mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/48182 I'm planning to add a bunch more argument fields following https://github.com/pytorch/pytorch/pull/45890#discussion_r503646917 and it will be a lot more convenient if the arguments get to live in their own dedicated struct. Type checker will tell you if I've done it wrong. No change to output. Signed-off-by: Edward Z. Yang <ezyang@fb.com> Test Plan: Imported from OSS Reviewed By: ljk53 Differential Revision: D25057897 Pulled By: ezyang fbshipit-source-id: dd377181dad6ab0c894d19d83408b7812775a691
161 lines
6.8 KiB
Python
161 lines
6.8 KiB
Python
from tools.codegen.model import *
|
|
|
|
from tools.codegen.api.types import *
|
|
import tools.codegen.api.cpp as cpp
|
|
import tools.codegen.api.native as native
|
|
import tools.codegen.local as local
|
|
|
|
import itertools
|
|
from typing import Sequence, Optional, Tuple
|
|
|
|
# This file describes the translation of JIT schema to the dispatcher
|
|
# API, the *unboxed* calling convention by which invocations through
|
|
# the dispatcher are made. Historically, the dispatcher API matched
|
|
# the C++ API, but with the establishment of the boxed API, we've
|
|
# made changes to the dispatcher API to so that the unboxed API
|
|
# better aligns with the boxed API. The dispatcher API hooks heavily
|
|
# into our template based boxing/unboxing machinery, so changes
|
|
# to this convention will usually need template updates too.
|
|
#
|
|
# Prominent characteristics of the dispatcher API:
|
|
#
|
|
# - 'use_c10_dispatcher: full' controls whether or not we actually
|
|
# use the modern calling convention or not. When use_c10_dispatcher
|
|
# is not enabled, we don't use the template machinery.
|
|
#
|
|
# - dtype, layout, device and pin_memory are represented as separate
|
|
# arguments.
|
|
#
|
|
|
|
def argumenttype_type(t: Type, *, mutable: bool) -> str:
|
|
if local.use_c10_dispatcher().dispatcher_uses_new_style():
|
|
# This is a faux amis. If it makes sense in the future to add
|
|
# more special cases here, or invert things so cpp.argument_type
|
|
# calls this, or just completely inline the function, please do
|
|
# it.
|
|
return cpp.argumenttype_type(t, mutable=mutable)
|
|
else:
|
|
# This is real sharing. If you're modifying this path, ask
|
|
# yourself why you are changing the native functions protocol
|
|
# here and not in native.
|
|
return native.argumenttype_type(t, mutable=mutable)
|
|
|
|
def argument_type(a: Argument) -> str:
|
|
return argumenttype_type(a.type, mutable=a.is_write)
|
|
|
|
def returns_type(rs: Sequence[Return]) -> str:
|
|
# At present, there is no difference. But there could be!
|
|
return cpp.returns_type(rs)
|
|
|
|
def argument(a: Argument) -> DispatcherArgument:
|
|
if local.use_c10_dispatcher().dispatcher_uses_new_style():
|
|
return DispatcherArgument(
|
|
type=argument_type(a),
|
|
name=a.name,
|
|
argument=a,
|
|
)
|
|
else:
|
|
la = native.argument(a)
|
|
assert len(la) == 1, "Operators using the legacy signature in the dispatcher don't scatter TensorOptions."
|
|
return DispatcherArgument(
|
|
type=la[0].type,
|
|
name=la[0].name,
|
|
argument=la[0].argument,
|
|
)
|
|
|
|
def name(func: FunctionSchema) -> str:
|
|
return cpp.name(func)
|
|
|
|
def arguments(func: FunctionSchema) -> Tuple[DispatcherArgument, ...]:
|
|
if local.use_c10_dispatcher().dispatcher_uses_new_style():
|
|
return tuple(map(argument, itertools.chain(func.arguments.out, func.arguments.positional, func.arguments.kwarg_only)))
|
|
else:
|
|
return tuple(
|
|
DispatcherArgument(type=la.type, name=la.name, argument=la.argument)
|
|
for la in native.arguments(func)
|
|
)
|
|
|
|
# Given a set of CppArguments in scope, return a sequence of dispatcher
|
|
# expressions that translate the cpp API into dispatcher API
|
|
#
|
|
# WARNING: This is unsound if you pass it CppArgument when you were
|
|
# supposed to pass it CppTensorOptionsArguments, it will directly
|
|
# translate device to device, which will give you the wrong signature
|
|
# for dispatcher. If Argument "knew" that it was part of a
|
|
# TensorOptions that would help us dynamically test for this case
|
|
def cppargument_exprs(
|
|
a: CppArgumentPack,
|
|
*, tensor_options: Optional[CppArgument]
|
|
) -> Sequence[DispatcherExpr]:
|
|
if isinstance(a, CppSingleArgumentPack):
|
|
if isinstance(a.this.argument, TensorOptionsArguments):
|
|
if local.use_c10_dispatcher().dispatcher_uses_new_style():
|
|
# Scatter
|
|
ta = a.this.argument
|
|
name = a.this.name
|
|
return [
|
|
DispatcherExpr(type=argument_type(ta.dtype), expr=f'optTypeMetaToScalarType({name}.dtype_opt())'),
|
|
DispatcherExpr(type=argument_type(ta.layout), expr=f'{name}.layout_opt()'),
|
|
DispatcherExpr(type=argument_type(ta.device), expr=f'{name}.device_opt()'),
|
|
DispatcherExpr(type=argument_type(ta.pin_memory), expr=f'{name}.pinned_memory_opt()'), # weird discrep
|
|
]
|
|
else:
|
|
# No-op
|
|
return [DispatcherExpr(type='const TensorOptions &', expr=a.this.name)]
|
|
elif isinstance(a.this.argument, Argument):
|
|
if a.this.name == 'memory_format' and \
|
|
tensor_options is not None and \
|
|
local.use_c10_dispatcher().dispatcher_uses_new_style():
|
|
return [DispatcherExpr(
|
|
type=argument_type(a.this.argument),
|
|
expr=f'c10::impl::check_tensor_options_and_extract_memory_format({tensor_options.name}, {a.this.name})')
|
|
]
|
|
else:
|
|
return [DispatcherExpr(type=argument_type(a.this.argument), expr=a.this.name)]
|
|
else:
|
|
assert_never(a.this.argument)
|
|
elif isinstance(a, CppTensorOptionsArgumentPack):
|
|
if local.use_c10_dispatcher().dispatcher_uses_new_style():
|
|
# No-op
|
|
return [
|
|
expr
|
|
for sub_a in a.explicit_arguments() # NB: don't really care about explicitness here
|
|
for expr in cppargument_exprs(CppSingleArgumentPack(sub_a), tensor_options=tensor_options)
|
|
]
|
|
else:
|
|
# Gather
|
|
return [DispatcherExpr(
|
|
type='const TensorOptions &',
|
|
expr=f'TensorOptions().dtype({a.dtype.name}).layout({a.layout.name})'
|
|
f'.device({a.device.name}).pinned_memory({a.pin_memory.name})',
|
|
)]
|
|
elif isinstance(a, CppThisArgumentPack):
|
|
return [DispatcherExpr(
|
|
type=a.type,
|
|
expr='const_cast<Tensor&>(*this)',
|
|
)]
|
|
else:
|
|
assert_never(a)
|
|
|
|
def cpparguments_exprs(args: Sequence[CppArgumentPack]) -> Sequence[DispatcherExpr]:
|
|
tensor_options = next(
|
|
(a.this for a in args if isinstance(a, CppSingleArgumentPack) and
|
|
isinstance(a.this.argument, TensorOptionsArguments)),
|
|
None
|
|
)
|
|
return [r for a in args for r in cppargument_exprs(a, tensor_options=tensor_options)]
|
|
|
|
# I don't think this is entirely sound, but it should be reasonably
|
|
# close
|
|
def nativearguments_exprs(args: Sequence[NativeArgument]) -> Sequence[DispatcherExpr]:
|
|
return cpparguments_exprs([
|
|
CppSingleArgumentPack(CppArgument(type=a.type, name=a.name, default=None, argument=a.argument))
|
|
for a in args
|
|
])
|
|
|
|
def exprs(args: Sequence[DispatcherArgument]) -> Sequence[DispatcherExpr]:
|
|
return cpparguments_exprs([
|
|
CppSingleArgumentPack(CppArgument(type=a.type, name=a.name, default=None, argument=a.argument))
|
|
for a in args
|
|
])
|