mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: this diff adds optimizer into param_info, and the associated implementations for modelhelper and brew to set optimizer for each individual parameter. Reviewed By: kennyhorror Differential Revision: D5385432 fbshipit-source-id: 5d682f9d1ab077e04a5d76a24d71470f4e64fc92
82 lines
2.4 KiB
Python
82 lines
2.4 KiB
Python
## @package optimizer_context
|
|
# Module caffe2.python.optimizer_context
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
from caffe2.python import context
|
|
|
|
DEFAULT_OPTIM = 'DEFAULT'
|
|
|
|
|
|
@context.define_context(allow_default=True)
|
|
class OptimizerContext(object):
|
|
"""
|
|
provide context to allow param_info to have different optimizers
|
|
"""
|
|
|
|
def __init__(self):
|
|
self._optimizers = {}
|
|
self._optimizers_list = []
|
|
|
|
def _rebuild_optimizers(self):
|
|
self._optimizers = {}
|
|
for m in self._optimizers_list:
|
|
self._optimizers.update(m)
|
|
|
|
def has_optimizer(self, name):
|
|
return name in self._optimizers
|
|
|
|
def get_optimizer(self, name):
|
|
assert self.has_optimizer(name), (
|
|
"{} optimizer is not provided!".format(name))
|
|
return self._optimizers.get(name)
|
|
|
|
def push_optimizers(self, optimizers):
|
|
# optimizer override is allowed
|
|
self._optimizers_list.append(optimizers)
|
|
self._optimizers.update(optimizers)
|
|
|
|
def pop_optimizers(self):
|
|
assert len(self._optimizers_list) > 0
|
|
self._optimizers_list.pop()
|
|
self._rebuild_optimizers()
|
|
|
|
|
|
class UseOptimizer(object):
|
|
'''
|
|
context class to allow setting the current context.
|
|
Example usage with brew:
|
|
- with UseOptimizer(optim):
|
|
brew.func
|
|
- with UseOptimizer({'WEIGHT': weight_optim}):
|
|
brew.func
|
|
- with UseOptimizer({'DEFAULT': optim, 'BIAS': bias_optim,
|
|
'WEIGHT': weight_optim}):
|
|
brew.func
|
|
- with UseOptimizer(optim1):
|
|
brew.func
|
|
with UseOptimizer(optim2):
|
|
brew.func
|
|
|
|
Example useage with layer:
|
|
optimizers = {'optim1': optim1, 'optim2': optim2}
|
|
with Optimizers(optimizers):
|
|
optim = OptimizerContext.current().get_optimizer('optim1')
|
|
layer(optim=optim)
|
|
'''
|
|
|
|
def __init__(self, optim_or_dict):
|
|
if isinstance(optim_or_dict, dict):
|
|
self._optimizers = optim_or_dict
|
|
else:
|
|
self._optimizers = {DEFAULT_OPTIM: optim_or_dict}
|
|
|
|
def __enter__(self):
|
|
OptimizerContext.current().push_optimizers(self._optimizers)
|
|
return self
|
|
|
|
def __exit__(self, type, value, traceback):
|
|
OptimizerContext.current().pop_optimizers()
|