mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/22309 This diff enables PT operators to run with JIT mode. Users can control eager and JIT mode using the `use_jit` flag. In this diff, we are putting operators in a loop and passed it to JIT. One extra step which wraps the operator with the `_consume` op is introduced to avoid dead code elimination optimization in JIT. With that, the reported time includes the real operator execution time plus the `_consume` (directly return input, nothing else if happening inside) op. Reviewed By: zheng-xq Differential Revision: D16033082 fbshipit-source-id: e03be89fd5a505e44e81015dfc63db9cd76fb8a1
126 lines
3.2 KiB
Python
126 lines
3.2 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import argparse
|
|
|
|
from caffe2.python import workspace
|
|
|
|
import benchmark_core
|
|
import benchmark_utils
|
|
|
|
"""Performance microbenchmarks's main binary.
|
|
|
|
This is the main function for running performance microbenchmark tests.
|
|
It also registers existing benchmark tests via Python module imports.
|
|
"""
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(
|
|
description="Run microbenchmarks.",
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
|
)
|
|
|
|
parser.add_argument(
|
|
'--tag_filter',
|
|
help='tag_filter can be used to run the benchmarks which matches the tag',
|
|
default='short')
|
|
|
|
# This option is used to filter test cases to run.
|
|
parser.add_argument(
|
|
'--operator',
|
|
help='Run the test cases that contain the provided operator'
|
|
' as a substring of their names',
|
|
default=None)
|
|
|
|
parser.add_argument(
|
|
'--test_name',
|
|
help='Run tests that have the provided test_name',
|
|
default=None)
|
|
|
|
parser.add_argument(
|
|
'--list_ops',
|
|
help='List operators without running them',
|
|
action='store_true')
|
|
|
|
parser.add_argument(
|
|
'--list_tests',
|
|
help='List all test cases without running them',
|
|
action='store_true')
|
|
|
|
parser.add_argument(
|
|
"--iterations",
|
|
help="Repeat each operator for the number of iterations",
|
|
type=int
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--min_time_per_test",
|
|
help="Set the minimum time (unit: seconds) to run each test",
|
|
type=int,
|
|
default=0,
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--warmup_iterations",
|
|
help="Number of iterations to ignore before measuring performance",
|
|
default=10,
|
|
type=int
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--omp_num_threads",
|
|
help="Number of OpenMP threads used in PyTorch/Caffe2 runtime",
|
|
default=None,
|
|
type=int
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--mkl_num_threads",
|
|
help="Number of MKL threads used in PyTorch/Caffe2 runtime",
|
|
default=None,
|
|
type=int
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--ai_pep_format",
|
|
help="Print result when running on AI-PEP",
|
|
default=False,
|
|
type=bool
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--use_jit",
|
|
help="Run operators with PyTorch JIT mode",
|
|
action='store_true'
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--forward_only",
|
|
help="Only run the forward path of operators",
|
|
action='store_true'
|
|
)
|
|
|
|
parser.add_argument(
|
|
'--framework',
|
|
help='Comma-delimited list of frameworks to test (Caffe2, PyTorch)',
|
|
default="Caffe2,PyTorch")
|
|
|
|
args = parser.parse_args()
|
|
|
|
if benchmark_utils.is_caffe2_enabled(args.framework):
|
|
workspace.GlobalInit(['caffe2', '--caffe2_log_level=0'])
|
|
workspace.ClearGlobalNetObserver()
|
|
if args.omp_num_threads:
|
|
benchmark_utils.set_omp_threads(args.omp_num_threads)
|
|
if args.mkl_num_threads:
|
|
benchmark_utils.set_mkl_threads(args.mkl_num_threads)
|
|
|
|
benchmark_core.BenchmarkRunner(args).run()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|