pytorch/torch/testing/_internal/common_modules.py
Thomas J. Fan ba126df614 TST Adds more modules into common module tests (#62999)
Summary:
This PR moves some modules into `common_modules` to see what it looks like.

While migrating some no batch modules into `common_modules`, I noticed that `desc` is not used for the name. This means we can not use `-k` to filter tests. This PR moves the sample generation into `_parametrize_test`, and passes in the already generated `module_input` into users of `modules(modules_db)`.

I can see this is a little different from opsinfo and would be happy to revert to the original implementation of `modules`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62999

Reviewed By: heitorschueroff

Differential Revision: D30522737

Pulled By: jbschlosser

fbshipit-source-id: 7ed1aeb3753fc97a4ad6f1a3c789727c78e1bc73
2021-08-24 19:16:32 -07:00

305 lines
14 KiB
Python

import torch
from copy import deepcopy
from functools import wraps, partial
from itertools import chain
from torch.testing import floating_types
from torch.testing._internal.common_device_type import (
_TestParametrizer, _dtype_test_suffix, _update_param_kwargs, skipIf)
from torch.testing._internal.common_nn import nllloss_reference, get_reduction
from torch.testing._internal.common_utils import make_tensor, freeze_rng_state
from types import ModuleType
from typing import List, Tuple, Type, Set, Dict
# List of all namespaces containing modules to test.
MODULE_NAMESPACES: List[ModuleType] = [
torch.nn.modules,
torch.nn.qat.modules,
torch.nn.quantizable.modules,
torch.nn.quantized.modules,
]
# Modules that shouldn't be tested for one reason or another.
MODULES_TO_SKIP: Set[Type] = {
torch.nn.Module, # abstract base class
torch.nn.Container, # deprecated
torch.nn.NLLLoss2d, # deprecated
torch.nn.quantized.modules._ConvNd, # abstract base class
torch.nn.quantized.MaxPool2d, # aliases to nn.MaxPool2d
}
# List of all module classes to test.
MODULE_CLASSES: List[Type] = list(chain(*[
[getattr(namespace, module_name) for module_name in namespace.__all__] # type: ignore[attr-defined]
for namespace in MODULE_NAMESPACES]))
MODULE_CLASSES = [cls for cls in MODULE_CLASSES if cls not in MODULES_TO_SKIP]
# Dict of module class -> common name. Useful for making test names more intuitive.
# Example: torch.nn.modules.linear.Linear -> "nn.Linear"
MODULE_CLASS_NAMES: Dict[Type, str] = {}
for namespace in MODULE_NAMESPACES:
for module_name in namespace.__all__: # type: ignore[attr-defined]
module_cls = getattr(namespace, module_name)
namespace_name = namespace.__name__.replace('torch.', '').replace('.modules', '')
MODULE_CLASS_NAMES[module_cls] = f'{namespace_name}.{module_name}'
class modules(_TestParametrizer):
""" PROTOTYPE: Decorator for specifying a list of modules over which to run a test. """
def __init__(self, module_info_list):
self.module_info_list = module_info_list
def _parametrize_test(self, test, generic_cls, device_cls):
for module_info in self.module_info_list:
# TODO: Factor some of this out since it's similar to OpInfo.
for dtype in floating_types():
# Construct the test name.
test_name = '{}_{}_{}{}'.format(test.__name__,
module_info.name.replace('.', '_'),
device_cls.device_type,
_dtype_test_suffix(dtype))
# Construct parameter kwargs to pass to the test.
param_kwargs = {'module_info': module_info}
_update_param_kwargs(param_kwargs, 'dtype', dtype)
try:
active_decorators = []
if module_info.should_skip(generic_cls.__name__, test.__name__, device_cls.device_type, dtype):
active_decorators.append(skipIf(True, "Skipped!"))
if module_info.decorators is not None:
for decorator in module_info.decorators:
# Can't use isinstance as it would cause a circular import
if decorator.__class__.__name__ == 'DecorateInfo':
if decorator.is_active(generic_cls.__name__, test.__name__,
device_cls.device_type, dtype):
active_decorators += decorator.decorators
else:
active_decorators.append(decorator)
@wraps(test)
def test_wrapper(*args, **kwargs):
return test(*args, **kwargs)
for decorator in active_decorators:
test_wrapper = decorator(test_wrapper)
yield (test_wrapper, test_name, param_kwargs)
except Exception as ex:
# Provides an error message for debugging before rethrowing the exception
print("Failed to instantiate {0} for module {1}!".format(test_name, module_info.name))
raise ex
def formatted_module_name(module_cls):
""" Returns the common name of the module class formatted for use in test names. """
return MODULE_CLASS_NAMES[module_cls].replace('.', '_')
class FunctionInput(object):
""" Contains args and kwargs to pass as input to a function. """
__slots__ = ['args', 'kwargs']
def __init__(self, *args, **kwargs):
self.args = args
self.kwargs = kwargs
class ModuleInput(object):
""" Contains args / kwargs for module instantiation + forward pass. """
__slots__ = ['constructor_input', 'forward_input', 'desc', 'reference_fn']
def __init__(self, constructor_input, forward_input=None, desc='', reference_fn=None):
self.constructor_input = constructor_input # Inputs to pass during construction
self.forward_input = forward_input # Inputs to pass to forward()
self.desc = desc # Description for this set of inputs
self.reference_fn = reference_fn # Reference with signature: reference_fn(module, parameters, *args, **kwargs)
if reference_fn is not None:
@wraps(reference_fn)
def copy_reference_fn(m, *args, **kwargs):
# Copy inputs to avoid undesired side effects from calling the reference.
args, kwargs = deepcopy(args), deepcopy(kwargs)
# Note that module parameters are passed in for convenience.
return reference_fn(m, list(m.parameters()), *args, **kwargs)
self.reference_fn = copy_reference_fn
class ModuleInfo(object):
""" Module information to be used in testing. """
def __init__(self,
module_cls, # Class object for the module under test
*,
module_inputs_func, # Function to generate module inputs
skips=(), # Indicates which tests to skip
decorators=None, # Additional decorators to apply to generated tests
):
self.module_cls = module_cls
self.module_inputs_func = module_inputs_func
self.skips = skips
self.decorators = decorators
def should_skip(self, cls_name, test_name, device_type, dtype):
return any(si.is_active(cls_name, test_name, device_type, dtype) for si in self.skips)
@property
def name(self):
return formatted_module_name(self.module_cls)
def module_inputs_torch_nn_Linear(module_info, device, dtype, requires_grad, **kwargs):
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
module_inputs = [
ModuleInput(constructor_input=FunctionInput(10, 8),
forward_input=FunctionInput(make_input((4, 10))),
reference_fn=lambda m, p, i: torch.mm(i, p[0].t()) + p[1].view(1, -1).expand(4, 8)),
ModuleInput(constructor_input=FunctionInput(10, 8, bias=False),
forward_input=FunctionInput(make_input((4, 10))),
desc='no_bias',
reference_fn=lambda m, p, i: torch.mm(i, p[0].t())),
ModuleInput(constructor_input=FunctionInput(3, 5),
forward_input=FunctionInput(make_input(3)),
desc='no_batch_dim',
reference_fn=lambda m, p, i: torch.mm(i.view(1, -1), p[0].t()).view(-1) + p[1])
]
return module_inputs
def module_inputs_torch_nn_NLLLoss(module_info, device, dtype, requires_grad, **kwargs):
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
cases: List[Tuple[str, dict]] = [
('', {}),
('ignore_index', {'ignore_index': 2}),
('weights', {'weight': make_input(10)}),
('weights_ignore_index', {'weight': make_input(10), 'ignore_index': 2}),
('weights_ignore_index_neg', {'weight': make_input(10), 'ignore_index': -1})
]
module_inputs = []
for desc, constructor_kwargs in cases:
def reference_fn(m, p, i, t, constructor_kwargs=constructor_kwargs):
return nllloss_reference(i, t, **constructor_kwargs)
module_inputs.append(
ModuleInput(constructor_input=FunctionInput(**constructor_kwargs),
forward_input=FunctionInput(make_input((15, 10)).log_softmax(dim=1),
torch.empty(15, device=device).uniform_().mul(10).floor().long()),
desc=desc,
reference_fn=reference_fn)
)
return module_inputs
def no_batch_dim_reference_fn(m, p, *args, **kwargs):
"""Reference function for modules supporting no batch dimensions.
The module is passed the input and target in batched form with a single item.
The output is squeezed to compare with the no-batch input.
"""
single_batch_input_args = [input.unsqueeze(0) for input in args]
with freeze_rng_state():
return m(*single_batch_input_args).squeeze(0)
def no_batch_dim_reference_criterion_fn(m, *args, **kwargs):
"""Reference function for criterion supporting no batch dimensions."""
output = no_batch_dim_reference_fn(m, *args, **kwargs)
reduction = get_reduction(m)
if reduction == 'none':
return output.squeeze(0)
# reduction is 'sum' or 'mean' which results in a 0D tensor
return output
def generate_regression_criterion_inputs(make_input):
return [
ModuleInput(
constructor_input=FunctionInput(reduction=reduction),
forward_input=FunctionInput(make_input(size=(4, )), make_input(size=4,)),
reference_fn=no_batch_dim_reference_criterion_fn,
desc='no_batch_dim_{}'.format(reduction)
) for reduction in ['none', 'mean', 'sum']]
def module_inputs_torch_nn_AvgPool1d(module_info, device, dtype, requires_grad, **kwargs):
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
return [
ModuleInput(constructor_input=FunctionInput(kernel_size=2),
forward_input=FunctionInput(make_input(size=(3, 6))),
desc='no_batch_dim',
reference_fn=no_batch_dim_reference_fn)]
def module_inputs_torch_nn_ELU(module_info, device, dtype, requires_grad, **kwargs):
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
return [
ModuleInput(constructor_input=FunctionInput(alpha=2.),
forward_input=FunctionInput(make_input(size=(3, 2, 5))),
reference_fn=lambda m, p, i: torch.where(i >= 0, i, 2 * (i.exp() - 1))),
ModuleInput(constructor_input=FunctionInput(alpha=2.),
forward_input=FunctionInput(make_input(size=())),
desc='scalar'),
ModuleInput(constructor_input=FunctionInput(),
forward_input=FunctionInput(make_input(size=(3,))),
desc='no_batch_dim',
reference_fn=no_batch_dim_reference_fn)]
def module_inputs_torch_nn_CELU(module_info, device, dtype, requires_grad, **kwargs):
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
return [
ModuleInput(constructor_input=FunctionInput(alpha=2.),
forward_input=FunctionInput(make_input(size=(3, 2, 5))),
reference_fn=lambda m, p, i: torch.where(i >= 0, i, 2. * ((.5 * i).exp() - 1))),
ModuleInput(constructor_input=FunctionInput(alpha=2.),
forward_input=FunctionInput(make_input(size=())),
reference_fn=lambda m, p, i: torch.where(i >= 0, i, 2 * (i.exp() - 1)),
desc='scalar'),
ModuleInput(constructor_input=FunctionInput(alpha=2.),
forward_input=FunctionInput(make_input(size=(3,))),
desc='no_batch_dim',
reference_fn=no_batch_dim_reference_fn)]
def module_inputs_torch_nn_L1Loss(module_info, device, dtype, requires_grad, **kwargs):
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
return [
ModuleInput(constructor_input=FunctionInput(),
forward_input=FunctionInput(make_input(size=(2, 3, 4)),
make_input(size=(2, 3, 4))),
reference_fn=lambda m, p, i, t: 1. / i.numel() * sum((a - b).abs().sum()
for a, b in zip(i, t))),
ModuleInput(constructor_input=FunctionInput(),
forward_input=FunctionInput(make_input(size=()), make_input(size=())),
reference_fn=lambda m, p, i, t: 1. / i.numel() * (i - t).abs().sum(),
desc='scalar')] + generate_regression_criterion_inputs(make_input)
# Database of ModuleInfo entries in alphabetical order.
module_db: List[ModuleInfo] = [
ModuleInfo(torch.nn.AvgPool1d,
module_inputs_func=module_inputs_torch_nn_AvgPool1d),
ModuleInfo(torch.nn.ELU,
module_inputs_func=module_inputs_torch_nn_ELU),
ModuleInfo(torch.nn.L1Loss,
module_inputs_func=module_inputs_torch_nn_L1Loss),
ModuleInfo(torch.nn.Linear,
module_inputs_func=module_inputs_torch_nn_Linear),
ModuleInfo(torch.nn.NLLLoss,
module_inputs_func=module_inputs_torch_nn_NLLLoss)
]