
self.caching_allocator_befores[i],
|
|
caching_allocator_mem_allocated,
|
|
i,
|
|
self.driver_befores[i],
|
|
driver_mem_allocated)
|
|
warnings.warn(msg)
|
|
elif caching_allocator_discrepancy and driver_discrepancy:
|
|
# A caching allocator discrepancy validated by the driver API is a
|
|
# failure (except on ROCm, see below)
|
|
msg = ("CUDA driver API confirmed a leak in {}! "
|
|
"Caching allocator allocated memory was {} and is now reported as {} "
|
|
"on device {}. "
|
|
"CUDA driver allocated memory was {} and is now {}.").format(
|
|
self.name,
|
|
self.caching_allocator_befores[i],
|
|
caching_allocator_mem_allocated,
|
|
i,
|
|
self.driver_befores[i],
|
|
driver_mem_allocated)
|
|
|
|
# See #62533
|
|
# ROCM: Sometimes the transient memory is reported as leaked memory
|
|
if TEST_WITH_ROCM:
|
|
warnings.warn(msg)
|
|
else:
|
|
raise RuntimeError(msg)
|
|
|
|
@contextmanager
|
|
def skip_exception_type(exc_type):
|
|
try:
|
|
yield
|
|
except exc_type as e:
|
|
raise unittest.SkipTest(f"not implemented: {e}") from e
|
|
|
|
# "min_satisfying_examples" setting has been deprecated in hypythesis
|
|
# 3.56.0 and removed in hypothesis 4.x
|
|
try:
|
|
import hypothesis
|
|
|
|
def settings(*args, **kwargs):
|
|
if 'min_satisfying_examples' in kwargs and hypothesis.version.__version_info__ >= (3, 56, 0):
|
|
kwargs.pop('min_satisfying_examples')
|
|
return hypothesis.settings(*args, **kwargs)
|
|
|
|
|
|
hypothesis.settings.register_profile(
|
|
"pytorch_ci",
|
|
settings(
|
|
derandomize=True,
|
|
suppress_health_check=[hypothesis.HealthCheck.too_slow],
|
|
database=None,
|
|
max_examples=50,
|
|
verbosity=hypothesis.Verbosity.normal))
|
|
hypothesis.settings.register_profile(
|
|
"dev",
|
|
settings(
|
|
suppress_health_check=[hypothesis.HealthCheck.too_slow],
|
|
database=None,
|
|
max_examples=10,
|
|
verbosity=hypothesis.Verbosity.normal))
|
|
hypothesis.settings.register_profile(
|
|
"debug",
|
|
settings(
|
|
suppress_health_check=[hypothesis.HealthCheck.too_slow],
|
|
database=None,
|
|
max_examples=1000,
|
|
verbosity=hypothesis.Verbosity.verbose))
|
|
|
|
hypothesis.settings.load_profile(
|
|
"pytorch_ci" if IS_IN_CI else os.getenv('PYTORCH_HYPOTHESIS_PROFILE', 'dev')
|
|
)
|
|
except ImportError:
|
|
print('Fail to import hypothesis in common_utils, tests are not derandomized')
|
|
|
|
def check_if_enable(test: unittest.TestCase):
|
|
test_suite = str(test.__class__).split('\'')[1]
|
|
test_name = f'{test._testMethodName} ({test_suite})'
|
|
if slow_tests_dict is not None and test_name in slow_tests_dict:
|
|
getattr(test, test._testMethodName).__dict__['slow_test'] = True
|
|
if not TEST_WITH_SLOW:
|
|
raise unittest.SkipTest("test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test")
|
|
if not IS_SANDCASTLE and disabled_tests_dict is not None:
|
|
if test_name in disabled_tests_dict:
|
|
issue_url, platforms = disabled_tests_dict[test_name]
|
|
platform_to_conditional: Dict = {
|
|
"mac": IS_MACOS,
|
|
"macos": IS_MACOS,
|
|
"win": IS_WINDOWS,
|
|
"windows": IS_WINDOWS,
|
|
"linux": IS_LINUX,
|
|
"rocm": TEST_WITH_ROCM,
|
|
"asan": TEST_WITH_ASAN
|
|
}
|
|
if platforms == [] or any([platform_to_conditional[platform] for platform in platforms]):
|
|
raise unittest.SkipTest(
|
|
f"Test is disabled because an issue exists disabling it: {issue_url}" +
|
|
f" for {'all' if platforms == [] else ''}platform(s) {', '.join(platforms)}. " +
|
|
"If you're seeing this on your local machine and would like to enable this test, " +
|
|
"please make sure IN_CI is not set and you are not using the flag --import-disabled-tests.")
|
|
if TEST_SKIP_FAST:
|
|
if not getattr(test, test._testMethodName).__dict__.get('slow_test', False):
|
|
raise unittest.SkipTest("test is fast; we disabled it with PYTORCH_TEST_SKIP_FAST")
|
|
|
|
# Acquires the comparison dtype, required since isclose
|
|
# requires both inputs have the same dtype, and isclose is not supported
|
|
# for some device x dtype combinations.
|
|
# NOTE: Remaps bfloat16 to float32 since neither the CPU or CUDA device types
|
|
# support needed bfloat16 comparison methods.
|
|
# NOTE: Remaps float16 to float32 on CPU since the CPU device type doesn't
|
|
# support needed float16 comparison methods.
|
|
# TODO: Update this once bfloat16 and float16 are better supported.
|
|
def get_comparison_dtype(a, b):
|
|
# TODO: update this when promote_types supports bfloat16 and/or
|
|
# isclose supports bfloat16.
|
|
a_dtype = torch.float32 if a.dtype is torch.bfloat16 else a.dtype
|
|
b_dtype = torch.float32 if b.dtype is torch.bfloat16 else b.dtype
|
|
|
|
compare_dtype = torch.promote_types(a_dtype, b_dtype)
|
|
|
|
# non-CUDA (CPU, for example) float16 -> float32
|
|
# TODO: update this when isclose is implemented for CPU float16
|
|
if (compare_dtype is torch.float16 and
|
|
(a.device != b.device or a.device.type != 'cuda' or
|
|
b.device.type != 'cuda')):
|
|
compare_dtype = torch.float32
|
|
|
|
return compare_dtype
|
|
|
|
# This implements a variant of assertRaises/assertRaisesRegex where we first test
|
|
# if the exception is NotImplementedError, and if so just skip the test instead
|
|
# of failing it.
|
|
#
|
|
# This is implemented by inheriting from the (private) implementation of
|
|
# assertRaises from unittest.case, and slightly tweaking it for this new
|
|
# behavior. The year is 2021: this private class hierarchy hasn't changed since
|
|
# 2010, seems low risk to inherit from.
|
|
class AssertRaisesContextIgnoreNotImplementedError(unittest.case._AssertRaisesContext):
|
|
def __exit__(self, exc_type, exc_value, tb):
|
|
if exc_type is not None and issubclass(exc_type, NotImplementedError):
|
|
self.test_case.skipTest(f"not_implemented: {exc_value}") # type: ignore[attr-defined]
|
|
return super().__exit__(exc_type, exc_value, tb)
|
|
|
|
|
|
@contextmanager
|
|
def set_warn_always_context(new_val: bool):
|
|
old_val = torch.is_warn_always_enabled()
|
|
torch.set_warn_always(new_val)
|
|
try:
|
|
yield
|
|
finally:
|
|
torch.set_warn_always(old_val)
|
|
|
|
|
|
class TestCase(expecttest.TestCase):
|
|
# NOTE: "precision" lets classes and generated tests set minimum
|
|
# atol values when comparing tensors. Used by @precisionOverride and @toleranceOverride, for
|
|
# example.
|
|
# NOTE: "rel_tol" lets classes and generated tests set minimum
|
|
# rtol values when comparing tensors. Used by @toleranceOverride, for example.
|
|
_precision: float = 0
|
|
_rel_tol: float = 0
|
|
|
|
# checker to early terminate test suite if unrecoverable failure occurs.
|
|
def _should_stop_test_suite(self):
|
|
if torch.cuda.is_initialized():
|
|
# CUDA device side error will cause subsequence test cases to fail.
|
|
# stop entire test suite if catches RuntimeError during torch.cuda.synchronize().
|
|
try:
|
|
torch.cuda.synchronize()
|
|
except RuntimeError as rte:
|
|
return True
|
|
return False
|
|
else:
|
|
return False
|
|
|
|
@property
|
|
def precision(self) -> float:
|
|
return self._precision
|
|
|
|
@precision.setter
|
|
def precision(self, prec: float) -> None:
|
|
self._precision = prec
|
|
|
|
@property
|
|
def rel_tol(self) -> float:
|
|
return self._rel_tol
|
|
|
|
@rel_tol.setter
|
|
def rel_tol(self, prec: float) -> None:
|
|
self._rel_tol = prec
|
|
|
|
_do_cuda_memory_leak_check = False
|
|
_do_cuda_non_default_stream = False
|
|
|
|
# When True, if a test case raises a NotImplementedError, instead of failing
|
|
# the test, skip it instead.
|
|
_ignore_not_implemented_error = False
|
|
|
|
def __init__(self, method_name='runTest'):
|
|
super().__init__(method_name)
|
|
|
|
test_method = getattr(self, method_name, None)
|
|
if test_method is not None:
|
|
# Wraps the tested method if we should do CUDA memory check.
|
|
if not TEST_SKIP_CUDA_MEM_LEAK_CHECK:
|
|
self._do_cuda_memory_leak_check &= getattr(test_method, '_do_cuda_memory_leak_check', True)
|
|
# FIXME: figure out the flaky -1024 anti-leaks on windows. See #8044
|
|
if self._do_cuda_memory_leak_check and not IS_WINDOWS:
|
|
self.wrap_with_cuda_policy(method_name, self.assertLeaksNoCudaTensors)
|
|
|
|
# Wraps the tested method if we should enforce non default CUDA stream.
|
|
self._do_cuda_non_default_stream &= getattr(test_method, '_do_cuda_non_default_stream', True)
|
|
if self._do_cuda_non_default_stream and not IS_WINDOWS:
|
|
self.wrap_with_cuda_policy(method_name, self.enforceNonDefaultStream)
|
|
|
|
if self._ignore_not_implemented_error:
|
|
self.wrap_with_policy(method_name, lambda: skip_exception_type(NotImplementedError))
|
|
|
|
def assertLeaksNoCudaTensors(self, name=None):
|
|
name = self.id() if name is None else name
|
|
return CudaMemoryLeakCheck(self, name)
|
|
|
|
def enforceNonDefaultStream(self):
|
|
return CudaNonDefaultStream()
|
|
|
|
def wrap_with_cuda_policy(self, method_name, policy):
|
|
test_method = getattr(self, method_name)
|
|
# the import below may initialize CUDA context, so we do it only if
|
|
# self._do_cuda_memory_leak_check or self._do_cuda_non_default_stream
|
|
# is True.
|
|
# TODO: sure looks like we unconditionally initialize the context here
|
|
# -- ezyang
|
|
from torch.testing._internal.common_cuda import TEST_CUDA
|
|
fullname = self.id().lower() # class_name.method_name
|
|
if TEST_CUDA and ('gpu' in fullname or 'cuda' in fullname):
|
|
setattr(self, method_name, self.wrap_method_with_policy(test_method, policy))
|
|
|
|
def wrap_with_policy(self, method_name, policy):
|
|
test_method = getattr(self, method_name)
|
|
setattr(self, method_name, self.wrap_method_with_policy(test_method, policy))
|
|
|
|
# A policy is a zero-argument function that returns a context manager.
|
|
# We don't take the context manager directly as it may be necessary to
|
|
# construct it once per test method
|
|
def wrap_method_with_policy(self, method, policy):
|
|
# Assumes that `method` is the tested function in `self`.
|
|
# NOTE: Python Exceptions (e.g., unittest.Skip) keeps objects in scope
|
|
# alive, so this cannot be done in setUp and tearDown because
|
|
# tearDown is run unconditionally no matter whether the test
|
|
# passes or not. For the same reason, we can't wrap the `method`
|
|
# call in try-finally and always do the check.
|
|
@wraps(method)
|
|
def wrapper(self, *args, **kwargs):
|
|
with policy():
|
|
method(*args, **kwargs)
|
|
return types.MethodType(wrapper, self)
|
|
|
|
def wrap_with_cuda_memory_check(self, method):
|
|
return self.wrap_method_with_policy(method, self.assertLeaksNoCudaTensors)
|
|
|
|
# Recursive function that incorporates retry logic when PYTORCH_RETRY_TEST_CASES=1 and enables early test
|
|
# termination. [DISCLAIMER: ONLY WORKS WITH UNITTEST]
|
|
# When report_only is True, flaky tests are only reported, but the signal remains the same (the test will still
|
|
# show up red).
|
|
# Otherwise, the flaky test will show up green while its stats are captured by test reports.
|
|
def _run_with_retry(self, result=None, num_runs_left=0, report_only=True):
|
|
if num_runs_left == 0:
|
|
return
|
|
|
|
using_unittest = isinstance(result, unittest.TestResult)
|
|
|
|
if using_unittest:
|
|
failures_before = 0 if result is None else len(result.failures) # num tests marked as failed before starting
|
|
errors_before = 0 if result is None else len(result.errors) # num tests marked as errored before starting
|
|
|
|
super().run(result=result)
|
|
# Early terminate test if necessary.
|
|
if self._should_stop_test_suite():
|
|
result.stop()
|
|
|
|
if not RETRY_TEST_CASES or not using_unittest:
|
|
return
|
|
|
|
err = sys.exc_info()
|
|
num_retries_left = num_runs_left - 1
|
|
if failures_before < len(result.failures):
|
|
print(f" {self._testMethodName} failed - num_retries_left: {num_retries_left}")
|
|
if (report_only and num_retries_left < MAX_NUM_RETRIES) or (not report_only and num_retries_left > 0):
|
|
result.failures.pop(-1)
|
|
result.addExpectedFailure(self, err)
|
|
self._run_with_retry(result=result, num_runs_left=num_retries_left, report_only=report_only)
|
|
elif errors_before < len(result.errors):
|
|
print(f" {self._testMethodName} errored - num_retries_left: {num_retries_left}")
|
|
if (report_only and num_retries_left < MAX_NUM_RETRIES) or (not report_only and num_retries_left > 0):
|
|
result.errors.pop(-1)
|
|
result.addExpectedFailure(self, err)
|
|
self._run_with_retry(result=result, num_runs_left=num_retries_left, report_only=report_only)
|
|
elif report_only and num_retries_left < MAX_NUM_RETRIES:
|
|
print(f" {self._testMethodName} succeeded - num_retries_left: {num_retries_left}")
|
|
result.addUnexpectedSuccess(self)
|
|
self._run_with_retry(result=result, num_runs_left=num_retries_left, report_only=report_only)
|
|
|
|
|
|
def run(self, result=None):
|
|
num_runs = MAX_NUM_RETRIES + 1 if RETRY_TEST_CASES else 1
|
|
self._run_with_retry(result=result, num_runs_left=num_runs, report_only=not OVERRIDE_FLAKY_SIGNAL)
|
|
|
|
def setUp(self):
|
|
check_if_enable(self)
|
|
set_rng_seed(SEED)
|
|
|
|
@staticmethod
|
|
def _make_crow_indices(n_rows, n_cols, nnz,
|
|
*, device, dtype, random=True):
|
|
"""Return crow_indices of a CSR tensor with size (n_rows, n_cols) and
|
|
the number of specified elements nnz.
|
|
|
|
If random is True, the column counts of rows are in random
|
|
order. Otherwise, the column counts of rows are defined by the
|
|
used sampling method.
|
|
|
|
Sampling method
|
|
---------------
|
|
|
|
The used sampling method was introduced in
|
|
https://pearu.github.io/csr_sampling.html, and here we give
|
|
only an overall description of the method.
|
|
|
|
Notice that crow_indices can be defined as cumsum(counts)
|
|
where counts is a sequence of non-negative integers satisfying
|
|
the following conditions:
|
|
|
|
len(counts) == n_rows + 1
|
|
counts.max() <= n_cols
|
|
|
|
while counts[i + 1] is interpreted as the number of specified
|
|
elements in the i-th row.
|
|
|
|
The used sampling method aims at increasing the diversity of
|
|
CSR samples, that is, a CSR sample should contain (i) rows
|
|
that are all filled, (ii) rows with no elements at all, and
|
|
(iii) rows that are partially filled. At the same time and for
|
|
the given total number of specified elements (nnz), there
|
|
should be minimal preference to rows with a given number of
|
|
elements. To achieve this, the sampling method is built-up on
|
|
using a sawteeth model for counts. In the simplest case, we
|
|
would have
|
|
|
|
counts = arange(n_rows + 1) % (n_cols + 1)
|
|
|
|
that has equal number of all possible column counts per row.
|
|
This formula can be used only for specific input values of
|
|
n_rows, n_cols, and nnz. To generalize this model to any
|
|
combinations of inputs, the counts model above is extended
|
|
with an incomplete sawtooth, and the right and lower
|
|
rectangular parts that will guarantee that
|
|
|
|
counts.sum() == nnz
|
|
|
|
for any combination of n_rows, n_cols, and nnz. Basically,
|
|
we'll find a maximal window in (n_rows + 1, n_cols + 1)-grid
|
|
that is able to hold a sequence of sawteeth and so-called
|
|
final correction, while the external part of the window is
|
|
filled with counts to meet the nnz contraint exactly.
|
|
"""
|
|
assert 0 <= nnz <= n_rows * n_cols
|
|
|
|
def sawteeth(n, m):
|
|
# return the total number of counts in the sequence of
|
|
# sawteeth where n and m define a window in (n_rows+1,
|
|
# n_cols+1) rectangle where the sequence of sawteeth
|
|
# perfectly fit.
|
|
M = (n_cols - m) * (n_cols - m + 1) // 2
|
|
K = (n_rows - n) % (n_cols - m + 1)
|
|
return M * ((n_rows - n) // (n_cols - m + 1)) + K * (K - 1) // 2
|
|
|
|
# Different from the original method description, here counts
|
|
# has leading 0 required by crow_indices:
|
|
counts = torch.zeros(n_rows + 1, dtype=dtype, device=torch.device('cpu'))
|
|
|
|
n = m = 0
|
|
N = sawteeth(n, m)
|
|
if N and nnz >= max(N, n_cols):
|
|
# determine the width of the sawteeth window. We use bisection to solve
|
|
# N(n, 0) == 0 or nnz - n * n_cols < max(N(n, 0), n_cols)
|
|
# for n
|
|
n_left = n
|
|
n_right = n_rows - 1
|
|
N_right = sawteeth(n_right, m)
|
|
while n_right - n_left > 1:
|
|
n_middle = (n_left + n_right) // 2
|
|
N_middle = sawteeth(n_middle, m)
|
|
if N_middle == 0 or nnz - n_middle * n_cols < max(N_middle, n_cols):
|
|
n_right, N_right = n_middle, N_middle
|
|
else:
|
|
n_left = n_middle
|
|
n, N = n_right, N_right
|
|
# fill the right rectangle with counts:
|
|
assert n
|
|
counts[-n:].fill_(n_cols)
|
|
|
|
if N and nnz - n * n_cols >= max(N, n_rows - n):
|
|
# determine the height of the sawteeth window. We use bisection to solve
|
|
# N(n, m) == 0 or nnz - n * n_cols - m * (n_rows - n) < max(N(n, m), n_rows - n)
|
|
# for m.
|
|
m_left = m
|
|
m_right = n_cols - 1
|
|
N_right = sawteeth(n, m_right)
|
|
while m_right - m_left > 1:
|
|
m_middle = (m_left + m_right) // 2
|
|
N_middle = sawteeth(n, m_middle)
|
|
if N_middle == 0 or nnz - n * n_cols - m_middle * (n_rows - n) < max(N_middle, n_rows - n):
|
|
m_right, N_right = m_middle, N_middle
|
|
else:
|
|
m_left = m_middle
|
|
m, N = m_right, N_right
|
|
# fill the bottom rectangle with counts:
|
|
assert m
|
|
counts[1:n_rows - n + 1].fill_(m)
|
|
|
|
if N:
|
|
# fill the sawteeth window with counts
|
|
q, r = divmod(nnz - n * n_cols - m * (n_rows - n),
|
|
(n_cols - m) * (n_cols - m + 1) // 2)
|
|
p = 1 + q * (n_cols - m + 1)
|
|
if sys.version_info >= (3, 8):
|
|
k = math.isqrt(2 * r)
|
|
else:
|
|
# math.isqrt(x) is available starting from Python 3.8.
|
|
# Here we use int(math.sqrt(x)) as an approximation
|
|
# that appers to give exaxt result for all x values
|
|
# less than 2**35, at least, the upper limit of x is
|
|
# TBD.
|
|
k = int(math.sqrt(2 * r))
|
|
if k * (k + 1) > 2 * r:
|
|
k -= 1
|
|
corr = r - k * (k + 1) // 2
|
|
assert not ((p > 1) and (m > 0)) # full sawteeth are never on top of a bottom rectangle
|
|
# sequence of full sawteeth:
|
|
counts[1:p] = torch.arange(p - 1, dtype=dtype, device=counts.device) % (n_cols - m + 1)
|
|
# incomplete sawtooth:
|
|
counts[p:p + k + 1] += torch.arange(k + 1, dtype=dtype, device=counts.device)
|
|
else:
|
|
# given input does not support sawteeth
|
|
p = 1
|
|
corr = nnz - n * n_cols - m * (n_rows - n)
|
|
|
|
# correction that will guarantee counts.sum() == nnz:
|
|
counts[p] += corr
|
|
|
|
if random:
|
|
# randomize crow_indices by shuffling the sawteeth
|
|
# sequence:
|
|
perm = torch.randperm(n_rows, device=counts.device)
|
|
counts[1:] = counts[1:][perm]
|
|
|
|
# compute crow_indices:
|
|
crow_indices = counts
|
|
crow_indices.cumsum_(dim=0)
|
|
return crow_indices.to(device=device)
|
|
|
|
def genSparseCSRTensor(self, size, nnz, *, device, dtype, index_dtype):
|
|
sparse_dim = 2
|
|
assert all(size[d] > 0 for d in range(sparse_dim)) or nnz == 0, 'invalid arguments'
|
|
assert len(size) == sparse_dim
|
|
|
|
def random_sparse_csr(n_rows, n_cols, nnz):
|
|
crow_indices = self._make_crow_indices(n_rows, n_cols, nnz, device=device, dtype=index_dtype)
|
|
col_indices = torch.zeros(nnz, dtype=index_dtype, device=device)
|
|
for i in range(n_rows):
|
|
count = crow_indices[i + 1] - crow_indices[i]
|
|
col_indices[crow_indices[i]:crow_indices[i + 1]], _ = torch.sort(
|
|
torch.randperm(n_cols, dtype=index_dtype, device=device)[:count])
|
|
low = -1 if dtype != torch.uint8 else 0
|
|
high = 1 if dtype != torch.uint8 else 2
|
|
values = make_tensor([nnz], device=device, dtype=dtype, low=low, high=high)
|
|
return values, crow_indices, col_indices
|
|
|
|
values, crow_indices, col_indices = random_sparse_csr(size[0], size[1], nnz)
|
|
return torch.sparse_csr_tensor(crow_indices,
|
|
col_indices,
|
|
values, size=size, dtype=dtype, device=device)
|
|
|
|
def genSparseTensor(self, size, sparse_dim, nnz, is_uncoalesced, device, dtype):
|
|
# Assert not given impossible combination, where the sparse dims have
|
|
# empty numel, but nnz > 0 makes the indices containing values.
|
|
assert all(size[d] > 0 for d in range(sparse_dim)) or nnz == 0, 'invalid arguments'
|
|
|
|
v_size = [nnz] + list(size[sparse_dim:])
|
|
v = make_tensor(v_size, device=device, dtype=dtype, low=-1, high=1)
|
|
i = torch.rand(sparse_dim, nnz, device=device)
|
|
i.mul_(torch.tensor(size[:sparse_dim]).unsqueeze(1).to(i))
|
|
i = i.to(torch.long)
|
|
if is_uncoalesced:
|
|
v = torch.cat([v, torch.randn_like(v)], 0)
|
|
i = torch.cat([i, i], 1)
|
|
x = torch.sparse_coo_tensor(i, v, torch.Size(size), dtype=dtype, device=device)
|
|
|
|
if not is_uncoalesced:
|
|
x = x.coalesce()
|
|
else:
|
|
# FIXME: `x` is a sparse view of `v`. Currently rebase_history for
|
|
# sparse views is not implemented, so this workaround is
|
|
# needed for inplace operations done on `x`, e.g., copy_().
|
|
# Remove after implementing something equivalent to CopySlice
|
|
# for sparse views.
|
|
# NOTE: We do clone() after detach() here because we need to be able to change size/storage of x afterwards
|
|
x = x.detach().clone()
|
|
return x, x._indices().clone(), x._values().clone()
|
|
|
|
def safeToDense(self, t):
|
|
return t.coalesce().to_dense()
|
|
|
|
# Compares a torch function with a reference function for a given sample input (object of SampleInput)
|
|
# Note: only values are compared, type comparison is not done here
|
|
def compare_with_reference(self, torch_fn, ref_fn, sample_input, **kwargs):
|
|
n_inp, n_args, n_kwargs = sample_input.numpy()
|
|
t_inp, t_args, t_kwargs = sample_input.input, sample_input.args, sample_input.kwargs
|
|
|
|
actual = torch_fn(t_inp, *t_args, **t_kwargs)
|
|
expected = ref_fn(n_inp, *n_args, **n_kwargs)
|
|
|
|
self.assertEqual(actual, expected, exact_device=False)
|
|
|
|
# Compares the given Torch and NumPy functions on the given tensor-like object.
|
|
# NOTE: both torch_fn and np_fn should be functions that take a single
|
|
# tensor (array). If the torch and/or NumPy function require additional
|
|
# arguments then wrap the function in a lambda or pass a partial function.
|
|
# TODO: add args/kwargs for passing to assertEqual (e.g. rtol, atol)
|
|
def compare_with_numpy(self, torch_fn, np_fn, tensor_like,
|
|
device=None, dtype=None, **kwargs):
|
|
assert TEST_NUMPY
|
|
|
|
if isinstance(tensor_like, torch.Tensor):
|
|
assert device is None
|
|
assert dtype is None
|
|
t_cpu = tensor_like.detach().cpu()
|
|
if t_cpu.dtype is torch.bfloat16:
|
|
t_cpu = t_cpu.float()
|
|
a = t_cpu.numpy()
|
|
t = tensor_like
|
|
else:
|
|
d = copy.copy(torch_to_numpy_dtype_dict)
|
|
d[torch.bfloat16] = np.float32
|
|
a = np.array(tensor_like, dtype=d[dtype])
|
|
t = torch.tensor(tensor_like, device=device, dtype=dtype)
|
|
|
|
np_result = np_fn(a)
|
|
torch_result = torch_fn(t).cpu()
|
|
|
|
# Converts arrays to tensors
|
|
if isinstance(np_result, np.ndarray):
|
|
try:
|
|
np_result = torch.from_numpy(np_result)
|
|
except Exception:
|
|
# NOTE: copying an array before conversion is necessary when,
|
|
# for example, the array has negative strides.
|
|
np_result = torch.from_numpy(np_result.copy())
|
|
if t.dtype is torch.bfloat16 and torch_result.dtype is torch.bfloat16 and np_result.dtype is torch.float:
|
|
torch_result = torch_result.to(torch.float)
|
|
|
|
self.assertEqual(np_result, torch_result, **kwargs)
|
|
|
|
# Some analysis of tolerance by logging tests from test_torch.py can be found
|
|
# in https://github.com/pytorch/pytorch/pull/32538.
|
|
# dtype name : (rtol, atol)
|
|
dtype_precisions = {
|
|
torch.float16 : (0.001, 1e-5),
|
|
torch.bfloat16 : (0.016, 1e-5),
|
|
torch.float32 : (1.3e-6, 1e-5),
|
|
torch.float64 : (1e-7, 1e-7),
|
|
torch.complex32 : (0.001, 1e-5),
|
|
torch.complex64 : (1.3e-6, 1e-5),
|
|
torch.complex128 : (1e-7, 1e-7),
|
|
}
|
|
|
|
# Returns the "default" rtol and atol for comparing scalars or
|
|
# tensors of the given dtypes.
|
|
def _getDefaultRtolAndAtol(self, dtype0, dtype1):
|
|
rtol = max(self.dtype_precisions.get(dtype0, (0, 0))[0],
|
|
self.dtype_precisions.get(dtype1, (0, 0))[0])
|
|
atol = max(self.dtype_precisions.get(dtype0, (0, 0))[1],
|
|
self.dtype_precisions.get(dtype1, (0, 0))[1])
|
|
|
|
return rtol, atol
|
|
|
|
# Checks if two dense tensors are equal(-ish), returning (True, None)
|
|
# when they are and (False, debug_msg) when they are not.
|
|
# If exact_dtype is true both tensors must have the same dtype.
|
|
# If exact_device is true both tensors must be on the same device.
|
|
# See the "Test Framework Tensor 'Equality'" note for more details.
|
|
# NOTE: tensors on different devices are moved to the CPU to be compared when
|
|
# exact_device is False.
|
|
# NOTE: this function checks the tensors' devices, sizes, and dtypes
|
|
# and acquires the appropriate device, dtype, rtol and atol to compare
|
|
# them with. It then calls _compare_tensors_internal.
|
|
def _compareTensors(self, a, b, *, rtol: Optional[float] = None, atol=None, equal_nan=True,
|
|
exact_dtype=True, exact_device=False) -> _compare_return_type:
|
|
assert (atol is None) == (rtol is None)
|
|
if not isinstance(a, torch.Tensor):
|
|
return (False, "argument a, {0}, to _compareTensors is not a tensor!".format(a))
|
|
if not isinstance(b, torch.Tensor):
|
|
return (False, "argument b, {0}, to _compareTensors is not a tensor!".format(b))
|
|
|
|
# Validates tensors are on the same device
|
|
if exact_device and a.device != b.device:
|
|
return (False, ("Attempted to compare equality of tensors on "
|
|
"different devices! Got devices {0} and "
|
|
"{1}.".format(a.device, b.device)))
|
|
|
|
# Compares tensors of different devices on the CPU
|
|
if a.device != b.device:
|
|
a = a.cpu()
|
|
b = b.cpu()
|
|
|
|
# Checks size matches
|
|
if a.size() != b.size():
|
|
return (False, ("Attempted to compare equality of tensors with "
|
|
"different sizes. Got sizes {0} and {1}.").format(a.size(), b.size()))
|
|
|
|
# Checks dtype (if exact_dtype)
|
|
if exact_dtype and a.dtype is not b.dtype:
|
|
return (False, ("Attempted to compare equality of tensors with "
|
|
"different dtypes. Got dtypes {0} and {1}.").format(a.dtype, b.dtype))
|
|
|
|
# Acquires rtol and atol
|
|
if rtol is None:
|
|
rtol, atol = self._getDefaultRtolAndAtol(a.dtype, b.dtype)
|
|
|
|
atol = max(atol, self.precision)
|
|
rtol = max(rtol, self.rel_tol)
|
|
|
|
# Converts to comparison dtype
|
|
dtype = get_comparison_dtype(a, b)
|
|
a = a.to(dtype)
|
|
b = b.to(dtype)
|
|
|
|
return _compare_tensors_internal(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan)
|
|
|
|
# Checks if two scalars are equal(-ish), returning (True, None)
|
|
# when they are and (False, debug_msg) when they are not.
|
|
# NOTE: this function just acquires rtol and atol
|
|
# before calling _compare_scalars_internal.
|
|
def _compareScalars(self, a, b, *,
|
|
rtol: Optional[float] = None, atol: Optional[float] = None, equal_nan=True) -> _compare_return_type:
|
|
# Acquires rtol and atol
|
|
assert (atol is None) == (rtol is None)
|
|
if rtol is None:
|
|
if isinstance(a, complex) or isinstance(b, complex):
|
|
rtol, atol = self._getDefaultRtolAndAtol(torch.complex64, torch.complex64)
|
|
elif isinstance(a, float) or isinstance(b, float):
|
|
rtol, atol = self._getDefaultRtolAndAtol(torch.float32, torch.float32)
|
|
else:
|
|
rtol, atol = 0, 0
|
|
rtol = cast(float, rtol)
|
|
atol = cast(float, atol)
|
|
assert atol is not None
|
|
atol = max(atol, self.precision)
|
|
rtol = max(rtol, self.rel_tol)
|
|
|
|
return _compare_scalars_internal(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan)
|
|
|
|
# Construct assert messages basd on internal debug message and user provided message.
|
|
def _get_assert_msg(self, msg, debug_msg=None):
|
|
if msg is None:
|
|
return debug_msg
|
|
else:
|
|
return f"\n{msg}" if debug_msg is None else f"{debug_msg}\n{msg}"
|
|
|
|
def assertEqualIgnoreType(self, *args, **kwargs) -> None:
|
|
# If you are seeing this function used, that means test is written wrongly
|
|
# and deserves detailed investigation
|
|
return self.assertEqual(*args, exact_dtype=False, **kwargs)
|
|
|
|
def _is_dict(self, obj):
|
|
return isinstance(obj, (dict, torch._C.ScriptDict)) # type: ignore[attr-defined]
|
|
|
|
# Compares x and y
|
|
# TODO: default exact_device to True
|
|
def assertEqual(self, x, y, msg: Optional[str] = None, *,
|
|
atol: Optional[float] = None, rtol: Optional[float] = None,
|
|
equal_nan=True, exact_dtype=True, exact_device=False) -> None:
|
|
assert (atol is None) == (rtol is None), "If one of atol or rtol is specified, then the other must be too"
|
|
debug_msg: Optional[str] = None
|
|
|
|
if x is None or y is None:
|
|
self.assertTrue(x is None and y is None)
|
|
# Tensor x Number and Number x Tensor comparisons
|
|
elif isinstance(x, torch.Tensor) and isinstance(y, Number):
|
|
self.assertEqual(x.item(), y, atol=atol, rtol=rtol, msg=msg,
|
|
exact_dtype=exact_dtype, exact_device=exact_device)
|
|
elif isinstance(y, torch.Tensor) and isinstance(x, Number):
|
|
self.assertEqual(x, y.item(), atol=atol, rtol=rtol, msg=msg,
|
|
exact_dtype=exact_dtype, exact_device=exact_device)
|
|
# Tensor x np.bool
|
|
elif isinstance(x, torch.Tensor) and isinstance(y, np.bool_):
|
|
self.assertEqual(x.item(), y, atol=atol, rtol=rtol, msg=msg,
|
|
exact_dtype=exact_dtype, exact_device=exact_device)
|
|
elif isinstance(y, torch.Tensor) and isinstance(x, np.bool_):
|
|
self.assertEqual(x, y.item(), atol=atol, rtol=rtol, msg=msg,
|
|
exact_dtype=exact_dtype, exact_device=exact_device)
|
|
|
|
# Tensor x Tensor
|
|
elif isinstance(x, torch.Tensor) and isinstance(y, torch.Tensor):
|
|
debug_msg = ("Attempted to compare with different is_sparse settings: "
|
|
f"Expected: {x.is_sparse}; Actual: {y.is_sparse}.")
|
|
super().assertEqual(x.is_sparse, y.is_sparse, msg=self._get_assert_msg(msg=msg, debug_msg=debug_msg))
|
|
debug_msg = ("Attempted to compare with different is_quantized settings: "
|
|
f"Expected: {x.is_quantized}; Actual: {y.is_quantized}.")
|
|
super().assertEqual(x.is_quantized, y.is_quantized, msg=self._get_assert_msg(msg=msg, debug_msg=debug_msg))
|
|
if x.is_sparse:
|
|
if x.size() != y.size():
|
|
debug_msg_sparse = ("Attempted to compare equality of tensors with different sizes: "
|
|
f"Expected: {x.size()}; Actual: {y.size()}.")
|
|
super().assertTrue(False, msg=self._get_assert_msg(msg=msg, debug_msg=debug_msg_sparse))
|
|
|
|
x = x.coalesce()
|
|
y = y.coalesce()
|
|
indices_result, debug_msg_indices = self._compareTensors(x._indices(), y._indices(),
|
|
rtol=rtol, atol=atol,
|
|
equal_nan=equal_nan, exact_dtype=exact_dtype,
|
|
exact_device=exact_device)
|
|
|
|
if not indices_result:
|
|
assert debug_msg_indices is not None
|
|
debug_msg = "Sparse tensor indices failed to compare as equal! " + debug_msg_indices
|
|
super().assertTrue(indices_result, msg=self._get_assert_msg(msg, debug_msg=debug_msg))
|
|
|
|
values_result, debug_msg_values = self._compareTensors(x._values(), y._values(),
|
|
rtol=rtol, atol=atol,
|
|
equal_nan=equal_nan, exact_dtype=exact_dtype,
|
|
exact_device=exact_device)
|
|
|
|
if not values_result:
|
|
assert debug_msg_values is not None
|
|
debug_msg = "Sparse tensor values failed to compare as equal! " + debug_msg_values
|
|
super().assertTrue(values_result, msg=self._get_assert_msg(msg, debug_msg=debug_msg))
|
|
elif x.is_quantized and y.is_quantized:
|
|
self.assertEqual(x.qscheme(), y.qscheme(), atol=atol, rtol=rtol,
|
|
msg=msg, exact_dtype=exact_dtype,
|
|
exact_device=exact_device)
|
|
|
|
if x.qscheme() == torch.per_tensor_affine:
|
|
self.assertEqual(x.q_scale(), y.q_scale(), atol=atol, rtol=rtol,
|
|
msg=msg, exact_dtype=exact_dtype,
|
|
exact_device=exact_device)
|
|
self.assertEqual(x.q_zero_point(), y.q_zero_point(),
|
|
atol=atol, rtol=rtol, msg=msg,
|
|
exact_dtype=exact_dtype, exact_device=exact_device)
|
|
elif x.qscheme() == torch.per_channel_affine:
|
|
self.assertEqual(x.q_per_channel_scales(), y.q_per_channel_scales(), atol=atol, rtol=rtol,
|
|
msg=msg, exact_dtype=exact_dtype,
|
|
exact_device=exact_device)
|
|
self.assertEqual(x.q_per_channel_zero_points(), y.q_per_channel_zero_points(),
|
|
atol=atol, rtol=rtol, msg=msg,
|
|
exact_dtype=exact_dtype, exact_device=exact_device)
|
|
self.assertEqual(x.q_per_channel_axis(), y.q_per_channel_axis(),
|
|
atol=atol, rtol=rtol, msg=msg,
|
|
exact_dtype=exact_dtype, exact_device=exact_device)
|
|
|
|
result, debug_msg_compare = self._compareTensors(x.int_repr().to(torch.int32),
|
|
y.int_repr().to(torch.int32),
|
|
atol=atol, rtol=rtol,
|
|
exact_dtype=exact_dtype,
|
|
exact_device=exact_device)
|
|
|
|
if not result:
|
|
assert debug_msg_compare is not None
|
|
debug_msg = "Quantized representations failed to compare as equal! " + debug_msg_compare
|
|
super().assertTrue(result, msg=self._get_assert_msg(msg, debug_msg=debug_msg))
|
|
else:
|
|
result, debug_msg_generic = self._compareTensors(x, y, rtol=rtol, atol=atol,
|
|
equal_nan=equal_nan, exact_dtype=exact_dtype,
|
|
exact_device=exact_device)
|
|
|
|
if not result:
|
|
assert debug_msg_generic is not None
|
|
debug_msg = "Tensors failed to compare as equal!" + debug_msg_generic
|
|
super().assertTrue(result, msg=self._get_assert_msg(msg, debug_msg=debug_msg))
|
|
elif isinstance(x, (np.ndarray, torch.Tensor)) or isinstance(y, (np.ndarray, torch.Tensor)):
|
|
def maybe_to_tensor(a: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
|
|
if not isinstance(a, np.ndarray):
|
|
return a
|
|
|
|
try:
|
|
return torch.from_numpy(a)
|
|
except TypeError:
|
|
# This happens if the dtype is non-numeric or not supported by torch
|
|
return a
|
|
|
|
def maybe_to_list(a: Any) -> Any:
|
|
if not isinstance(a, (np.ndarray, torch.Tensor)):
|
|
return a
|
|
|
|
return a.tolist()
|
|
|
|
x = maybe_to_tensor(x)
|
|
y = maybe_to_tensor(y)
|
|
|
|
if isinstance(x, torch.Tensor) and isinstance(y, torch.Tensor):
|
|
self.assertEqual(
|
|
x, y, atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device
|
|
)
|
|
else:
|
|
# In case we can't convert the array to a tensor, we fall back to comparing x and y as iterables
|
|
self.assertEqual(
|
|
maybe_to_list(x),
|
|
maybe_to_list(y),
|
|
atol=atol,
|
|
rtol=rtol,
|
|
msg=msg,
|
|
exact_dtype=exact_dtype,
|
|
exact_device=exact_device
|
|
)
|
|
elif isinstance(x, string_classes) and isinstance(y, string_classes):
|
|
debug_msg = ("Attempted to compare [string] types: "
|
|
f"Expected: {repr(x)}; Actual: {repr(y)}.")
|
|
super().assertEqual(x, y, msg=self._get_assert_msg(msg, debug_msg=debug_msg))
|
|
elif type(x) == set and type(y) == set:
|
|
debug_msg = ("Attempted to compare [set] types: "
|
|
f"Expected: {x}; Actual: {y}.")
|
|
super().assertEqual(x, y, msg=self._get_assert_msg(msg, debug_msg=debug_msg))
|
|
elif self._is_dict(x) and self._is_dict(y):
|
|
if isinstance(x, OrderedDict) and isinstance(y, OrderedDict):
|
|
self.assertEqual(x.items(), y.items(), atol=atol, rtol=rtol,
|
|
msg=msg, exact_dtype=exact_dtype,
|
|
exact_device=exact_device)
|
|
else:
|
|
self.assertEqual(set(x.keys()), set(y.keys()), atol=atol, rtol=rtol,
|
|
msg=msg, exact_dtype=exact_dtype,
|
|
exact_device=exact_device)
|
|
key_list = list(x.keys())
|
|
self.assertEqual([x[k] for k in key_list],
|
|
[y[k] for k in key_list],
|
|
atol=atol, rtol=rtol, msg=msg,
|
|
exact_dtype=exact_dtype, exact_device=exact_device)
|
|
elif isinstance(x, type) and isinstance(y, type):
|
|
# See TestTorch.test_assert_equal_generic_meta
|
|
debug_msg = ("Attempted to compare [type] types: "
|
|
f"Expected: {x}; Actual: {y}.")
|
|
super().assertEqual(x, y, msg=self._get_assert_msg(msg, debug_msg=debug_msg))
|
|
elif is_iterable(x) and is_iterable(y):
|
|
debug_msg = ("Attempted to compare the lengths of [iterable] types: "
|
|
f"Expected: {len(x)}; Actual: {len(y)}.")
|
|
super().assertEqual(len(x), len(y), msg=self._get_assert_msg(msg, debug_msg=debug_msg))
|
|
for x_, y_ in zip(x, y):
|
|
self.assertEqual(x_, y_, atol=atol, rtol=rtol, msg=msg,
|
|
exact_dtype=exact_dtype, exact_device=exact_device)
|
|
elif isinstance(x, bool) and isinstance(y, bool):
|
|
super().assertTrue(x == y, msg=msg)
|
|
|
|
# Scalar x Scalar
|
|
elif isinstance(x, Number) and isinstance(y, Number):
|
|
result, debug_msg_scalars = self._compareScalars(x, y, rtol=rtol, atol=atol,
|
|
equal_nan=equal_nan)
|
|
if not result:
|
|
assert debug_msg_scalars is not None
|
|
debug_msg = "Scalars failed to compare as equal! " + debug_msg_scalars
|
|
super().assertTrue(result, msg=self._get_assert_msg(msg, debug_msg=debug_msg))
|
|
else:
|
|
super().assertEqual(x, y, msg=msg)
|
|
|
|
def assertNotEqual(self, x, y, msg: Optional[str] = None, *, # type: ignore[override]
|
|
atol: Optional[float] = None, rtol: Optional[float] = None, **kwargs) -> None:
|
|
with self.assertRaises(AssertionError, msg=msg):
|
|
self.assertEqual(x, y, msg, atol=atol, rtol=rtol, **kwargs)
|
|
|
|
def assertEqualTypeString(self, x, y) -> None:
|
|
# This API is used simulate deprecated x.type() == y.type()
|
|
self.assertEqual(x.device, y.device)
|
|
self.assertEqual(x.dtype, y.dtype)
|
|
self.assertEqual(x.is_sparse, y.is_sparse)
|
|
|
|
def assertObjectIn(self, obj: Any, iterable: Iterable[Any]) -> None:
|
|
for elem in iterable:
|
|
if id(obj) == id(elem):
|
|
return
|
|
raise AssertionError("object not found in iterable")
|
|
|
|
# Reimplemented to provide special behavior when
|
|
# _ignore_not_implemented_error is True
|
|
def assertRaises(self, expected_exception, *args, **kwargs):
|
|
if self._ignore_not_implemented_error:
|
|
context: Optional[AssertRaisesContextIgnoreNotImplementedError] = \
|
|
AssertRaisesContextIgnoreNotImplementedError(expected_exception, self) # type: ignore[call-arg]
|
|
try:
|
|
return context.handle('assertRaises', args, kwargs) # type: ignore[union-attr]
|
|
finally:
|
|
# see https://bugs.python.org/issue23890
|
|
context = None
|
|
else:
|
|
return super().assertRaises(expected_exception, *args, **kwargs)
|
|
|
|
# Reimplemented to provide special behavior when
|
|
# _ignore_not_implemented_error is True
|
|
def assertRaisesRegex(self, expected_exception, expected_regex, *args, **kwargs):
|
|
# Verifies that an exception with the type expected_exception and message
|
|
# matching the regular expression defined by expected_regex is thrown.
|
|
# If the test is instantiated for a non-native device type (like XLA)
|
|
# then the message is not validated.
|
|
|
|
# Checks whether the test is instantiated for a device type by testing
|
|
# if the test class has defined the device_type attribute and,
|
|
# if so, tests whether the instantiated device type is native or not
|
|
if hasattr(self, 'device_type') and self.device_type not in NATIVE_DEVICES: # type: ignore[attr-defined]
|
|
# empty string matches any string
|
|
expected_regex = ''
|
|
|
|
if self._ignore_not_implemented_error:
|
|
context = AssertRaisesContextIgnoreNotImplementedError( # type: ignore[call-arg]
|
|
expected_exception, self, expected_regex)
|
|
return context.handle('assertRaisesRegex', args, kwargs) # type: ignore[attr-defined]
|
|
else:
|
|
return super().assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)
|
|
|
|
# TODO: Support context manager interface
|
|
# NB: The kwargs forwarding to callable robs the 'subname' parameter.
|
|
# If you need it, manually apply your callable in a lambda instead.
|
|
def assertExpectedRaises(self, exc_type, callable, *args, **kwargs):
|
|
subname = None
|
|
if 'subname' in kwargs:
|
|
subname = kwargs['subname']
|
|
del kwargs['subname']
|
|
try:
|
|
callable(*args, **kwargs)
|
|
except exc_type as e:
|
|
self.assertExpected(str(e), subname)
|
|
return
|
|
# Don't put this in the try block; the AssertionError will catch it
|
|
self.fail(msg="Did not raise when expected to")
|
|
|
|
def assertNotWarn(self, callable, msg=''):
|
|
r"""
|
|
Test if :attr:`callable` does not raise a warning.
|
|
"""
|
|
with warnings.catch_warnings(record=True) as ws:
|
|
warnings.simplefilter("always") # allow any warning to be raised
|
|
with set_warn_always_context(True):
|
|
callable()
|
|
self.assertTrue(len(ws) == 0, msg)
|
|
|
|
@contextmanager
|
|
def assertWarnsOnceRegex(self, category, regex=''):
|
|
"""Context manager for code that *must always* warn
|
|
|
|
This filters expected warnings from the test and fails if
|
|
the expected warning is not caught. It uses set_warn_always() to force
|
|
TORCH_WARN_ONCE to behave like TORCH_WARN
|
|
"""
|
|
pattern = re.compile(regex)
|
|
with warnings.catch_warnings(record=True) as ws:
|
|
warnings.simplefilter("always") # allow any warning to be raised
|
|
with set_warn_always_context(True):
|
|
yield
|
|
if len(ws) == 0:
|
|
self.fail('no warning caught')
|
|
self.assertTrue(any([type(w.message) is category for w in ws]))
|
|
self.assertTrue(
|
|
any([re.match(pattern, str(w.message)) for w in ws]),
|
|
f'{pattern}, {[w.message for w in ws if type(w.message) is category]}')
|
|
|
|
def assertExpected(self, s, subname=None):
|
|
r"""
|
|
Test that a string matches the recorded contents of a file
|
|
derived from the name of this test and subname. This file
|
|
is placed in the 'expect' directory in the same directory
|
|
as the test script. You can automatically update the recorded test
|
|
output using --accept.
|
|
|
|
If you call this multiple times in a single function, you must
|
|
give a unique subname each time.
|
|
"""
|
|
if not isinstance(s, str):
|
|
raise TypeError("assertExpected is strings only")
|
|
|
|
def remove_prefix(text, prefix):
|
|
if text.startswith(prefix):
|
|
return text[len(prefix):]
|
|
return text
|
|
# NB: we take __file__ from the module that defined the test
|
|
# class, so we place the expect directory where the test script
|
|
# lives, NOT where test/common_utils.py lives. This doesn't matter in
|
|
# PyTorch where all test scripts are in the same directory as
|
|
# test/common_utils.py, but it matters in onnx-pytorch
|
|
module_id = self.__class__.__module__
|
|
munged_id = remove_prefix(self.id(), module_id + ".")
|
|
test_file = os.path.realpath(sys.modules[module_id].__file__)
|
|
expected_file = os.path.join(os.path.dirname(test_file),
|
|
"expect",
|
|
munged_id)
|
|
|
|
subname_output = ""
|
|
if subname:
|
|
expected_file += "-" + subname
|
|
subname_output = " ({})".format(subname)
|
|
expected_file += ".expect"
|
|
expected = None
|
|
|
|
def accept_output(update_type):
|
|
print("Accepting {} for {}{}:\n\n{}".format(update_type, munged_id, subname_output, s))
|
|
with open(expected_file, 'w') as f:
|
|
# Adjust for producer_version, leave s unmodified
|
|
s_tag = re.sub(r'(producer_version): "[0-9.]*"',
|
|
r'\1: "CURRENT_VERSION"', s)
|
|
f.write(s_tag)
|
|
|
|
try:
|
|
with open(expected_file) as f:
|
|
expected = f.read()
|
|
except IOError as e:
|
|
if e.errno != errno.ENOENT:
|
|
raise
|
|
elif expecttest.ACCEPT:
|
|
return accept_output("output")
|
|
else:
|
|
raise RuntimeError(
|
|
("I got this output for {}{}:\n\n{}\n\n"
|
|
"No expect file exists; to accept the current output, run:\n"
|
|
"python {} {} --accept").format(munged_id, subname_output, s, __main__.__file__, munged_id)) from None
|
|
|
|
# a hack for JIT tests
|
|
if IS_WINDOWS:
|
|
expected = re.sub(r'CppOp\[(.+?)\]', 'CppOp[]', expected)
|
|
s = re.sub(r'CppOp\[(.+?)\]', 'CppOp[]', s)
|
|
|
|
# Adjust for producer_version
|
|
expected = expected.replace(
|
|
'producer_version: "CURRENT_VERSION"',
|
|
'producer_version: "{}"'.format(torch.onnx.producer_version)
|
|
)
|
|
if expecttest.ACCEPT:
|
|
if expected != s:
|
|
return accept_output("updated output")
|
|
else:
|
|
if hasattr(self, "assertMultiLineEqual"):
|
|
# Python 2.7 only
|
|
# NB: Python considers lhs "old" and rhs "new".
|
|
self.assertMultiLineEqual(expected, s)
|
|
else:
|
|
self.assertEqual(s, expected)
|
|
|
|
def assertExpectedStripMangled(self, s, subname=None):
|
|
s = re.sub(r'__torch__[^ ]+', '', s)
|
|
self.assertExpected(s, subname)
|
|
|
|
def assertGreaterAlmostEqual(self, first, second, places=None, msg=None, delta=None):
|
|
"""Assert that ``first`` is greater than or almost equal to ``second``.
|
|
|
|
The equality of ``first`` and ``second`` is determined in a similar way to
|
|
the ``assertAlmostEqual`` function of the standard library.
|
|
"""
|
|
if delta is not None and places is not None:
|
|
raise TypeError("specify delta or places not both")
|
|
|
|
if first >= second:
|
|
return
|
|
|
|
diff = second - first
|
|
if delta is not None:
|
|
if diff <= delta:
|
|
return
|
|
|
|
standardMsg = f"{first} not greater than or equal to {second} within {delta} delta"
|
|
else:
|
|
if places is None:
|
|
places = 7
|
|
|
|
if round(diff, places) == 0:
|
|
return
|
|
|
|
standardMsg = f"{first} not greater than or equal to {second} within {places} places"
|
|
|
|
msg = self._formatMessage(msg, standardMsg)
|
|
raise self.failureException(msg)
|
|
|
|
# run code in subprocess and capture exceptions.
|
|
@staticmethod
|
|
def run_process_no_exception(code, env=None):
|
|
import subprocess
|
|
|
|
popen = subprocess.Popen(
|
|
[sys.executable, '-c', code],
|
|
stdout=subprocess.PIPE,
|
|
stderr=subprocess.PIPE,
|
|
env=env)
|
|
(stdout, stderr) = popen.communicate()
|
|
return (stdout, stderr)
|
|
|
|
# returns captured stderr
|
|
@staticmethod
|
|
def runWithPytorchAPIUsageStderr(code):
|
|
env = os.environ.copy()
|
|
env["PYTORCH_API_USAGE_STDERR"] = "1"
|
|
# remove IN_CI flag since this is a wrapped test process.
|
|
# IN_CI flag should be set in the parent process only.
|
|
if "IN_CI" in env.keys():
|
|
del env["IN_CI"]
|
|
(stdout, stderr) = TestCase.run_process_no_exception(code, env=env)
|
|
return stderr.decode('ascii')
|
|
|
|
|
|
def download_file(url, binary=True):
|
|
from urllib.parse import urlsplit
|
|
from urllib import request, error
|
|
|
|
filename = os.path.basename(urlsplit(url)[2])
|
|
data_dir = get_writable_path(os.path.join(os.path.dirname(__file__), 'data'))
|
|
path = os.path.join(data_dir, filename)
|
|
|
|
if os.path.exists(path):
|
|
return path
|
|
try:
|
|
data = request.urlopen(url, timeout=15).read()
|
|
with open(path, 'wb' if binary else 'w') as f:
|
|
f.write(data)
|
|
return path
|
|
except error.URLError as e:
|
|
msg = "could not download test file '{}'".format(url)
|
|
warnings.warn(msg, RuntimeWarning)
|
|
raise unittest.SkipTest(msg) from e
|
|
|
|
def find_free_port():
|
|
"""
|
|
Finds an available port and returns that port number.
|
|
|
|
NOTE: If this function is being used to allocate a port to Store (or
|
|
indirectly via init_process_group or init_rpc), it should be used
|
|
in conjuction with the `retry_on_connect_failures` decorator as there is a potential
|
|
race condition where the allocated port may become unavailable before it can be used
|
|
"""
|
|
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
|
|
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
|
|
sock.bind(('localhost', 0))
|
|
_, port = sock.getsockname()
|
|
return port
|
|
|
|
# Errors that we can get in c10d initialization for which we should retry tests for.
|
|
ADDRESS_IN_USE = "Address already in use"
|
|
CONNECT_TIMEOUT = "connect() timed out."
|
|
|
|
def retry_on_connect_failures(func=None, connect_errors=(ADDRESS_IN_USE)):
|
|
"""Reruns a test if the test returns a RuntimeError and the exception
|
|
contains one of the strings in connect_errors."""
|
|
# This if block is executed when using this function as a decorator with arguments.
|
|
if func is None:
|
|
return partial(retry_on_connect_failures, connect_errors=connect_errors)
|
|
|
|
@wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
n_retries = 10
|
|
tries_remaining = n_retries
|
|
while True:
|
|
try:
|
|
return func(*args, **kwargs)
|
|
except RuntimeError as error:
|
|
if any(connect_error in str(error) for connect_error in connect_errors):
|
|
tries_remaining -= 1
|
|
if tries_remaining == 0:
|
|
raise RuntimeError(f"Failing after {n_retries} retries with error: {str(error)}")
|
|
time.sleep(random.random())
|
|
continue
|
|
raise
|
|
return wrapper
|
|
|
|
|
|
# Decorator to retry upon certain Exceptions.
|
|
def retry(ExceptionToCheck, tries=3, delay=3, skip_after_retries=False):
|
|
def deco_retry(f):
|
|
@wraps(f)
|
|
def f_retry(*args, **kwargs):
|
|
mtries, mdelay = tries, delay
|
|
while mtries > 1:
|
|
try:
|
|
return f(*args, **kwargs)
|
|
except ExceptionToCheck as e:
|
|
msg = "%s, Retrying in %d seconds..." % (str(e), mdelay)
|
|
print(msg)
|
|
time.sleep(mdelay)
|
|
mtries -= 1
|
|
try:
|
|
return f(*args, **kwargs)
|
|
except ExceptionToCheck as e:
|
|
raise unittest.SkipTest(f"Skipping after {tries} consecutive {str(e)}") from e if skip_after_retries else e
|
|
return f_retry # true decorator
|
|
return deco_retry
|
|
|
|
|
|
# Methods for matrix generation
|
|
|
|
def random_square_matrix_of_rank(l, rank, dtype=torch.double, device='cpu'):
|
|
assert rank <= l
|
|
A = torch.randn(l, l, dtype=dtype, device=device)
|
|
u, s, vh = torch.linalg.svd(A, full_matrices=False)
|
|
for i in range(l):
|
|
if i >= rank:
|
|
s[i] = 0
|
|
elif s[i] == 0:
|
|
s[i] = 1
|
|
return (u * s.to(dtype).unsqueeze(-2)) @ vh
|
|
|
|
def random_well_conditioned_matrix(*shape, dtype, device, mean=1.0, sigma=0.001):
|
|
"""
|
|
Returns a random rectangular matrix (batch of matrices)
|
|
with singular values sampled from a Gaussian with
|
|
mean `mean` and standard deviation `sigma`.
|
|
The smaller the `sigma`, the better conditioned
|
|
the output matrix is.
|
|
"""
|
|
primitive_dtype = {
|
|
torch.float: torch.float,
|
|
torch.double: torch.double,
|
|
torch.cfloat: torch.float,
|
|
torch.cdouble: torch.double
|
|
}
|
|
x = torch.rand(shape, dtype=dtype, device=device)
|
|
m = x.size(-2)
|
|
n = x.size(-1)
|
|
u, _, vh = torch.linalg.svd(x, full_matrices=False)
|
|
s = (torch.randn(*(shape[:-2] + (min(m, n),)), dtype=primitive_dtype[dtype], device=device) * sigma + mean) \
|
|
.sort(-1, descending=True).values.to(dtype)
|
|
return (u * s.unsqueeze(-2)) @ vh
|
|
|
|
# Returns a noncontiguous (tensor with the same shape and values as t
|
|
# The noncontiguous tensor is constructed such that elements in the innermost
|
|
# dimension are separated by zeros or (whenever possible) nans
|
|
# TODO: consider more complicated noncontiguity schemes
|
|
def noncontiguous_like(t):
|
|
# Short-circuits if t is already noncontiguous
|
|
if not t.is_contiguous():
|
|
return t
|
|
|
|
# Special-cases 0-dim tensors
|
|
if t.ndim == 0:
|
|
result = t.detach().unsqueeze(0).repeat_interleave(2, dim=-1)
|
|
if t.dtype.is_floating_point or t.dtype.is_complex:
|
|
result[0] = math.nan
|
|
else:
|
|
result[0] = 0
|
|
result.set_(result.storage(), 1, t.size(), ())
|
|
result.requires_grad_(t.requires_grad)
|
|
return result
|
|
|
|
# 1+ dim tensor case
|
|
result = torch.repeat_interleave(t.detach(), 2, dim=-1)
|
|
if t.dtype.is_floating_point or t.dtype.is_complex:
|
|
result[..., 1::2] = math.nan
|
|
else:
|
|
result[..., 1::2] = 0
|
|
|
|
strides = list(result.stride())
|
|
strides[-1] = strides[-1] * 2
|
|
result.set_(result.storage(), result.storage_offset(), t.size(), stride=tuple(strides))
|
|
result.requires_grad_(t.requires_grad)
|
|
return result
|
|
|
|
# TODO: remove this (prefer make_symmetric_matrices below)
|
|
def random_symmetric_matrix(l, *batches, **kwargs):
|
|
dtype = kwargs.get('dtype', torch.double)
|
|
device = kwargs.get('device', 'cpu')
|
|
A = torch.randn(*(batches + (l, l)), dtype=dtype, device=device)
|
|
A = (A + A.mT).div_(2)
|
|
return A
|
|
|
|
# Creates a symmetric matrix or batch of symmetric matrices
|
|
# Shape must be a square matrix or batch of square matrices
|
|
def make_symmetric_matrices(*shape, device, dtype):
|
|
assert shape[-1] == shape[-2]
|
|
t = make_tensor(shape, device=device, dtype=dtype)
|
|
t = (t + t.mT).div_(2)
|
|
return t
|
|
|
|
def random_hermitian_matrix(l, *batches, **kwargs):
|
|
dtype = kwargs.get('dtype', torch.double)
|
|
device = kwargs.get('device', 'cpu')
|
|
A = torch.randn(*(batches + (l, l)), dtype=dtype, device=device)
|
|
A = (A + A.mH).div_(2)
|
|
return A
|
|
|
|
|
|
def random_symmetric_psd_matrix(l, *batches, **kwargs):
|
|
"""
|
|
Returns a batch of random symmetric positive-semi-definite matrices.
|
|
The shape of the result is batch_dims + (matrix_size, matrix_size)
|
|
The following example creates a tensor of size 2 x 4 x 3 x 3
|
|
>>> matrices = random_symmetric_psd_matrix(3, 2, 4, dtype=dtype, device=device)
|
|
"""
|
|
dtype = kwargs.get('dtype', torch.double)
|
|
device = kwargs.get('device', 'cpu')
|
|
A = torch.randn(*(batches + (l, l)), dtype=dtype, device=device)
|
|
return A @ A.mT
|
|
|
|
|
|
def random_hermitian_psd_matrix(matrix_size, *batch_dims, dtype=torch.double, device='cpu'):
|
|
"""
|
|
Returns a batch of random Hermitian positive-semi-definite matrices.
|
|
The shape of the result is batch_dims + (matrix_size, matrix_size)
|
|
The following example creates a tensor of size 2 x 4 x 3 x 3
|
|
>>> matrices = random_hermitian_psd_matrix(3, 2, 4, dtype=dtype, device=device)
|
|
"""
|
|
A = torch.randn(*(batch_dims + (matrix_size, matrix_size)), dtype=dtype, device=device)
|
|
return A @ A.mH
|
|
|
|
|
|
# TODO: remove this (prefer make_symmetric_pd_matrices below)
|
|
def random_symmetric_pd_matrix(matrix_size, *batch_dims, **kwargs):
|
|
dtype = kwargs.get('dtype', torch.double)
|
|
device = kwargs.get('device', 'cpu')
|
|
A = torch.randn(*(batch_dims + (matrix_size, matrix_size)),
|
|
dtype=dtype, device=device)
|
|
return torch.matmul(A, A.mT) \
|
|
+ torch.eye(matrix_size, dtype=dtype, device=device) * 1e-5
|
|
|
|
|
|
# Creates a symmetric positive-definite matrix or batch of
|
|
# such matrices
|
|
def make_symmetric_pd_matrices(*shape, device, dtype):
|
|
assert shape[-1] == shape[-2]
|
|
t = make_tensor(shape, device=device, dtype=dtype)
|
|
i = torch.eye(shape[-1], device=device, dtype=dtype) * 1e-5
|
|
return t @ t.mT + i
|
|
|
|
def random_hermitian_pd_matrix(matrix_size, *batch_dims, dtype, device):
|
|
"""
|
|
Returns a batch of random Hermitian positive-definite matrices.
|
|
The shape of the result is batch_dims + (matrix_size, matrix_size)
|
|
The following example creates a tensor of size 2 x 4 x 3 x 3
|
|
>>> matrices = random_hermitian_pd_matrix(3, 2, 4, dtype=dtype, device=device)
|
|
"""
|
|
A = torch.randn(*(batch_dims + (matrix_size, matrix_size)),
|
|
dtype=dtype, device=device)
|
|
return A @ A.mH + torch.eye(matrix_size, dtype=dtype, device=device)
|
|
|
|
# Creates a full rank matrix with distinct signular values or
|
|
# a batch of such matrices
|
|
def make_fullrank_matrices_with_distinct_singular_values(*shape, device, dtype, requires_grad=False):
|
|
with torch.no_grad():
|
|
t = make_tensor(shape, device=device, dtype=dtype)
|
|
u, _, vh = torch.linalg.svd(t, full_matrices=False)
|
|
# TODO: improve the handling of complex tensors here
|
|
real_dtype = t.real.dtype if t.dtype.is_complex else t.dtype
|
|
k = min(shape[-1], shape[-2])
|
|
# We choose the singular values to be "around one"
|
|
# This is to make the matrix well conditioned
|
|
# s = [2, 3, ..., k+1]
|
|
s = torch.arange(2, k + 2, dtype=real_dtype, device=device)
|
|
# s = [2, -3, 4, ..., (-1)^k k+1]
|
|
s[1::2] *= -1.
|
|
# 1 + 1/s so that the singular values are in the range [2/3, 3/2]
|
|
# This gives a condition number of 9/4, which should be good enough
|
|
s.reciprocal_().add_(1.)
|
|
# Note that the singular values need not be ordered in an SVD so
|
|
# we don't need need to sort S
|
|
x = (u * s.to(u.dtype)) @ vh
|
|
x.requires_grad_(requires_grad)
|
|
return x
|
|
|
|
def random_matrix(rows, columns, *batch_dims, **kwargs):
|
|
"""Return rectangular matrix or batches of rectangular matrices.
|
|
|
|
Parameters:
|
|
dtype - the data type
|
|
device - the device kind
|
|
singular - when True, the output will be singular
|
|
"""
|
|
dtype = kwargs.get('dtype', torch.double)
|
|
device = kwargs.get('device', 'cpu')
|
|
silent = kwargs.get("silent", False)
|
|
singular = kwargs.get("singular", False)
|
|
if silent and not torch._C.has_lapack:
|
|
return torch.ones(rows, columns, dtype=dtype, device=device)
|
|
|
|
A = torch.randn(batch_dims + (rows, columns), dtype=dtype, device=device)
|
|
if A.numel() == 0:
|
|
return A
|
|
u, _, vh = torch.linalg.svd(A, full_matrices=False)
|
|
k = min(rows, columns)
|
|
s = torch.linspace(1 / (k + 1), 1, k, dtype=dtype, device=device)
|
|
if singular:
|
|
# make matrix singular
|
|
s[k - 1] = 0
|
|
if k > 2:
|
|
# increase the order of singularity so that the pivoting
|
|
# in LU factorization will be non-trivial
|
|
s[0] = 0
|
|
return (u * s.unsqueeze(-2)) @ vh
|
|
|
|
|
|
def random_lowrank_matrix(rank, rows, columns, *batch_dims, **kwargs):
|
|
"""Return rectangular matrix or batches of rectangular matrices with
|
|
given rank.
|
|
"""
|
|
B = random_matrix(rows, rank, *batch_dims, **kwargs)
|
|
C = random_matrix(rank, columns, *batch_dims, **kwargs)
|
|
return B.matmul(C)
|
|
|
|
|
|
def random_sparse_matrix(rows, columns, density=0.01, **kwargs):
|
|
"""Return rectangular random sparse matrix within given density.
|
|
|
|
The density of the result approaches to given density as the size
|
|
of the matrix is increased and a relatively small value of density
|
|
is specified but higher than min(rows, columns)/(rows * columns)
|
|
for non-singular matrices.
|
|
"""
|
|
dtype = kwargs.get('dtype', torch.double)
|
|
device = kwargs.get('device', 'cpu')
|
|
singular = kwargs.get("singular", False)
|
|
|
|
k = min(rows, columns)
|
|
nonzero_elements = max(min(rows, columns), int(rows * columns * density))
|
|
|
|
row_indices = [i % rows for i in range(nonzero_elements)]
|
|
column_indices = [i % columns for i in range(nonzero_elements)]
|
|
random.shuffle(column_indices)
|
|
indices = [row_indices, column_indices]
|
|
values = torch.randn(nonzero_elements, dtype=dtype, device=device)
|
|
# ensure that the diagonal dominates
|
|
values *= torch.tensor([-float(i - j)**2 for i, j in zip(*indices)], dtype=dtype, device=device).exp()
|
|
indices_tensor = torch.tensor(indices)
|
|
A = torch.sparse_coo_tensor(indices_tensor, values, (rows, columns), device=device)
|
|
return A.coalesce()
|
|
|
|
|
|
def random_sparse_pd_matrix(matrix_size, density=0.01, **kwargs):
|
|
"""Return random sparse positive-definite matrix with given density.
|
|
|
|
The eigenvalues of the matrix are defined as::
|
|
arange(1, matrix_size+1)/matrix_size
|
|
|
|
Algorithm:
|
|
A = diag(arange(1, matrix_size+1)/matrix_size)
|
|
while <A density is smaller than required>:
|
|
<choose random i, j in range(matrix_size), theta in [0, 2*pi]>
|
|
R = <rotation matrix (i,j,theta)>
|
|
A = R^T A R
|
|
"""
|
|
import math
|
|
torch = kwargs.get('torch', globals()['torch'])
|
|
dtype = kwargs.get('dtype', torch.double)
|
|
device = kwargs.get('device', 'cpu')
|
|
data = dict([((i, i), float(i + 1) / matrix_size)
|
|
for i in range(matrix_size)])
|
|
|
|
|
|
def multiply(data, N, i, j, cs, sn, left=True):
|
|
for k in range(N):
|
|
if left:
|
|
ik, jk = (k, i), (k, j)
|
|
else:
|
|
ik, jk = (i, k), (j, k)
|
|
aik, ajk = data.get(ik, 0), data.get(jk, 0)
|
|
aik, ajk = cs * aik + sn * ajk, -sn * aik + cs * ajk
|
|
if aik:
|
|
data[ik] = aik
|
|
else:
|
|
data.pop(ik, None)
|
|
if ajk:
|
|
data[jk] = ajk
|
|
else:
|
|
data.pop(jk, None)
|
|
|
|
target_nnz = density * matrix_size * matrix_size
|
|
while len(data) < target_nnz:
|
|
i = random.randint(0, matrix_size - 1)
|
|
j = random.randint(0, matrix_size - 1)
|
|
if i != j:
|
|
theta = random.uniform(0, 2 * math.pi)
|
|
cs = math.cos(theta)
|
|
sn = math.sin(theta)
|
|
multiply(data, matrix_size, i, j, cs, sn, left=True)
|
|
multiply(data, matrix_size, i, j, cs, sn, left=False)
|
|
icoords, jcoords, values = [], [], []
|
|
for (i, j), v in sorted(data.items()):
|
|
icoords.append(i)
|
|
jcoords.append(j)
|
|
values.append(v)
|
|
indices_tensor = torch.tensor([icoords, jcoords])
|
|
return torch.sparse_coo_tensor(indices_tensor, values, (matrix_size, matrix_size), dtype=dtype, device=device)
|
|
|
|
|
|
def do_test_dtypes(self, dtypes, layout, device):
|
|
for dtype in dtypes:
|
|
if dtype != torch.float16:
|
|
out = torch.zeros((2, 3), dtype=dtype, layout=layout, device=device)
|
|
self.assertIs(dtype, out.dtype)
|
|
self.assertIs(layout, out.layout)
|
|
self.assertEqual(device, out.device)
|
|
|
|
|
|
def do_test_empty_full(self, dtypes, layout, device):
|
|
shape = torch.Size([2, 3])
|
|
|
|
def check_value(tensor, dtype, layout, device, value, requires_grad):
|
|
self.assertEqual(shape, tensor.shape)
|
|
self.assertIs(dtype, tensor.dtype)
|
|
self.assertIs(layout, tensor.layout)
|
|
self.assertEqual(tensor.requires_grad, requires_grad)
|
|
if tensor.is_cuda and device is not None:
|
|
self.assertEqual(device, tensor.device)
|
|
if value is not None:
|
|
fill = tensor.new(shape).fill_(value)
|
|
self.assertEqual(tensor, fill)
|
|
|
|
def get_int64_dtype(dtype):
|
|
module = '.'.join(str(dtype).split('.')[1:-1])
|
|
if not module:
|
|
return torch.int64
|
|
return operator.attrgetter(module)(torch).int64
|
|
|
|
default_dtype = torch.get_default_dtype()
|
|
check_value(torch.empty(shape), default_dtype, torch.strided, -1, None, False)
|
|
check_value(torch.full(shape, -5.), default_dtype, torch.strided, -1, None, False)
|
|
for dtype in dtypes:
|
|
for rg in {dtype.is_floating_point, False}:
|
|
int64_dtype = get_int64_dtype(dtype)
|
|
v = torch.empty(shape, dtype=dtype, device=device, layout=layout, requires_grad=rg)
|
|
check_value(v, dtype, layout, device, None, rg)
|
|
out = v.new()
|
|
check_value(torch.empty(shape, out=out, device=device, layout=layout, requires_grad=rg),
|
|
dtype, layout, device, None, rg)
|
|
check_value(v.new_empty(shape), dtype, layout, device, None, False)
|
|
check_value(v.new_empty(shape, dtype=int64_dtype, device=device, requires_grad=False),
|
|
int64_dtype, layout, device, None, False)
|
|
check_value(torch.empty_like(v), dtype, layout, device, None, False)
|
|
check_value(torch.empty_like(v, dtype=int64_dtype, layout=layout, device=device, requires_grad=False),
|
|
int64_dtype, layout, device, None, False)
|
|
|
|
if dtype is not torch.float16 and layout != torch.sparse_coo:
|
|
fv = 3
|
|
v = torch.full(shape, fv, dtype=dtype, layout=layout, device=device, requires_grad=rg)
|
|
check_value(v, dtype, layout, device, fv, rg)
|
|
check_value(v.new_full(shape, fv + 1), dtype, layout, device, fv + 1, False)
|
|
out = v.new()
|
|
check_value(torch.full(shape, fv + 2, out=out, device=device, layout=layout, requires_grad=rg),
|
|
dtype, layout, device, fv + 2, rg)
|
|
check_value(v.new_full(shape, fv + 3, dtype=int64_dtype, device=device, requires_grad=False),
|
|
int64_dtype, layout, device, fv + 3, False)
|
|
check_value(torch.full_like(v, fv + 4), dtype, layout, device, fv + 4, False)
|
|
check_value(torch.full_like(v, fv + 5,
|
|
dtype=int64_dtype, layout=layout, device=device, requires_grad=False),
|
|
int64_dtype, layout, device, fv + 5, False)
|
|
|
|
# this helper method is to recursively
|
|
# clone the tensor-type input of operators tested by OpInfo
|
|
def clone_input_helper(input):
|
|
if isinstance(input, torch.Tensor):
|
|
return torch.clone(input)
|
|
|
|
if isinstance(input, Sequence):
|
|
return tuple(map(clone_input_helper, input))
|
|
|
|
return input
|
|
|
|
THESE_TAKE_WAY_TOO_LONG = {
|
|
'test_Conv3d_groups',
|
|
'test_conv_double_backward',
|
|
'test_conv_double_backward_groups',
|
|
'test_Conv3d_dilated',
|
|
'test_Conv3d_stride_padding',
|
|
'test_Conv3d_dilated_strided',
|
|
'test_Conv3d',
|
|
'test_Conv2d_dilated',
|
|
'test_ConvTranspose3d_dilated',
|
|
'test_ConvTranspose2d_dilated',
|
|
'test_snli',
|
|
'test_Conv2d',
|
|
'test_Conv2d_padding',
|
|
'test_ConvTranspose2d_no_bias',
|
|
'test_ConvTranspose2d',
|
|
'test_ConvTranspose3d',
|
|
'test_Conv2d_no_bias',
|
|
'test_matmul_4d_4d',
|
|
'test_multinomial_invalid_probs',
|
|
}
|
|
|
|
|
|
running_script_path = None
|
|
|
|
|
|
def set_running_script_path():
|
|
global running_script_path
|
|
try:
|
|
running_file = os.path.abspath(os.path.realpath(sys.argv[0]))
|
|
if running_file.endswith('.py'): # skip if the running file is not a script
|
|
running_script_path = running_file
|
|
except Exception:
|
|
pass
|
|
|
|
|
|
def check_test_defined_in_running_script(test_case):
|
|
if running_script_path is None:
|
|
return
|
|
test_case_class_file = os.path.abspath(os.path.realpath(inspect.getfile(test_case.__class__)))
|
|
assert test_case_class_file == running_script_path, "Class of loaded TestCase \"{}\" " \
|
|
"is not defined in the running script \"{}\", but in \"{}\". Did you " \
|
|
"accidentally import a unittest.TestCase from another file?".format(
|
|
test_case.id(), running_script_path, test_case_class_file)
|
|
|
|
|
|
def load_tests(loader, tests, pattern):
|
|
set_running_script_path()
|
|
test_suite = unittest.TestSuite()
|
|
for test_group in tests:
|
|
for test in test_group:
|
|
check_test_defined_in_running_script(test)
|
|
test_suite.addTest(test)
|
|
return test_suite
|
|
|
|
|
|
class BytesIOContext(io.BytesIO):
|
|
def __enter__(self):
|
|
return self
|
|
|
|
def __exit__(self, *args):
|
|
pass
|
|
|
|
# Tentative value for nondet_tol for gradcheck when backward implementation
|
|
# relies on nondeterministic operations, i.e., those listed here:
|
|
# https://pytorch.org/docs/stable/generated/torch.use_deterministic_algorithms.html
|
|
#
|
|
# For more information see https://github.com/pytorch/pytorch/issues/56202
|
|
GRADCHECK_NONDET_TOL = 1e-12
|
|
|
|
def gradcheck(fn, inputs, **kwargs):
|
|
# Wrapper around gradcheck that enables certain keys by default.
|
|
# Use this testing-internal gradcheck instead of autograd.gradcheck so that new features like vmap and
|
|
# forward-mode AD are tested by default. We create this wrapper because we'd like to keep new checks
|
|
# to be disabled to default for the public-facing api to avoid breaking user code.
|
|
#
|
|
# All PyTorch devs doing testing should use this wrapper instead of autograd.gradcheck.
|
|
default_values = {
|
|
"check_batched_grad": True,
|
|
"fast_mode": True,
|
|
}
|
|
|
|
if os.environ.get('PYTORCH_TEST_WITH_SLOW_GRADCHECK', "0FF") == "ON":
|
|
default_values["fast_mode"] = False
|
|
|
|
for key, value in default_values.items():
|
|
# default value override values explicitly set to None
|
|
k = kwargs.get(key, None)
|
|
kwargs[key] = k if k is not None else value
|
|
|
|
return torch.autograd.gradcheck(fn, inputs, **kwargs)
|
|
|
|
def gradgradcheck(fn, inputs, grad_outputs=None, **kwargs):
|
|
# Wrapper around gradgradcheck that enables certain keys by default
|
|
# See gradcheck above for an explanation of why we need something like this.
|
|
#
|
|
# All PyTorch devs doing testing should use this wrapper instead of autograd.gradgradcheck
|
|
default_values = {
|
|
"check_batched_grad": True,
|
|
"fast_mode": True,
|
|
}
|
|
|
|
if os.environ.get('PYTORCH_TEST_WITH_SLOW_GRADCHECK', "0FF") == "ON":
|
|
default_values["fast_mode"] = False
|
|
|
|
for key, value in default_values.items():
|
|
# default value override values explicitly set to None
|
|
k = kwargs.get(key, None)
|
|
kwargs[key] = k if k is not None else value
|
|
|
|
return torch.autograd.gradgradcheck(fn, inputs, grad_outputs, **kwargs)
|
|
|
|
|
|
def _assertGradAndGradgradChecks(test_case, apply_fn, inputs, **kwargs):
|
|
# call assert function rather than returning a bool since it's nicer
|
|
# if we get whether this failed on the gradcheck or the gradgradcheck.
|
|
test_case.assertTrue(gradcheck(apply_fn, inputs, **kwargs))
|
|
test_case.assertTrue(gradgradcheck(apply_fn, inputs, **kwargs))
|
|
|
|
|
|
@contextmanager
|
|
def set_cwd(path: str) -> Iterator[None]:
|
|
old_cwd = os.getcwd()
|
|
try:
|
|
os.chdir(path)
|
|
yield
|
|
finally:
|
|
os.chdir(old_cwd)
|
|
|
|
|
|
# Using @precisionOverride specific to your test is the recommended way
|
|
# of doing this. These are just some values that worked for test_nn.
|
|
dtype2prec_DONTUSE = {torch.float: 1e-5,
|
|
torch.double: 1e-5,
|
|
torch.half: 1e-2,
|
|
torch.bfloat16: 1e-1}
|
|
|
|
|
|
def _wrap_warn_once(regex):
|
|
def decorator(fn):
|
|
def inner(self, *args, **kwargs):
|
|
with self.assertWarnsOnceRegex(UserWarning, regex):
|
|
fn(self, *args, **kwargs)
|
|
return inner
|
|
return decorator
|
|
|
|
# This is a wrapper that wraps a test to run this test twice, one with
|
|
# coalesced=True, another with coalesced=False for coalesced/uncoalesced sparse tensors.
|
|
def coalescedonoff(f):
|
|
@wraps(f)
|
|
def wrapped(self, *args, **kwargs):
|
|
f(self, *args, **kwargs, coalesced=True)
|
|
f(self, *args, **kwargs, coalesced=False)
|
|
return wrapped
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def disable_gc():
|
|
if gc.isenabled():
|
|
try:
|
|
gc.disable()
|
|
yield
|
|
finally:
|
|
gc.enable()
|
|
else:
|
|
yield
|
|
|
|
|
|
def find_library_location(lib_name: str) -> Path:
|
|
# return the shared library file in the installed folder if exist,
|
|
# else the file in the build folder
|
|
torch_root = Path(torch.__file__).resolve().parent
|
|
path = torch_root / 'lib' / lib_name
|
|
if os.path.exists(path):
|
|
return path
|
|
torch_root = Path(__file__).resolve().parent.parent.parent
|
|
return torch_root / 'build' / 'lib' / lib_name
|
|
|
|
def sandcastle_skip(reason):
|
|
"""
|
|
Similar to unittest.skip, however in the sandcastle environment it just
|
|
"passes" the test instead to avoid creating tasks complaining about tests
|
|
skipping continuously.
|
|
"""
|
|
def decorator(func):
|
|
if not IS_SANDCASTLE:
|
|
func.__unittest_skip__ = True
|
|
func.__unittest_skip_why__ = reason
|
|
return func
|
|
|
|
@wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
print(f'Skipping {func.__name__} on sandcastle for following reason: {reason}', file=sys.stderr)
|
|
return
|
|
return wrapper
|
|
|
|
return decorator
|
|
|
|
def mock_wrapper(method):
|
|
"""
|
|
Returns a function that calls the real implementation of a method
|
|
in addition to passing args to a mock object.
|
|
"""
|
|
mock = MagicMock()
|
|
|
|
@wraps(method)
|
|
def wrapper(self, *args, **kwargs):
|
|
mock(*args, **kwargs)
|
|
return method(self, *args, **kwargs)
|
|
wrapper.mock = mock # type: ignore[attr-defined]
|
|
return wrapper
|
|
|
|
def get_tensors_from(args, kwargs):
|
|
""" Returns a set of all Tensor objects in the given args and kwargs. """
|
|
return set([arg for arg in args if isinstance(arg, Tensor)] +
|
|
[v for v in kwargs.values() if isinstance(v, Tensor)])
|
|
|
|
|
|
# Returns scalar tensor representation of a list of integer byte values
|
|
def bytes_to_scalar(byte_list: List[int], dtype: torch.dtype, device: torch.device):
|
|
dtype_to_ctype: Dict[torch.dtype, Any] = {
|
|
torch.int8: ctypes.c_int8,
|
|
torch.uint8: ctypes.c_uint8,
|
|
torch.int16: ctypes.c_int16,
|
|
torch.int32: ctypes.c_int32,
|
|
torch.int64: ctypes.c_int64,
|
|
torch.bool: ctypes.c_bool,
|
|
torch.float32: ctypes.c_float,
|
|
torch.complex64: ctypes.c_float,
|
|
torch.float64: ctypes.c_double,
|
|
torch.complex128: ctypes.c_double,
|
|
}
|
|
ctype = dtype_to_ctype[dtype]
|
|
num_bytes = ctypes.sizeof(ctype)
|
|
|
|
def check_bytes(byte_list):
|
|
for byte in byte_list:
|
|
assert 0 <= byte <= 255
|
|
|
|
if dtype.is_complex:
|
|
assert len(byte_list) == (num_bytes * 2)
|
|
check_bytes(byte_list)
|
|
real = ctype.from_buffer((ctypes.c_byte * num_bytes)(
|
|
*byte_list[:num_bytes])).value
|
|
imag = ctype.from_buffer((ctypes.c_byte * num_bytes)(
|
|
*byte_list[num_bytes:])).value
|
|
res = real + 1j * imag
|
|
else:
|
|
assert len(byte_list) == num_bytes
|
|
check_bytes(byte_list)
|
|
res = ctype.from_buffer((ctypes.c_byte * num_bytes)(
|
|
*byte_list)).value
|
|
|
|
return torch.tensor(res, device=device, dtype=dtype)
|
|
|
|
|
|
def has_breakpad():
|
|
# We always build with breakpad in CI
|
|
if IS_IN_CI:
|
|
return True
|
|
|
|
# If not on a special build, check that the library was actually linked in
|
|
try:
|
|
torch._C._get_minidump_directory() # type: ignore[attr-defined]
|
|
return True
|
|
except RuntimeError as e:
|
|
if "Minidump handler is uninintialized" in str(e):
|
|
return True
|
|
return False
|
|
|
|
|
|
def sandcastle_skip_if(condition, reason):
|
|
"""
|
|
Similar to unittest.skipIf, however in the sandcastle environment it just
|
|
"passes" the test instead to avoid creating tasks complaining about tests
|
|
skipping continuously.
|
|
"""
|
|
def decorator(func):
|
|
|
|
if not IS_SANDCASTLE and condition:
|
|
func.__unittest_skip__ = True
|
|
func.__unittest_skip_why__ = reason
|
|
return func
|
|
|
|
@wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
if condition and IS_SANDCASTLE:
|
|
print(f'Skipping {func.__name__} on sandcastle for following reason: {reason}', file=sys.stderr)
|
|
return
|
|
else:
|
|
return func(*args, **kwargs)
|
|
return wrapper
|
|
|
|
return decorator
|
|
|
|
def dtype_name(dtype):
|
|
""" Returns the pretty name of the dtype (e.g. torch.int64 -> int64). """
|
|
return str(dtype).split('.')[1]
|
|
|
|
|
|
def set_single_threaded_if_parallel_tbb(fn):
|
|
"""Set test to be single threaded for parallel tbb.
|
|
|
|
See https://github.com/pytorch/pytorch/issues/64571#issuecomment-914691883
|
|
"""
|
|
if not IS_TBB:
|
|
return fn
|
|
|
|
@wraps(fn)
|
|
def wrap_fn(*args, **kwargs):
|
|
num_threads = torch.get_num_threads()
|
|
torch.set_num_threads(1)
|
|
try:
|
|
return fn(*args, **kwargs)
|
|
finally:
|
|
torch.set_num_threads(num_threads)
|
|
return wrap_fn
|
|
|
|
|
|
@functools.lru_cache()
|
|
def get_cycles_per_ms() -> float:
|
|
"""Measure and return approximate number of cycles per millisecond for torch.cuda._sleep
|
|
"""
|
|
|
|
def measure() -> float:
|
|
start = torch.cuda.Event(enable_timing=True)
|
|
end = torch.cuda.Event(enable_timing=True)
|
|
start.record()
|
|
torch.cuda._sleep(1000000)
|
|
end.record()
|
|
end.synchronize()
|
|
cycles_per_ms = 1000000 / start.elapsed_time(end)
|
|
return cycles_per_ms
|
|
|
|
# Get 10 values and remove the 2 max and 2 min and return the avg.
|
|
# This is to avoid system disturbance that skew the results, e.g.
|
|
# the very first cuda call likely does a bunch of init, which takes
|
|
# much longer than subsequent calls.
|
|
#
|
|
# Tested on both Tesla V100, Quadro GP100, Titan RTX, RTX 3090 GPUs
|
|
# and seems to return stable values. Therefore, we enable caching
|
|
# using lru_cache decorator above.
|
|
num = 10
|
|
vals = []
|
|
for _ in range(num):
|
|
vals.append(measure())
|
|
vals = sorted(vals)
|
|
return mean(vals[2 : num - 2])
|
|
|
|
|
|
T = TypeVar('T')
|
|
def first_sample(self: unittest.TestCase, samples: Iterable[T]) -> T:
|
|
"""
|
|
Returns the first sample from an iterable of samples, like those returned by OpInfo.
|
|
The test will be skipped if no samples are available.
|
|
"""
|
|
try:
|
|
return next(iter(samples))
|
|
except StopIteration:
|
|
raise unittest.SkipTest('Skipped! Need at least 1 sample input')
|