pytorch/tools/autograd/templates/python_fft_functions.cpp
Peter Bell ba0fc71a3a Codegen: python_torch_functions only include relevant operators (#68693)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68693

Generation of python bindings for native functions is split over 8
different files. One for each namespace, with the torch namespace
split into 3 shards, and methods in their own file as well. This
change ensures that editing any single (non-method) operator only
causes one of these files to be rebuilt.

Test Plan: Imported from OSS

Reviewed By: jbschlosser

Differential Revision: D32596270

Pulled By: albanD

fbshipit-source-id: 0570ec69e7476b8f1bc21138ba18fe8f95ebbe3f
2022-01-21 07:34:28 -08:00

82 lines
1.9 KiB
C++

#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
// ${generated_comment}
#include "torch/csrc/Device.h"
#include "torch/csrc/DynamicTypes.h"
#include "torch/csrc/Exceptions.h"
#include "torch/csrc/autograd/python_fft_functions.h"
#include "torch/csrc/autograd/python_return_types.h"
#include "torch/csrc/autograd/python_variable.h"
#include "torch/csrc/autograd/utils/wrap_outputs.h"
#include "torch/csrc/autograd/utils/python_arg_parsing.h"
#include "torch/csrc/autograd/generated/variable_factories.h"
#include "torch/csrc/utils/out_types.h"
#include "torch/csrc/utils/pycfunction_helpers.h"
#include "torch/csrc/utils/python_arg_parser.h"
#include "torch/csrc/utils/structseq.h"
#include "torch/csrc/utils/cuda_lazy_init.h"
#include <ATen/core/Tensor.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#else
$ops_headers
#endif
using at::Tensor;
using at::Device;
using at::Layout;
using at::Scalar;
using at::ScalarType;
using at::Backend;
using at::OptionalDeviceGuard;
using at::DeviceGuard;
using at::TensorOptions;
using at::IntArrayRef;
using at::Generator;
using at::TensorList;
using at::Dimname;
using at::DimnameList;
using torch::utils::check_out_type_matches;
using namespace torch::autograd::utils;
namespace torch { namespace autograd {
// generated forward declarations start here
${py_forwards}
static PyMethodDef fft_functions[] = {
${py_method_defs}
{NULL}
};
static PyObject* THPFFTVariableFunctionsModule = NULL;
void initFFTFunctions(PyObject* module) {
static struct PyModuleDef def = {
PyModuleDef_HEAD_INIT,
"torch._C._fft",
NULL,
-1,
fft_functions
};
PyObject* fft = PyModule_Create(&def);
THPFFTVariableFunctionsModule = fft;
if (!fft) {
throw python_error();
}
// steals a reference to fft
if (PyModule_AddObject(module, "_fft", fft) != 0) {
throw python_error();
}
}
// generated methods start here
${py_methods}
}} // namespace torch::autograd