mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
…ogger Fixes #129951 . Would you take a moment to review it? @LucasLLC Pull Request resolved: https://github.com/pytorch/pytorch/pull/130423 Approved by: https://github.com/Skylion007
134 lines
4.6 KiB
Python
134 lines
4.6 KiB
Python
# Owner(s): ["oncall: distributed"]
|
|
|
|
import sys
|
|
|
|
import torch
|
|
|
|
from torch.distributed._shard.sharded_tensor import (
|
|
Shard,
|
|
ShardedTensor,
|
|
ShardedTensorMetadata,
|
|
ShardMetadata,
|
|
)
|
|
from torch.distributed._shard.sharded_tensor.metadata import TensorProperties
|
|
from torch.distributed.c10d_logger import _c10d_logger
|
|
from torch.distributed.checkpoint.logger import _dcp_logger
|
|
from torch.distributed.checkpoint.metadata import MetadataIndex
|
|
from torch.distributed.checkpoint.utils import find_state_dict_object
|
|
|
|
from torch.testing._internal.common_utils import (
|
|
run_tests,
|
|
TEST_WITH_DEV_DBG_ASAN,
|
|
TestCase,
|
|
)
|
|
from torch.testing._internal.distributed.distributed_utils import with_fake_comms
|
|
|
|
if TEST_WITH_DEV_DBG_ASAN:
|
|
print(
|
|
"Skip dev-asan as torch + multiprocessing spawn have known issues",
|
|
file=sys.stderr,
|
|
)
|
|
sys.exit(0)
|
|
|
|
|
|
def create_sharded_tensor(rank, world_size, shards_per_rank):
|
|
shards_metadata = []
|
|
local_shards = []
|
|
for idx in range(0, world_size * shards_per_rank):
|
|
shard_rank = idx // shards_per_rank
|
|
shard_md = ShardMetadata(
|
|
shard_offsets=[idx * 8], shard_sizes=[8], placement=f"rank:{shard_rank}/cpu"
|
|
)
|
|
shards_metadata.append(shard_md)
|
|
if shard_rank == rank:
|
|
shard = Shard.from_tensor_and_offsets(
|
|
torch.rand(*shard_md.shard_sizes),
|
|
shard_offsets=shard_md.shard_offsets,
|
|
rank=rank,
|
|
)
|
|
local_shards.append(shard)
|
|
|
|
sharded_tensor_md = ShardedTensorMetadata(
|
|
shards_metadata=shards_metadata,
|
|
size=torch.Size([8 * len(shards_metadata)]),
|
|
tensor_properties=TensorProperties.create_from_tensor(torch.zeros(1)),
|
|
)
|
|
|
|
return ShardedTensor._init_from_local_shards_and_global_metadata(
|
|
local_shards=local_shards, sharded_tensor_metadata=sharded_tensor_md
|
|
)
|
|
|
|
|
|
class TestMedatadaIndex(TestCase):
|
|
def test_init_convert_offset(self):
|
|
a = MetadataIndex("foo", [1, 2])
|
|
b = MetadataIndex("foo", torch.Size([1, 2]))
|
|
self.assertEqual(a, b)
|
|
|
|
def test_index_hint_ignored_on_equals(self):
|
|
a = MetadataIndex("foo")
|
|
b = MetadataIndex("foo", index=99)
|
|
self.assertEqual(a, b)
|
|
|
|
def test_index_hint_ignored_on_hash(self):
|
|
a = MetadataIndex("foo")
|
|
b = MetadataIndex("foo", index=99)
|
|
self.assertEqual(hash(a), hash(b))
|
|
|
|
def test_flat_data(self):
|
|
state_dict = {
|
|
"a": torch.rand(10),
|
|
"b": [1, 2, 3],
|
|
}
|
|
|
|
a = find_state_dict_object(state_dict, MetadataIndex("a"))
|
|
self.assertEqual(a, state_dict["a"])
|
|
a = find_state_dict_object(state_dict, MetadataIndex("a", [0]))
|
|
self.assertEqual(a, state_dict["a"])
|
|
a = find_state_dict_object(state_dict, MetadataIndex("a", index=99))
|
|
self.assertEqual(a, state_dict["a"])
|
|
|
|
b = find_state_dict_object(state_dict, MetadataIndex("b"))
|
|
self.assertEqual(b, state_dict["b"])
|
|
b = find_state_dict_object(state_dict, MetadataIndex("b", index=1))
|
|
self.assertEqual(b, state_dict["b"])
|
|
|
|
with self.assertRaisesRegex(ValueError, "FQN"):
|
|
find_state_dict_object(state_dict, MetadataIndex("c"))
|
|
with self.assertRaisesRegex(ValueError, "ShardedTensor"):
|
|
find_state_dict_object(state_dict, MetadataIndex("b", [1]))
|
|
|
|
@with_fake_comms(rank=0, world_size=2)
|
|
def test_sharded_tensor_lookup(self):
|
|
st = create_sharded_tensor(rank=0, world_size=2, shards_per_rank=3)
|
|
state_dict = {"st": st}
|
|
|
|
obj = find_state_dict_object(state_dict, MetadataIndex("st", [8]))
|
|
self.assertEqual(obj, st.local_shards()[1].tensor)
|
|
|
|
# good hint
|
|
obj = find_state_dict_object(state_dict, MetadataIndex("st", [8], index=1))
|
|
self.assertEqual(obj, st.local_shards()[1].tensor)
|
|
|
|
# bad hint
|
|
obj = find_state_dict_object(state_dict, MetadataIndex("st", [8], index=2))
|
|
self.assertEqual(obj, st.local_shards()[1].tensor)
|
|
|
|
# broken hint
|
|
obj = find_state_dict_object(state_dict, MetadataIndex("st", [8], index=99))
|
|
self.assertEqual(obj, st.local_shards()[1].tensor)
|
|
|
|
with self.assertRaisesRegex(ValueError, "no offset was provided"):
|
|
find_state_dict_object(state_dict, MetadataIndex("st"))
|
|
|
|
with self.assertRaisesRegex(ValueError, "Could not find shard"):
|
|
find_state_dict_object(state_dict, MetadataIndex("st", [1]))
|
|
|
|
def test_dcp_logger(self):
|
|
self.assertTrue(_c10d_logger is not _dcp_logger)
|
|
self.assertEqual(1, len(_c10d_logger.handlers))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|