mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Context: pt2 oncall is revamping its labeling system. One of the guidelines is to remove duplicate labeling in our system. Both primTorch and decomposition labels are referring to the same thing. primTorch was the legacy name (and we no longer have a primTorch project), so using decomposition as the label name makes more sense. Right now, the only open issues that use "module: primTorch" are the ones generated by the DISABLED bots. Once we replace the label in the bot, we can safely remove the primTorch label. Here an example of the issue that has primTorch label : https://github.com/pytorch/pytorch/issues/112719 Torchbot uses following logic to auto extract module owners: https://github.com/pytorch/test-infra/blob/main/torchci/pages/api/flaky-tests/disable.ts#L391 Pull Request resolved: https://github.com/pytorch/pytorch/pull/114754 Approved by: https://github.com/huydhn
1019 lines
41 KiB
Python
1019 lines
41 KiB
Python
# Owner(s): ["module: decompositions"]
|
|
|
|
from collections import defaultdict
|
|
from torch import Tensor
|
|
import torch.autograd
|
|
from torch._decomp import core_aten_decompositions, decomposition_table
|
|
from torch.utils._python_dispatch import TorchDispatchMode
|
|
|
|
from torch.utils._pytree import tree_map, tree_flatten, tree_unflatten
|
|
from torch.utils import _pytree as pytree
|
|
from torch.testing import make_tensor
|
|
from torch.testing._internal.common_cuda import tf32_off
|
|
from torch.testing._internal.common_utils import (
|
|
is_iterable_of_tensors,
|
|
TestCase,
|
|
skipIfCrossRef,
|
|
suppress_warnings,
|
|
TEST_WITH_ASAN,
|
|
TEST_WITH_SLOW,
|
|
run_tests,
|
|
skipIfTorchDynamo,
|
|
)
|
|
from torch.testing._internal.common_modules import module_db, modules
|
|
from torch.testing._internal.common_device_type import (
|
|
onlyNativeDeviceTypes,
|
|
ops,
|
|
instantiate_device_type_tests,
|
|
onlyCUDA,
|
|
)
|
|
from torch.testing._internal.common_methods_invocations import op_db, skip, skipOps, xfail
|
|
from torch._dispatch.python import enable_python_dispatcher
|
|
from torch._ops import DispatchKey
|
|
|
|
import itertools
|
|
import functools
|
|
from functools import partial
|
|
import unittest
|
|
|
|
aten = torch.ops.aten
|
|
|
|
|
|
# TODO: this isn't going to work with non-aten namespaces
|
|
def overload_to_aten_name(op):
|
|
return op._schema.name.split("::")[1]
|
|
|
|
|
|
# All operators that can have decomp tests
|
|
decomposition_names = {
|
|
overload_to_aten_name(k) for k in decomposition_table
|
|
if isinstance(k, torch._ops.OpOverload)
|
|
}
|
|
core_decomposition_names = {
|
|
overload_to_aten_name(k) for k in core_aten_decompositions()
|
|
if isinstance(k, torch._ops.OpOverload)
|
|
}
|
|
_decomp_test_ops = [
|
|
op
|
|
for op in op_db
|
|
if op.aten_name in decomposition_names
|
|
or op.aten_backward_name in decomposition_names
|
|
]
|
|
_decomp_test_ops_core_autograd = [
|
|
op
|
|
for op in op_db
|
|
if op.aten_name in core_decomposition_names
|
|
and op.supports_autograd
|
|
]
|
|
|
|
|
|
def diff_arg(arg, requires_grad=True):
|
|
def is_differentiable_arg(arg):
|
|
if requires_grad:
|
|
return arg.requires_grad
|
|
else:
|
|
return arg.is_floating_point() or arg.is_complex()
|
|
|
|
if is_iterable_of_tensors(arg):
|
|
if all(is_differentiable_arg(a) for a in arg):
|
|
return True
|
|
if all(not is_differentiable_arg(a) for a in arg):
|
|
return False
|
|
raise RuntimeError("NYI: The test runner can't handle this")
|
|
return isinstance(arg, Tensor) and is_differentiable_arg(arg)
|
|
|
|
|
|
# Version of autograd.grad with some differences:
|
|
# - pytree inputs is allowed (but leaves of the pytree have to all
|
|
# be tensors)
|
|
# - if an input is not used as part of derivatives, we will return a
|
|
# zero-filled tensor for the result
|
|
def _autograd_grad(
|
|
outputs, inputs, grad_outputs=None, retain_graph=False, create_graph=True
|
|
):
|
|
inputs, inputs_spec = tree_flatten(inputs)
|
|
diff_inputs = tuple(inp for inp in inputs if inp.requires_grad)
|
|
if grad_outputs is None:
|
|
diff_outputs = tuple(out for out in outputs if out.requires_grad)
|
|
else:
|
|
diff_grad_outputs = [
|
|
(out, go) for out, go in zip(outputs, grad_outputs) if out.requires_grad
|
|
]
|
|
if len(diff_grad_outputs) == 0:
|
|
diff_outputs, grad_outputs = (), ()
|
|
else:
|
|
diff_outputs, grad_outputs = zip(*diff_grad_outputs)
|
|
grad_inputs = torch.autograd.grad(
|
|
diff_outputs,
|
|
diff_inputs,
|
|
grad_outputs,
|
|
retain_graph=retain_graph,
|
|
create_graph=create_graph,
|
|
allow_unused=True,
|
|
)
|
|
result = []
|
|
grad_inputs_iter = iter(grad_inputs)
|
|
for inp in inputs:
|
|
if inp.requires_grad:
|
|
grad_input = next(grad_inputs_iter)
|
|
if grad_input is None:
|
|
result.append(torch.zeros_like(inp))
|
|
else:
|
|
result.append(grad_input)
|
|
else:
|
|
result.append(torch.zeros_like(inp))
|
|
return tree_unflatten(result, inputs_spec)
|
|
|
|
|
|
def _as_tuple(val):
|
|
if isinstance(val, tuple):
|
|
return val
|
|
return (val,)
|
|
|
|
|
|
def ref_vjp_no_create(f, *primals):
|
|
result = f(*primals)
|
|
|
|
def wrapped(cotangents):
|
|
return _autograd_grad(
|
|
_as_tuple(result), primals, _as_tuple(cotangents), create_graph=False
|
|
)
|
|
|
|
return result, wrapped
|
|
|
|
|
|
dtype_precisions = {
|
|
torch.float16: (0.001, 1e-5),
|
|
torch.bfloat16: (0.016, 1e-4),
|
|
torch.float32: (1.3e-6, 1e-5),
|
|
torch.float64: (1e-7, 1e-7),
|
|
torch.complex32: (0.001, 1e-5),
|
|
torch.complex64: (1.3e-6, 1e-5),
|
|
torch.complex128: (1e-7, 1e-7),
|
|
}
|
|
# Returns the "default" rtol and atol for comparing scalars or
|
|
# tensors of the given dtypes.
|
|
|
|
|
|
def _getDefaultRtolAndAtol(dtype0, dtype1):
|
|
rtol = max(
|
|
dtype_precisions.get(dtype0, (0, 0))[0], dtype_precisions.get(dtype1, (0, 0))[0]
|
|
)
|
|
atol = max(
|
|
dtype_precisions.get(dtype0, (0, 0))[1], dtype_precisions.get(dtype1, (0, 0))[1]
|
|
)
|
|
return rtol, atol
|
|
|
|
|
|
def op_assert_ref(test_case, op, test_dtype, i, orig, decomp, ref, args, kwargs):
|
|
assert orig.dtype == decomp.dtype, f"{i} Operation: {op}"
|
|
if orig.numel() == 0 or decomp.numel() == 0:
|
|
assert orig.numel() == decomp.numel()
|
|
return
|
|
assert orig.shape == decomp.shape, f"{i} Operation: {op}"
|
|
tol_table = {
|
|
(torch.bfloat16, torch.ops.aten.native_layer_norm.default): 1e-5,
|
|
(torch.float16, torch.ops.aten.native_layer_norm.default): 1e-5,
|
|
(torch.float16, torch.ops.aten.native_layer_norm_backward.default): 1e-3,
|
|
(torch.bfloat16, torch.ops.aten.native_layer_norm_backward.default): 2e-2,
|
|
(torch.bfloat16, torch.ops.aten.native_batch_norm.default): 1e-5,
|
|
(torch.float16, torch.ops.aten.native_batch_norm.default): 1e-5,
|
|
(torch.bfloat16, torch.ops.aten._native_batch_norm_legit.default): 1e-5,
|
|
(torch.bfloat16, torch.ops.aten._native_batch_norm_legit.no_stats): 1e-5,
|
|
(torch.float16, torch.ops.aten._native_batch_norm_legit.default): 1e-5,
|
|
(torch.float16, torch.ops.aten._native_batch_norm_legit.no_stats): 1e-5,
|
|
(torch.bfloat16, torch.ops.aten.linalg_vector_norm.default): 1e-4,
|
|
(torch.float16, torch.ops.aten.linalg_vector_norm.default): 1e-4,
|
|
(torch.bfloat16, torch.ops.aten.var_mean.correction): 5e-7,
|
|
(torch.float16, torch.ops.aten.var_mean.correction): 5e-7,
|
|
(torch.bfloat16, torch.ops.aten.var_mean.dim): 5e-7,
|
|
(torch.float16, torch.ops.aten.var_mean.dim): 5e-7,
|
|
(torch.float16, torch.ops.aten.nll_loss_forward.default): 1e-2,
|
|
(torch.bfloat16, torch.ops.aten.nll_loss_forward.default): 1e-1,
|
|
(torch.float16, torch.ops.aten.nll_loss2d_forward.default): 1e-2,
|
|
(torch.bfloat16, torch.ops.aten.nll_loss2d_forward.default): 2e-1,
|
|
# see https://github.com/pytorch/pytorch/pull/96264
|
|
(torch.float16, torch.ops.aten.mv.default): 1e-5,
|
|
}
|
|
if ref.is_floating_point():
|
|
orig_diff = (orig - ref).abs().max()
|
|
decomp_diff = (decomp - ref).abs().max()
|
|
atol = tol_table.get((test_dtype, op), 1e-7)
|
|
if decomp_diff > orig_diff + atol:
|
|
raise RuntimeError(
|
|
f"Difference from float64 is larger with decomposition {op.__name__}"
|
|
f" than original on output {i}. Original max diff: {orig_diff}, Decomp max diff: {decomp_diff}\n"
|
|
f"atol = {atol}\n"
|
|
f"args = {args}\n"
|
|
f"kwargs = {kwargs}"
|
|
)
|
|
else:
|
|
test_case.assertEqual(
|
|
orig, decomp, msg=f"{op.__name__}\nargs = {args}\nkwargs = {kwargs}"
|
|
)
|
|
|
|
|
|
def op_assert_equal(test_case, op, test_dtype, orig, decomp, args, kwargs):
|
|
test_case.assertEqual(
|
|
orig.dtype, decomp.dtype, f"Operation: {op}, orig.dtype: {orig.dtype}, decomp.dtype: {decomp.dtype}, {args}, {kwargs}")
|
|
# Before adding an entry to this table, make sure your decomposition is right :)
|
|
tol_table = {
|
|
# Due to strange epsilon behaviors, see https://github.com/pytorch/pytorch/issues/73161
|
|
(torch.float32, torch.ops.aten.native_layer_norm.default): (1e-3, 1e-3),
|
|
(torch.float32, torch.ops.aten.native_layer_norm_backward.default): (
|
|
1e-3,
|
|
1e-3,
|
|
),
|
|
(torch.float64, torch.ops.aten.native_layer_norm.default): (1e-6, 1e-6),
|
|
# This exceeds default tolerances only on CPU, on CUDA it's fine
|
|
(torch.float32, torch.ops.aten.grid_sampler_2d.default) : (7e-6, 3e-5),
|
|
# Exceeds tolerances on CUDA, likely due to fma
|
|
(torch.float32, torch.ops.aten.mv.default) : (1e-5, 3e-5),
|
|
(torch.complex64, torch.ops.aten.mv.default): (5e-5, 5e-5),
|
|
(torch.float64, torch.ops.aten.upsample_bicubic2d.vec) : (1e-5, 5e-4),
|
|
(torch.float64, torch.ops.aten.upsample_bicubic2d.default) : (1e-5, 5e-4),
|
|
# The decomposition is TOO correct. It computes everything in int64, so sometimes
|
|
# there's an off-by-one error. See
|
|
# https://github.com/pytorch/pytorch/issues/81996
|
|
# https://github.com/pytorch/pytorch/issues/82230
|
|
(torch.int8, torch.ops.aten.linspace.default) : (0, 1),
|
|
(torch.uint8, torch.ops.aten.linspace.default) : (0, 1),
|
|
(torch.int16, torch.ops.aten.linspace.default) : (0, 1),
|
|
(torch.int32, torch.ops.aten.linspace.default) : (0, 1),
|
|
(torch.int64, torch.ops.aten.linspace.default) : (0, 1),
|
|
(torch.int8, torch.ops.aten.linspace.Tensor_Tensor) : (0, 1),
|
|
(torch.uint8, torch.ops.aten.linspace.Tensor_Tensor) : (0, 1),
|
|
(torch.int16, torch.ops.aten.linspace.Tensor_Tensor) : (0, 1),
|
|
(torch.int32, torch.ops.aten.linspace.Tensor_Tensor) : (0, 1),
|
|
(torch.int64, torch.ops.aten.linspace.Tensor_Tensor) : (0, 1),
|
|
(torch.int8, torch.ops.aten.linspace.Tensor_Scalar) : (0, 1),
|
|
(torch.uint8, torch.ops.aten.linspace.Tensor_Scalar) : (0, 1),
|
|
(torch.int16, torch.ops.aten.linspace.Tensor_Scalar) : (0, 1),
|
|
(torch.int32, torch.ops.aten.linspace.Tensor_Scalar) : (0, 1),
|
|
(torch.int64, torch.ops.aten.linspace.Tensor_Scalar) : (0, 1),
|
|
(torch.int8, torch.ops.aten.linspace.Scalar_Tensor) : (0, 1),
|
|
(torch.uint8, torch.ops.aten.linspace.Scalar_Tensor) : (0, 1),
|
|
(torch.int16, torch.ops.aten.linspace.Scalar_Tensor) : (0, 1),
|
|
(torch.int32, torch.ops.aten.linspace.Scalar_Tensor) : (0, 1),
|
|
(torch.int64, torch.ops.aten.linspace.Scalar_Tensor) : (0, 1),
|
|
}
|
|
if (decomp.dtype, op) in tol_table:
|
|
rtol, atol = tol_table[(decomp.dtype, op)]
|
|
else:
|
|
rtol, atol = _getDefaultRtolAndAtol(orig.dtype, decomp.dtype)
|
|
test_case.assertEqual(orig, decomp, rtol=rtol, atol=atol, msg=f"{op.__name__}\nargs = {args}\nkwargs = {kwargs}")
|
|
|
|
|
|
# Given f, returns an f' such that:
|
|
# - f' takes only positional arguments
|
|
# - All arguments to f' are floating-point Tensors
|
|
# - All outputs of f' are floating-point Tensors
|
|
def normalize_op_input_output2(
|
|
f, args, kwargs, output_process_fn_grad=None, requires_grad=True
|
|
):
|
|
flat_args, args_spec = tree_flatten(args)
|
|
diff_argnums = tuple(
|
|
i
|
|
for i, arg in enumerate(flat_args)
|
|
if diff_arg(arg, requires_grad=requires_grad)
|
|
)
|
|
assert len(diff_argnums) > 0
|
|
primals = tuple(flat_args[i] for i in diff_argnums)
|
|
|
|
@functools.wraps(f)
|
|
def wrapped(*primals):
|
|
_args = list(flat_args)
|
|
for num, arg in zip(diff_argnums, primals):
|
|
_args[num] = arg
|
|
_args = tree_unflatten(_args, args_spec)
|
|
result = f(*_args, **kwargs)
|
|
if output_process_fn_grad is not None:
|
|
result = output_process_fn_grad(result)
|
|
if isinstance(result, tuple):
|
|
# TODO We should check that the integer outputs also agree
|
|
result = tuple(
|
|
r
|
|
for r in result
|
|
if isinstance(r, Tensor) and (r.is_floating_point() or r.is_complex())
|
|
)
|
|
assert len(result) > 0
|
|
return result
|
|
|
|
return wrapped, primals
|
|
|
|
|
|
# NB: This also upcasts dtype arguments
|
|
# TODO: handle complex correctly
|
|
def upcast_tensor(x, dtype=torch.float32):
|
|
if isinstance(x, Tensor) and x.dtype.is_floating_point:
|
|
return x.to(dtype=dtype)
|
|
elif (isinstance(x, torch.dtype)
|
|
and x in [torch.float16, torch.bfloat16, torch.float]):
|
|
return dtype
|
|
else:
|
|
return x
|
|
|
|
|
|
def normalize_op_input_output(f, sample, requires_grad=True):
|
|
args = tuple([sample.input] + list(sample.args))
|
|
return normalize_op_input_output2(
|
|
f,
|
|
args,
|
|
sample.kwargs,
|
|
sample.output_process_fn_grad,
|
|
requires_grad=requires_grad,
|
|
)
|
|
|
|
|
|
CROSS_REF_EXCLUDE_SET = {
|
|
# CUBLAS_STATUS_NOT_SUPPORTED when calling
|
|
# `cublasGemmStridedBatchedExFix(handle, opa, opb, (int)m, (int)n, (int)k,
|
|
# (void*)&falpha, a, CUDA_R_16BF, (int)lda, stridea, b, CUDA_R_16BF,
|
|
# (int)ldb, strideb, (void*)&fbeta, c, CUDA_R_16BF, (int)ldc, stridec,
|
|
# (int)num_batches, CUDA_R_32F, CUBLAS_GEMM_DEFAULT_TENSOR_OP)`
|
|
("cuda", torch.bfloat16, "nn.functional.bilinear"),
|
|
# randomness
|
|
(None, None, "special.ndtr"), # aten.special_ndtr was not decomposed
|
|
(None, None, "new_empty"),
|
|
(None, None, "empty_like"),
|
|
(None, None, "empty"),
|
|
|
|
# AssertionError: False is not true : aten.item was not decomposed, saw calls for: aten._local_scalar_dense.default.
|
|
(None, None, "item"),
|
|
|
|
# It's the only in-place op without an out-of-place equivalent in the Python API
|
|
# Its OpInfo wrongly registers it as `torch.zero_(x.clone())`.
|
|
(None, None, "zero_"),
|
|
|
|
# No idea what's going on here
|
|
# In the recursive test logsumexp.default fails with args = (torch.tensor(-math.inf), [])
|
|
# in the test, but it seems to pass when tested locally and in the logsumexp test
|
|
(None, torch.float32, "masked.logsumexp"),
|
|
(None, torch.float64, "masked.logsumexp"),
|
|
|
|
# exp_vml_cpu not implemented for Half
|
|
(torch.cpu, torch.float16, "signal.windows.exponential"),
|
|
(torch.cpu, torch.float16, "signal.windows.gaussian"),
|
|
# sin_vml_cpu not implemented for Half
|
|
(torch.cpu, torch.float16, "signal.windows.cosine"),
|
|
# CompositeAutogradImplicit
|
|
# See https://github.com/pytorch/pytorch/issues/81669
|
|
(None, None, "nn.functional.relu6"),
|
|
# This decomp runs before autograd.
|
|
(None, None, "nn.functional.rrelu"),
|
|
(None, None, "meshgrid"),
|
|
# Decomposition registered as Autograd
|
|
(None, None, "nn.functional.hardshrink"),
|
|
(None, None, "nn.functional.softshrink"),
|
|
# diag was not decomposed (it just registers a decomp for diag_out, torch.diag is CompImplicit)
|
|
(None, None, "diag"),
|
|
# _softmax_backward_data's CPU kernel for bfloat16 always return the grad_input as float32
|
|
("cpu", torch.bfloat16, "_softmax_backward_data"),
|
|
(None, None, "norm"),
|
|
# native_batch_norm is only implicit when python dispatcher is on (and noncomposite otherwise)
|
|
(None, None, "native_batch_norm"),
|
|
|
|
(None, None, "_upsample_bilinear2d_aa"),
|
|
|
|
(None, None, "empty_strided"), # aten.empty_strided was not decomposed
|
|
}
|
|
|
|
CROSS_REF_BACKWARD_EXCLUDE_SET = {
|
|
# Decomposed backward formula is not as precise
|
|
("cpu", torch.bfloat16, "nn.functional.hardswish"),
|
|
("cuda", torch.float16, "nn.functional.cross_entropy"),
|
|
}
|
|
|
|
all_decomposed = set()
|
|
all_called = defaultdict(int)
|
|
|
|
# Helpful snippet for testing coverage
|
|
"""
|
|
import atexit
|
|
def check_coverage():
|
|
print("missing coverage:")
|
|
print("\n".join(map(str, decomposition_table.keys() - all_decomposed)))
|
|
atexit.register(check_coverage)
|
|
"""
|
|
|
|
# Helpful snippet for Horace to create his google sheet :)
|
|
"""
|
|
import atexit
|
|
def dump_ops():
|
|
with open('run_ops.txt', 'w') as f, open('count_ops.txt', 'w') as g:
|
|
for op, count in sorted(all_called.items(), key=lambda x: x[0].__name__):
|
|
f.write(f'{op.__name__}\n')
|
|
g.write(f'{count}\n')
|
|
with open('run_decompositions.txt', 'w') as f:
|
|
for op in sorted([i.__name__ for i in all_decomposed]):
|
|
f.write(f'{op}\n')
|
|
|
|
atexit.register(dump_ops)
|
|
"""
|
|
|
|
|
|
def any_unsupported(args, kwargs):
|
|
def test_unsupported(t):
|
|
if type(t) is torch.Tensor or type(t) is torch.nn.Parameter:
|
|
# These are all things that we haven't coded decompositions
|
|
# to handle correctly. Maybe they should.
|
|
return any([
|
|
t.is_sparse_csr, t.is_sparse, t.is_mkldnn, t.is_quantized,
|
|
t.is_nested, torch._is_functional_tensor(t),
|
|
])
|
|
elif torch.overrides.is_tensor_like(t):
|
|
# Decompositions will generally change the behavior of Tensor-like
|
|
# subclasses, so bypass tests in this case too
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
flat_args = pytree.arg_tree_leaves(*args, **kwargs)
|
|
return any(test_unsupported(x) for x in flat_args)
|
|
|
|
|
|
core_backward_failures = {
|
|
skip('_softmax_backward_data'), # slow: fails with --timeout=360 secs
|
|
xfail('addcdiv'),
|
|
skip('addcmul'), # slow: fails with --timeout=360 secs
|
|
skip('deg2rad'), # slow: fails with --timeout=360 secs
|
|
skip('diag_embed'), # slow: fails with --timeout=360 secs
|
|
skip('frac'), # slow: fails with --timeout=360 secs
|
|
skip('grid_sampler_2d'), # slow: fails with --timeout=360 secs
|
|
xfail('lerp'),
|
|
skip('logaddexp'), # slow: fails with --timeout=360 secs
|
|
skip('native_dropout_backward'), # slow: fails with --timeout=360 secs
|
|
xfail('nn.functional.binary_cross_entropy_with_logits'),
|
|
skip('nn.functional.glu'), # slow: fails with --timeout=360 secs
|
|
xfail('nn.functional.hardshrink'),
|
|
xfail('nn.functional.softshrink'),
|
|
skip('nn.functional.unfold'), # slow: fails with --timeout=360 secs
|
|
xfail('norm'),
|
|
xfail('norm', 'fro'),
|
|
xfail('norm', 'inf'),
|
|
xfail('norm', 'nuc'),
|
|
skip('rad2deg'), # slow: fails with --timeout=360 secs
|
|
skip('renorm'), # slow: fails with --timeout=360 secs
|
|
skip('rot90'), # slow: fails with --timeout=360 secs
|
|
skip('rsub'), # slow: fails with --timeout=360 secs
|
|
skip('sgn'), # slow: fails with --timeout=360 secs
|
|
skip('special.xlog1py'), # slow: fails with --timeout=360 secs
|
|
xfail('stack'),
|
|
skip('tril'), # slow: fails with --timeout=360 secs
|
|
skip('triu'), # slow: fails with --timeout=360 secs
|
|
skip('unfold_copy'), # slow: fails with --timeout=360 secs
|
|
skip('xlogy'), # slow: fails with --timeout=360 secs
|
|
xfail('zero_'),
|
|
}
|
|
if not TEST_WITH_SLOW:
|
|
core_backward_failures.update({
|
|
skip('addr'), # slow: takes 46 sec on A100
|
|
skip('baddbmm'), # slow: takes 800+ sec on A100
|
|
skip('clamp_min'), # slow: takes 800 sec on A100
|
|
skip('clamp_max'), # slow: takes 800 sec on A100
|
|
skip('logit'), # slow: takes 44 sec on A100
|
|
skip('nn.functional.hardswish'), # slow: takes 60 sec on A100
|
|
skip('std_mean'), # slow: takes 170 sec on A100
|
|
skip('split', variant_name='list_args'), # slow: takes 118 sec on A100
|
|
skip('transpose'), # slow: takes 50 sec on A100
|
|
skip('unbind'), # slow: takes 70 sec on A100
|
|
skip('unsafe_split'), # slow: takes 49 sec on A100
|
|
})
|
|
|
|
|
|
class TestDecomp(TestCase):
|
|
longMessage = True
|
|
|
|
# NB: This actually overlaps with test_comprehensive, but it only
|
|
# runs on things that are definitely decomposed so it's a lot faster
|
|
# to run
|
|
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
|
|
@onlyNativeDeviceTypes
|
|
@skipIfCrossRef
|
|
@suppress_warnings
|
|
@ops(_decomp_test_ops)
|
|
def test_quick(self, device, dtype, op):
|
|
self.do_cross_ref(device, dtype, op, run_all=False)
|
|
|
|
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
|
|
@skipOps('TestDecomp', 'test_quick_core_backward', core_backward_failures)
|
|
@onlyNativeDeviceTypes
|
|
@skipIfCrossRef
|
|
@suppress_warnings
|
|
@ops(_decomp_test_ops_core_autograd, allowed_dtypes=(torch.float64,))
|
|
def test_quick_core_backward(self, device, dtype, op):
|
|
for sample_input in op.sample_inputs(device, dtype, requires_grad=True):
|
|
aten_name = op.decomp_aten_name or op.aten_name
|
|
args = [sample_input.input] + list(sample_input.args)
|
|
kwargs = sample_input.kwargs
|
|
func = partial(op.get_op(), **kwargs)
|
|
with self.DecompCrossRefMode(self, self.precision, self.rel_tol, dtype, run_all=False)\
|
|
as mode, enable_python_dispatcher():
|
|
torch.autograd.gradcheck(func, args)
|
|
self.check_decomposed(aten_name, mode)
|
|
|
|
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
|
|
@onlyNativeDeviceTypes
|
|
@skipIfCrossRef
|
|
@suppress_warnings
|
|
@ops(op_db)
|
|
def test_comprehensive(self, device, dtype, op):
|
|
self.do_cross_ref(device, dtype, op, run_all=True)
|
|
|
|
def test_uniform(self, device):
|
|
size = (2, 3, 4, 5)
|
|
dtype = torch.float32
|
|
x = make_tensor(size, dtype=dtype, device=device)
|
|
low = 0.3
|
|
high = 0.9
|
|
|
|
torch.manual_seed(123)
|
|
ref = torch.ops.aten.uniform(x, low, high)
|
|
torch.manual_seed(123)
|
|
res = torch._decomp.decompositions.uniform(x, low=low, high=high)
|
|
self.assertEqual(ref, res)
|
|
|
|
def test_rrelu_with_noise(self, device):
|
|
# rrelu_with_noise behavior depends on a) whether elements in the input
|
|
# are <= 0, and b) whether we're in training mode. Cover all cases:
|
|
dtype = torch.float64
|
|
x = torch.tensor(
|
|
[-3.0, -2.0, -1.0, 0.0, 1.0, 2.0], dtype=dtype, device=device,
|
|
)
|
|
lower = 1.0
|
|
upper = 4.0
|
|
training = False
|
|
|
|
torch.manual_seed(123)
|
|
noise_ref = torch.zeros(x.shape, dtype=dtype, device=device)
|
|
ref = torch.ops.aten.rrelu_with_noise(x, noise_ref, lower, upper, training)
|
|
|
|
torch.manual_seed(123)
|
|
noise_res = torch.zeros(x.shape, dtype=dtype, device=device)
|
|
res = torch._decomp.decompositions.rrelu_with_noise(
|
|
x, noise_res, lower, upper, training,
|
|
)
|
|
self.assertEqual(ref, res)
|
|
self.assertEqual(noise_ref, noise_res)
|
|
|
|
# Now with training=True:
|
|
training = True
|
|
|
|
torch.manual_seed(123)
|
|
noise_ref = torch.zeros(x.shape, dtype=dtype, device=device)
|
|
ref = torch.ops.aten.rrelu_with_noise(x, noise_ref, lower, upper, training)
|
|
|
|
torch.manual_seed(123)
|
|
noise_res = torch.zeros(x.shape, dtype=dtype, device=device)
|
|
res = torch._decomp.decompositions.rrelu_with_noise(
|
|
x, noise_res, lower, upper, training,
|
|
)
|
|
self.assertEqual(ref, res)
|
|
self.assertEqual(noise_ref, noise_res)
|
|
|
|
|
|
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
|
|
@suppress_warnings
|
|
@tf32_off()
|
|
# only tests RNNs since we have py dispsatcher decomps for them
|
|
@modules(filter(lambda m: m.module_cls in (torch.nn.RNN, torch.nn.LSTM, torch.nn.GRU), module_db))
|
|
def test_rnn_decomp_module(self, device, dtype, module_info, training):
|
|
module_cls = module_info.module_cls
|
|
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
|
|
requires_grad=True, training=training)
|
|
for module_input in module_inputs:
|
|
if module_input.forward_input is None:
|
|
continue
|
|
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
|
|
m = module_cls(*args, **kwargs)
|
|
m.to(device).to(dtype)
|
|
|
|
args, kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
|
|
with self.DecompCrossRefMode(self, self.precision, self.rel_tol, dtype, run_all=True), enable_python_dispatcher():
|
|
decomp_out = m(*args, **kwargs)
|
|
|
|
non_decomp_out = m(*args, **kwargs)
|
|
# without this check, incorrect decomps at the python dispatcher level can still pass because
|
|
# they're checking aten decomps at the torch_dispatch level
|
|
self.assertEqual(decomp_out, non_decomp_out)
|
|
|
|
def test_batch_norm_unflatten_weight_bias(self, device):
|
|
# https://github.com/pytorch/pytorch/issues/100970
|
|
shape = (1, 3, 2, 2)
|
|
input = torch.randn(shape, device=device)
|
|
weight = torch.randn((3, 1, 1, 1), device=device)
|
|
bias = torch.randn(3, device=device)
|
|
mean = torch.randn(3, device=device)
|
|
var = torch.randn(3, device=device)
|
|
res = torch._decomp.decompositions.native_batch_norm(input, weight, bias, mean, var, False, 1, 1e-05)
|
|
self.assertEqual(shape, res[0].shape)
|
|
|
|
class DecompCrossRefMode(TorchDispatchMode):
|
|
def __init__(self, test_case, saved_precision, saved_rel_tol, dtype, run_all):
|
|
self.test_case = test_case
|
|
self.saved_precision = saved_precision
|
|
self.saved_rel_tol = saved_rel_tol
|
|
self.test_dtype = dtype
|
|
self.run_all = run_all
|
|
|
|
# We check the correctness of each decomposition right after running it.
|
|
# So, when we encounter a decomposition, we run the function normally, and
|
|
# then run the decomposition, and ensure they're identical.
|
|
self.called = set()
|
|
self.decomposed = set()
|
|
|
|
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
|
|
self.test_case.precision = self.saved_precision
|
|
self.test_case.rel_tol = self.saved_rel_tol
|
|
|
|
self.called.add(func)
|
|
all_called[func] += 1
|
|
|
|
# Stuff we shouldn't bother testing
|
|
# (TODO: remove detach from the decomp table?)
|
|
# N.b. Testing in-place ops would need dedicated logic
|
|
in_place = func.name()[-1] == '_'
|
|
ignored_ops = [
|
|
torch.ops.aten.detach.default,
|
|
# non-deterministic ops
|
|
torch.ops.aten.empty.memory_format,
|
|
torch.ops.aten.empty_like.default,
|
|
torch.ops.aten.new_empty.default,
|
|
torch.ops.aten.empty_strided.default,
|
|
torch.ops.aten.new_empty_strided.default,
|
|
torch.ops.aten.randn.default,
|
|
torch.ops.aten.native_dropout.default,
|
|
]
|
|
if (
|
|
func not in decomposition_table or
|
|
func in ignored_ops or
|
|
torch.Tag.nondeterministic_seeded in func.tags or
|
|
any_unsupported(args, kwargs) or
|
|
in_place
|
|
):
|
|
return func(*args, **kwargs)
|
|
|
|
self.decomposed.add(func)
|
|
all_decomposed.add(func)
|
|
|
|
# We take 2 main strategies for verifying correctness/numerical stability of decompositions
|
|
# The first one is simply tolerance checking between decomp_out and pytorch_out
|
|
# However, for fp16/bf16 and reductions, this becomes very
|
|
# finicky, as there are not many guarantees we can make.
|
|
# So, for fp16/bf16, we instead compare the difference of
|
|
# {decomp_out, pytorch_out_64} and {pytorch_out,
|
|
# pytorch_out_64}. In other words, we compare how far the
|
|
# decomposition and pytorch are from the "ground truth" (i.e.
|
|
# fp64). If the decomposition results in more error, we error
|
|
|
|
# We also decompose the decomposition recursively for
|
|
# further coverage, as some paths not be exercised directly by
|
|
# OpInfos (sadly) but just by other ops
|
|
|
|
decomposition = decomposition_table[func]
|
|
|
|
do_relative_check = self.test_dtype in [torch.float16, torch.bfloat16]
|
|
if self.run_all:
|
|
# Execute recursively via DFS, to find the root of a possible error first
|
|
with self:
|
|
decomp_out = pytree.tree_leaves(decomposition(*args, **kwargs))
|
|
else:
|
|
decomp_out = pytree.tree_leaves(decomposition(*args, **kwargs))
|
|
|
|
# At this stage we should not be decomposing an in-place op
|
|
# We'd like to have decompositions that decompose out-of-place ops into out-of-place ops
|
|
# because decompositions are run after functionalisation and we would not like them to
|
|
# de-functionalise the graph, as that would break AoTAutograd
|
|
# We run the real function *after* the decomposition to make sure that the
|
|
# decomposition does not modify any of the inputs in-place. If it does
|
|
# real_out should be differen than decom_out so we should catch this
|
|
real_out_unflat = func(*args, **kwargs)
|
|
real_out = pytree.tree_leaves(real_out_unflat)
|
|
|
|
assert len(real_out) == len(decomp_out)
|
|
|
|
if do_relative_check:
|
|
upcast = partial(upcast_tensor, dtype=torch.float64)
|
|
real_out_double, _ = tree_flatten(
|
|
func(*tree_map(upcast, args), **tree_map(upcast, kwargs))
|
|
)
|
|
for i, (orig, decomp, ref) in enumerate(zip(real_out, decomp_out, real_out_double)):
|
|
if not isinstance(orig, torch.Tensor):
|
|
assert type(orig) == type(decomp)
|
|
assert orig == decomp
|
|
continue
|
|
op_assert_ref(self.test_case, func, self.test_dtype, i, orig, decomp, ref, args, kwargs)
|
|
else:
|
|
for orig, decomp in zip(real_out, decomp_out):
|
|
if not isinstance(orig, torch.Tensor):
|
|
assert type(orig) == type(decomp)
|
|
assert orig == decomp
|
|
continue
|
|
op_assert_equal(self.test_case, func, self.test_dtype, orig, decomp, args, kwargs)
|
|
|
|
return real_out_unflat
|
|
|
|
def check_decomposed(self, aten_name, mode):
|
|
self.assertTrue(
|
|
any(overload_to_aten_name(c) == aten_name for c in mode.decomposed),
|
|
msg=(f"aten.{aten_name} was not decomposed, saw calls for: "
|
|
f"{', '.join(map(str, list(mode.called)))}. If your op is "
|
|
f"CompositeImplicitAutograd you should skip this test "
|
|
f"by updating CROSS_REF_EXCLUDE_SET.")
|
|
)
|
|
|
|
@skipIfTorchDynamo("Test does not work with TorchDynamo")
|
|
def do_cross_ref(self, device, dtype, op, *, run_all):
|
|
test_keys = [
|
|
(torch.device(device).type, dtype, op.name),
|
|
(None, dtype, op.name),
|
|
(None, None, op.name),
|
|
]
|
|
if any(key in CROSS_REF_EXCLUDE_SET for key in test_keys):
|
|
self.skipTest(f"{op.name} in {dtype} not supported")
|
|
|
|
skip_decomp_vjp = any(key in CROSS_REF_BACKWARD_EXCLUDE_SET for key in test_keys)
|
|
|
|
requires_grad = (
|
|
op.supports_autograd
|
|
and dtype in op.supported_backward_dtypes(torch.device(device).type)
|
|
# TODO: OpInfo really ought to error out for this case, but it's
|
|
# not exercised in test_ops_gradients atm. The problem is not
|
|
# complex32 per-se (which is supported by data movement only ops)
|
|
# but that when we do backwards we expect other ops like add to work
|
|
and not dtype == torch.complex32
|
|
)
|
|
samples = op.sample_inputs(device, dtype, requires_grad=requires_grad)
|
|
|
|
aten_name = op.decomp_aten_name or op.aten_name
|
|
|
|
func = op.get_op()
|
|
for sample_input in samples:
|
|
if requires_grad:
|
|
fn, primals = normalize_op_input_output(func, sample_input)
|
|
primals = tree_map(
|
|
lambda x: x if isinstance(x, torch.Tensor) else x, primals
|
|
)
|
|
|
|
# Once https://github.com/pytorch/pytorch/pull/75965/ I can
|
|
# store the called list on the mode object instance and no
|
|
# explicit clearing is necessary as I will create a fresh mode
|
|
# for each region
|
|
with self.DecompCrossRefMode(self, self.precision, self.rel_tol, dtype, run_all)\
|
|
as mode, enable_python_dispatcher():
|
|
decomp_out, decomp_vjp_fn = ref_vjp_no_create(fn, *primals)
|
|
if aten_name in decomposition_names:
|
|
self.check_decomposed(aten_name, mode)
|
|
|
|
if not skip_decomp_vjp and (op.aten_backward_name in decomposition_names or run_all):
|
|
cotangents = tree_map(lambda x: torch.randn_like(x), decomp_out)
|
|
|
|
with self.DecompCrossRefMode(self, self.precision, self.rel_tol, dtype, run_all)\
|
|
as mode, enable_python_dispatcher():
|
|
decomp_vjp_fn(cotangents)
|
|
if not run_all:
|
|
self.check_decomposed(op.aten_backward_name, mode)
|
|
|
|
elif aten_name in decomposition_names or run_all:
|
|
args = [sample_input.input] + list(sample_input.args)
|
|
kwargs = sample_input.kwargs
|
|
with self.DecompCrossRefMode(self, self.precision, self.rel_tol, dtype, run_all)\
|
|
as mode, enable_python_dispatcher():
|
|
func(*args, **kwargs)
|
|
if not run_all:
|
|
self.check_decomposed(aten_name, mode)
|
|
else:
|
|
assert op.supports_autograd
|
|
self.skipTest(
|
|
"only backwards is decomposed, but dtype doesn't support AD"
|
|
)
|
|
|
|
instantiate_device_type_tests(TestDecomp, globals())
|
|
|
|
|
|
class DecompOneOffTests(TestCase):
|
|
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
|
|
@onlyNativeDeviceTypes
|
|
@skipIfCrossRef
|
|
def test_contiguous_softmax(self, device):
|
|
size = (2, 4, 3, 3)
|
|
stride = (9, 18, 3, 1)
|
|
dtype = torch.float32
|
|
|
|
x = torch.randn(size, dtype=dtype, device=device)
|
|
x = torch.as_strided(x, size, stride)
|
|
|
|
ref = torch.ops.aten._softmax(x, -1, False)
|
|
res = torch._decomp.decompositions._softmax(x, -1, False)
|
|
self.assertEqual(ref.stride(), res.stride())
|
|
|
|
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
|
|
@onlyNativeDeviceTypes
|
|
@skipIfCrossRef
|
|
def test_contiguous_log_softmax(self, device):
|
|
size = (2, 4, 3, 3)
|
|
stride = (9, 18, 3, 1)
|
|
|
|
dtype = torch.float32
|
|
x = torch.randn(size, dtype=dtype, device=device)
|
|
x = torch.as_strided(x, size, stride)
|
|
|
|
ref = torch.ops.aten._log_softmax(x, -1, False)
|
|
res = torch._decomp.decompositions._log_softmax(x, -1, False)
|
|
self.assertEqual(ref.stride(), res.stride())
|
|
|
|
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
|
|
@skipIfCrossRef
|
|
@onlyCUDA
|
|
def test_amp_batch_norm_backward(self):
|
|
device = "cuda"
|
|
grad_out = torch.randn((1, 2, 16, 16), dtype=torch.float16, device=device)
|
|
x = torch.randn((1, 2, 16, 16), dtype=torch.float16, device=device)
|
|
weight = torch.randn((2,), dtype=torch.float32, device=device)
|
|
rmean = torch.randn((2,), dtype=torch.float32, device=device)
|
|
rvar = torch.randn((2,), dtype=torch.float32, device=device)
|
|
mean = torch.randn((0,), dtype=torch.float32, device=device)
|
|
|
|
ref = torch.ops.aten.native_batch_norm_backward(
|
|
grad_out,
|
|
x,
|
|
weight,
|
|
rmean,
|
|
rvar,
|
|
mean,
|
|
mean,
|
|
False,
|
|
1e-05,
|
|
[True, True, True])
|
|
res = torch._decomp.decompositions.native_batch_norm_backward(
|
|
grad_out,
|
|
x,
|
|
weight,
|
|
rmean,
|
|
rvar,
|
|
mean,
|
|
mean,
|
|
False,
|
|
1e-05,
|
|
[True, True, True])
|
|
for (a, b) in zip(ref, res):
|
|
self.assertEqual(a.stride(), b.stride())
|
|
self.assertEqual(a.dtype, b.dtype)
|
|
|
|
|
|
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
|
|
@onlyNativeDeviceTypes
|
|
@skipIfCrossRef
|
|
def test_elu_backward(self, device):
|
|
size = (2, 4, 3, 3)
|
|
dtype = torch.float32
|
|
grad_out = torch.randn(size, dtype=dtype, device=device)
|
|
out = torch.randn(size, dtype=dtype, device=device)
|
|
|
|
ref = torch.ops.aten.elu_backward(grad_out, 1.0, 1, 1, True, out)
|
|
res = torch._decomp.decompositions.elu_backward(grad_out, 1.0, 1, 1, True, out)
|
|
self.assertEqual(ref, res)
|
|
|
|
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
|
|
@onlyNativeDeviceTypes
|
|
@skipIfCrossRef
|
|
def test_threshold_backward_dtype(self, device):
|
|
grad = torch.randint(10, (4,), device=device)
|
|
input_tensor = torch.randint(10, (4,), device=device)
|
|
|
|
ref = torch.ops.aten.threshold_backward(grad, input_tensor, 1)
|
|
res = torch._decomp.decompositions.threshold_backward(grad, input_tensor, 1)
|
|
self.assertEqual(ref.dtype, res.dtype)
|
|
|
|
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
|
|
@onlyNativeDeviceTypes
|
|
@skipIfCrossRef
|
|
def test_weight_norm_interface(self, device):
|
|
g = torch.randn((3, 10, 10), device=device)
|
|
v = torch.randn((1, 1, 10), device=device)
|
|
|
|
ref = torch.ops.aten._weight_norm_interface(g, v, 2)
|
|
res = torch._decomp.decompositions._weight_norm_interface(g, v, 2)
|
|
self.assertTrue(torch.allclose(ref[0], res[0]))
|
|
self.assertTrue(torch.allclose(ref[1], res[1]))
|
|
|
|
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
|
|
@onlyNativeDeviceTypes
|
|
@skipIfCrossRef
|
|
def test_sdpa(self, device):
|
|
from torch.fx.experimental.proxy_tensor import make_fx
|
|
from torch._decomp import get_decompositions
|
|
from torch.nn import functional as F
|
|
|
|
class ScaledDotProductAttention(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, query_layer, key_layer, value_layer):
|
|
attn_output = F.scaled_dot_product_attention(
|
|
query_layer, key_layer, value_layer, None, dropout_p=0.0, is_causal=True
|
|
)
|
|
return attn_output
|
|
|
|
|
|
query_layer = torch.randn(1, 128, 100, 64, device=device)
|
|
key_layer = torch.randn(1, 128, 100, 64, device=device)
|
|
value_layer = torch.randn(1, 128, 100, 64, device=device)
|
|
|
|
attention = ScaledDotProductAttention()
|
|
fx_g = make_fx(
|
|
attention,
|
|
decomposition_table=get_decompositions(
|
|
[
|
|
torch.ops.aten._scaled_dot_product_flash_attention.default,
|
|
]
|
|
),
|
|
)(query_layer, key_layer, value_layer)
|
|
|
|
compiled_res = fx_g(query_layer, key_layer, value_layer)
|
|
eager_res = F.scaled_dot_product_attention(
|
|
query_layer, key_layer, value_layer, None, dropout_p=0.0, is_causal=True
|
|
)
|
|
self.assertTrue(torch.allclose(compiled_res, eager_res, atol=1e-6, rtol=1e-5))
|
|
|
|
|
|
instantiate_device_type_tests(DecompOneOffTests, globals())
|
|
|
|
|
|
|
|
class HasDecompTest(TestCase):
|
|
def setUp(self):
|
|
super().setUp()
|
|
self.maxDiff = None
|
|
|
|
@staticmethod
|
|
def _can_appear_in_trace(op: torch._ops.OpOverload) -> bool:
|
|
has_tensor_arg = any(
|
|
"Tensor" in str(a.type)
|
|
for a in itertools.chain(op._schema.arguments, op._schema.returns))
|
|
if not has_tensor_arg:
|
|
return False
|
|
|
|
try:
|
|
# CompositeImplicitAutograd ops are transparent to the tracer, so don't need decompositions
|
|
return not op.has_kernel_for_dispatch_key(DispatchKey.CompositeImplicitAutograd)
|
|
except RuntimeError as e:
|
|
# has_key fails for some jit-registered ops, which shouldn't be
|
|
# relevant here anyway
|
|
if 'does not exist' in str(e):
|
|
return False
|
|
raise
|
|
|
|
def test_has_decomposition(self):
|
|
|
|
def all_aten_overloads():
|
|
for name in torch._C._dispatch_get_all_op_names():
|
|
if not name.startswith("aten::"):
|
|
continue
|
|
|
|
name = name[6:]
|
|
if "." in name:
|
|
packet_name, overload_name = name.split(".")
|
|
else:
|
|
packet_name, overload_name = name, "default"
|
|
|
|
packet = getattr(aten, packet_name)
|
|
assert isinstance(packet, torch._ops.OpOverloadPacket)
|
|
op = getattr(packet, overload_name)
|
|
yield op
|
|
|
|
# This is for operators that are only registered in some CI
|
|
# configurations, so would cause the test to fail
|
|
allow_list = {aten.get_gradients.default}
|
|
|
|
overloads_wanting_decomp = {op for op in all_aten_overloads()
|
|
if self._can_appear_in_trace(op)}
|
|
ops_missing_decomp = overloads_wanting_decomp - decomposition_table.keys()
|
|
ops_missing_decomp -= allow_list
|
|
self.assertExpected("".join(sorted(op.name() + "\n" for op in ops_missing_decomp)))
|
|
|
|
def test_aten_core_operators(self):
|
|
# If a decomposition isn't included in the core decompositions,
|
|
# then it must decompose a core ATen operator.
|
|
#
|
|
# See NOTE [Core ATen Ops]
|
|
#
|
|
# If this test fails then either:
|
|
# - Add the decomposition to torch._decomp.core_aten_decompositions,
|
|
# if decomposition should be used by inductor (not a core operator).
|
|
# - Run this test again with EXPECTTEST_ACCEPT=1 to update the list of
|
|
# core ATen operators (and inductor will not use the decomposition).
|
|
|
|
# Some decompositions are registered for CompositeImplicitAutograd
|
|
# operators, which never appear in AOTAutograd's graph so are never used.
|
|
useful_decomps = {op for op in decomposition_table.keys()
|
|
if isinstance(op, torch._ops.OpOverload) and
|
|
self._can_appear_in_trace(op)}
|
|
core_decomps = torch._decomp.core_aten_decompositions().keys()
|
|
core_aten_ops = useful_decomps - core_decomps
|
|
self.assertExpected("".join(sorted(op.name() + "\n" for op in core_aten_ops)))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|