mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Attempts to fix #92656 BC-breaking! This changes the default of zero_grad in optim and in nn to default set grads to None instead of zero tensors. We are changing the default because there are proven perf wins and existing code has typically not regressed due to this change. (will probably have to flesh out this note more). Pull Request resolved: https://github.com/pytorch/pytorch/pull/92731 Approved by: https://github.com/ngimel
511 lines
22 KiB
Python
511 lines
22 KiB
Python
from collections import OrderedDict, defaultdict, abc as container_abcs
|
|
import torch
|
|
from copy import deepcopy
|
|
from itertools import chain
|
|
import warnings
|
|
import functools
|
|
import math
|
|
|
|
from typing import Callable, Dict, List
|
|
|
|
import torch.utils.hooks as hooks
|
|
from torch.utils.hooks import RemovableHandle
|
|
from torch._utils import is_compiling
|
|
|
|
__all__ = ['Optimizer', 'register_optimizer_step_pre_hook', 'register_optimizer_step_post_hook']
|
|
_global_optimizer_pre_hooks: Dict[int, Callable] = OrderedDict()
|
|
_global_optimizer_post_hooks: Dict[int, Callable] = OrderedDict()
|
|
|
|
class _RequiredParameter(object):
|
|
"""Singleton class representing a required parameter for an Optimizer."""
|
|
def __repr__(self):
|
|
return "<required parameter>"
|
|
|
|
required = _RequiredParameter()
|
|
|
|
|
|
def _use_grad_for_differentiable(func):
|
|
def _use_grad(self, *args, **kwargs):
|
|
prev_grad = torch.is_grad_enabled()
|
|
try:
|
|
torch.set_grad_enabled(self.defaults['differentiable'])
|
|
ret = func(self, *args, **kwargs)
|
|
finally:
|
|
torch.set_grad_enabled(prev_grad)
|
|
return ret
|
|
return _use_grad
|
|
|
|
def _get_value(x):
|
|
# item is significantly faster than a cpu tensor in eager mode
|
|
if not torch.jit.is_scripting() and is_compiling():
|
|
return x
|
|
else:
|
|
return x.item()
|
|
|
|
def _stack_if_compiling(x):
|
|
if not torch.jit.is_scripting() and is_compiling():
|
|
return torch.stack(x)
|
|
else:
|
|
return x
|
|
|
|
def _dispatch_sqrt(x: float): # float annotation is needed because of torchscript type inference
|
|
if not torch.jit.is_scripting() and isinstance(x, torch.Tensor):
|
|
return x.sqrt()
|
|
else:
|
|
return math.sqrt(x)
|
|
|
|
|
|
# We try to use the foreach implementation on CUDA whenever possible since
|
|
# it is faster than the for-loop implementation. However, the foreach
|
|
# implementation is not differentiable, so we must check differentiable=False.
|
|
def _default_to_foreach(tensorlists: List[List[torch.Tensor]], differentiable: bool = False) -> bool:
|
|
if torch.jit.is_scripting() or differentiable:
|
|
return False
|
|
all_tensors = []
|
|
for tensorlist in tensorlists:
|
|
all_tensors.extend(tensorlist)
|
|
return all(p.is_cuda for p in all_tensors)
|
|
|
|
|
|
# Common doc strings among optimizers
|
|
_foreach_doc = r"""foreach (bool, optional): whether foreach implementation of optimizer
|
|
is used. If unspecified by the user (so foreach is None), we will try to use
|
|
foreach over the for-loop implementation on CUDA, since it is usually
|
|
significantly more performant. (default: None)"""
|
|
|
|
_capturable_doc = r"""capturable (bool, optional): whether this instance is safe to
|
|
capture in a CUDA graph. Passing True can impair ungraphed performance,
|
|
so if you don't intend to graph capture this instance, leave it False
|
|
(default: False)"""
|
|
|
|
_differentiable_doc = r"""differentiable (bool, optional): whether autograd should
|
|
occur through the optimizer step in training. Otherwise, the step()
|
|
function runs in a torch.no_grad() context. Setting to True can impair
|
|
performance, so leave it False if you don't intend to run autograd
|
|
through this instance (default: False)"""
|
|
|
|
_maximize_doc = r"""maximize (bool, optional): maximize the params based on the
|
|
objective, instead of minimizing (default: False)"""
|
|
|
|
|
|
def register_optimizer_step_pre_hook(hook: Callable[..., None]) -> RemovableHandle:
|
|
r"""Register a pre hook common to all optimizers. The hook should have the following
|
|
signature::
|
|
|
|
hook(optimizer, args, kwargs) -> None or modified args and kwargs
|
|
|
|
Args:
|
|
hook (Callable): A user defined hook which is registered on all optimizers.
|
|
|
|
Returns:
|
|
:class:`torch.utils.hooks.RemoveableHandle`:
|
|
a handle that can be used to remove the added hook by calling
|
|
``handle.remove()``
|
|
"""
|
|
handle = hooks.RemovableHandle(_global_optimizer_pre_hooks)
|
|
_global_optimizer_pre_hooks[handle.id] = hook
|
|
return handle
|
|
|
|
|
|
def register_optimizer_step_post_hook(hook: Callable[..., None]) -> RemovableHandle:
|
|
r"""Register a post hook common to all optimizers. The hook should have the following
|
|
signature::
|
|
|
|
hook(optimizer, args, kwargs) -> None
|
|
|
|
Args:
|
|
hook (Callable): A user defined hook which is registered on all optimizers.
|
|
|
|
Returns:
|
|
:class:`torch.utils.hooks.RemoveableHandle`:
|
|
a handle that can be used to remove the added hook by calling
|
|
``handle.remove()``
|
|
"""
|
|
handle = hooks.RemovableHandle(_global_optimizer_post_hooks)
|
|
_global_optimizer_post_hooks[handle.id] = hook
|
|
return handle
|
|
|
|
|
|
class Optimizer(object):
|
|
r"""Base class for all optimizers.
|
|
|
|
.. warning::
|
|
Parameters need to be specified as collections that have a deterministic
|
|
ordering that is consistent between runs. Examples of objects that don't
|
|
satisfy those properties are sets and iterators over values of dictionaries.
|
|
|
|
Args:
|
|
params (iterable): an iterable of :class:`torch.Tensor` s or
|
|
:class:`dict` s. Specifies what Tensors should be optimized.
|
|
defaults: (dict): a dict containing default values of optimization
|
|
options (used when a parameter group doesn't specify them).
|
|
"""
|
|
|
|
def __init__(self, params, defaults):
|
|
torch._C._log_api_usage_once("python.optimizer")
|
|
self.defaults = defaults
|
|
self._optimizer_step_pre_hooks: Dict[int, Callable] = OrderedDict()
|
|
self._optimizer_step_post_hooks: Dict[int, Callable] = OrderedDict()
|
|
|
|
self._patch_step_function()
|
|
|
|
if isinstance(params, torch.Tensor):
|
|
raise TypeError("params argument given to the optimizer should be "
|
|
"an iterable of Tensors or dicts, but got " +
|
|
torch.typename(params))
|
|
|
|
self.state = defaultdict(dict)
|
|
self.param_groups = []
|
|
|
|
param_groups = list(params)
|
|
if len(param_groups) == 0:
|
|
raise ValueError("optimizer got an empty parameter list")
|
|
if not isinstance(param_groups[0], dict):
|
|
param_groups = [{'params': param_groups}]
|
|
|
|
for param_group in param_groups:
|
|
self.add_param_group(param_group)
|
|
|
|
# Allows _cuda_graph_capture_health_check to rig a poor man's TORCH_WARN_ONCE in python,
|
|
# which I don't think exists
|
|
# https://github.com/pytorch/pytorch/issues/72948
|
|
self._warned_capturable_if_run_uncaptured = True
|
|
|
|
|
|
def __getstate__(self):
|
|
return {
|
|
'defaults': self.defaults,
|
|
'state': self.state,
|
|
'param_groups': self.param_groups,
|
|
}
|
|
|
|
def __setstate__(self, state):
|
|
self.__dict__.update(state)
|
|
if '_optimizer_step_pre_hooks' not in self.__dict__:
|
|
self._optimizer_step_pre_hooks = OrderedDict()
|
|
if '_optimizer_step_post_hooks' not in self.__dict__:
|
|
self._optimizer_step_post_hooks = OrderedDict()
|
|
self._patch_step_function() # To support multiprocessing pickle/unpickle
|
|
self.defaults.setdefault('differentiable', False)
|
|
|
|
def __repr__(self):
|
|
format_string = self.__class__.__name__ + ' ('
|
|
for i, group in enumerate(self.param_groups):
|
|
format_string += '\n'
|
|
format_string += 'Parameter Group {0}\n'.format(i)
|
|
for key in sorted(group.keys()):
|
|
if key != 'params':
|
|
format_string += ' {0}: {1}\n'.format(key, group[key])
|
|
format_string += ')'
|
|
return format_string
|
|
|
|
# Currently needed by Adam and AdamW
|
|
def _cuda_graph_capture_health_check(self):
|
|
if torch.has_cuda and torch.cuda.is_available():
|
|
capturing = torch.cuda.is_current_stream_capturing()
|
|
|
|
if capturing and not self.defaults['capturable']:
|
|
raise RuntimeError("Attempting CUDA graph capture of step() for an instance of " +
|
|
self.__class__.__name__ +
|
|
" but this instance was constructed with capturable=False.")
|
|
|
|
if (
|
|
(not getattr(self, "_warned_capturable_if_run_uncaptured", False))
|
|
and self.defaults["capturable"]
|
|
and (not capturing)
|
|
):
|
|
print("Warning: This instance was constructed with capturable=True, but step() " +
|
|
"is running without CUDA graph capture. If you never intend to graph-capture this " +
|
|
"instance, capturable=True can impair performance, and you should set capturable=False.")
|
|
self._warned_capturable_if_run_uncaptured = True
|
|
|
|
def _optimizer_step_code(self):
|
|
"""Entry point for `torch.profile.profiler`.
|
|
|
|
When python tracing is enabled the profiler will hook into this
|
|
function at the CPython level to inspect the optimizer's parameters and
|
|
param groups. It is called it after `step()` since many optimizers
|
|
lazily initialize state.
|
|
|
|
This is a workaround due to lack of a proper step hook on the optimizer,
|
|
and will be removed if it exists.
|
|
"""
|
|
pass
|
|
|
|
@staticmethod
|
|
def profile_hook_step(func):
|
|
|
|
@functools.wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
self, *_ = args
|
|
profile_name = "Optimizer.step#{}.step".format(self.__class__.__name__)
|
|
with torch.autograd.profiler.record_function(profile_name):
|
|
# call optimizer step pre hooks
|
|
for pre_hook in chain(_global_optimizer_pre_hooks.values(), self._optimizer_step_pre_hooks.values()):
|
|
result = pre_hook(self, args, kwargs)
|
|
if result is not None:
|
|
if isinstance(result, tuple) and len(result) == 2:
|
|
args, kwargs = result
|
|
else:
|
|
raise RuntimeError(f"{func} must return None or a tuple of (new_args, new_kwargs),"
|
|
f"but got {result}.")
|
|
|
|
out = func(*args, **kwargs)
|
|
self._optimizer_step_code()
|
|
|
|
# call optimizer step post hooks
|
|
for post_hook in chain(self._optimizer_step_post_hooks.values(), _global_optimizer_post_hooks.values()):
|
|
post_hook(self, args, kwargs)
|
|
|
|
return out
|
|
|
|
return wrapper
|
|
|
|
def _patch_step_function(self):
|
|
self._zero_grad_profile_name = "Optimizer.zero_grad#{}.zero_grad".format(self.__class__.__name__)
|
|
hooked = getattr(self.__class__.step, "hooked", None)
|
|
if not hooked:
|
|
self.__class__.step = self.profile_hook_step(self.__class__.step)
|
|
self.__class__.step.hooked = True
|
|
|
|
def register_step_pre_hook(self, hook: Callable[..., None]) -> RemovableHandle:
|
|
r"""Register an optimizer step pre hook which will be called before
|
|
optimizer step. It should have the following signature::
|
|
|
|
hook(optimizer, args, kwargs) -> None or modified args and kwargs
|
|
|
|
The ``optimizer`` argument is the optimizer instance being used. If
|
|
args and kwargs are modified by the pre-hook, then the transformed
|
|
values are returned as a tuple containing the new_args and new_kwargs.
|
|
|
|
Args:
|
|
hook (Callable): The user defined hook to be registered.
|
|
|
|
Returns:
|
|
:class:`torch.utils.hooks.RemoveableHandle`:
|
|
a handle that can be used to remove the added hook by calling
|
|
``handle.remove()``
|
|
"""
|
|
handle = hooks.RemovableHandle(self._optimizer_step_pre_hooks)
|
|
self._optimizer_step_pre_hooks[handle.id] = hook
|
|
return handle
|
|
|
|
def register_step_post_hook(self, hook: Callable[..., None]) -> RemovableHandle:
|
|
r"""Register an optimizer step post hook which will be called after optimizer step.
|
|
It should have the following signature::
|
|
|
|
hook(optimizer, args, kwargs) -> None
|
|
|
|
The ``optimizer`` argument is the optimizer instance being used.
|
|
|
|
Args:
|
|
hook (Callable): The user defined hook to be registered.
|
|
|
|
Returns:
|
|
:class:`torch.utils.hooks.RemoveableHandle`:
|
|
a handle that can be used to remove the added hook by calling
|
|
``handle.remove()``
|
|
"""
|
|
handle = hooks.RemovableHandle(self._optimizer_step_post_hooks)
|
|
self._optimizer_step_post_hooks[handle.id] = hook
|
|
return handle
|
|
|
|
def state_dict(self):
|
|
r"""Returns the state of the optimizer as a :class:`dict`.
|
|
|
|
It contains two entries:
|
|
|
|
* state - a dict holding current optimization state. Its content
|
|
differs between optimizer classes.
|
|
* param_groups - a list containing all parameter groups where each
|
|
parameter group is a dict
|
|
"""
|
|
# Save order indices instead of Tensors
|
|
param_mappings = {}
|
|
start_index = 0
|
|
|
|
def pack_group(group):
|
|
nonlocal start_index
|
|
packed = {k: v for k, v in group.items() if k != 'params'}
|
|
param_mappings.update({id(p): i for i, p in enumerate(group['params'], start_index)
|
|
if id(p) not in param_mappings})
|
|
packed['params'] = [param_mappings[id(p)] for p in group['params']]
|
|
start_index += len(packed['params'])
|
|
return packed
|
|
param_groups = [pack_group(g) for g in self.param_groups]
|
|
# Remap state to use order indices as keys
|
|
packed_state = {(param_mappings[id(k)] if isinstance(k, torch.Tensor) else k): v
|
|
for k, v in self.state.items()}
|
|
return {
|
|
'state': packed_state,
|
|
'param_groups': param_groups,
|
|
}
|
|
|
|
def load_state_dict(self, state_dict):
|
|
r"""Loads the optimizer state.
|
|
|
|
Args:
|
|
state_dict (dict): optimizer state. Should be an object returned
|
|
from a call to :meth:`state_dict`.
|
|
"""
|
|
# deepcopy, to be consistent with module API
|
|
state_dict = deepcopy(state_dict)
|
|
# Validate the state_dict
|
|
groups = self.param_groups
|
|
saved_groups = state_dict['param_groups']
|
|
|
|
if len(groups) != len(saved_groups):
|
|
raise ValueError("loaded state dict has a different number of "
|
|
"parameter groups")
|
|
param_lens = (len(g['params']) for g in groups)
|
|
saved_lens = (len(g['params']) for g in saved_groups)
|
|
if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)):
|
|
raise ValueError("loaded state dict contains a parameter group "
|
|
"that doesn't match the size of optimizer's group")
|
|
|
|
# Update the state
|
|
id_map = {old_id: p for old_id, p in
|
|
zip(chain.from_iterable((g['params'] for g in saved_groups)),
|
|
chain.from_iterable((g['params'] for g in groups)))}
|
|
|
|
def cast(param, value, key=None):
|
|
r"""Make a deep copy of value, casting all tensors to device of param."""
|
|
if isinstance(value, torch.Tensor):
|
|
# Floating-point types are a bit special here. They are the only ones
|
|
# that are assumed to always match the type of params.
|
|
# Make sure state['step'] is not casted https://github.com/pytorch/pytorch/issues/74424
|
|
if (key != "step"):
|
|
if param.is_floating_point():
|
|
value = value.to(param.dtype)
|
|
value = value.to(param.device)
|
|
return value
|
|
elif isinstance(value, dict):
|
|
return {k: cast(param, v, key=k) for k, v in value.items()}
|
|
elif isinstance(value, container_abcs.Iterable):
|
|
return type(value)(cast(param, v) for v in value)
|
|
else:
|
|
return value
|
|
|
|
# Copy state assigned to params (and cast tensors to appropriate types).
|
|
# State that is not assigned to params is copied as is (needed for
|
|
# backward compatibility).
|
|
state = defaultdict(dict)
|
|
for k, v in state_dict['state'].items():
|
|
if k in id_map:
|
|
param = id_map[k]
|
|
state[param] = cast(param, v)
|
|
else:
|
|
state[k] = v
|
|
|
|
# Update parameter groups, setting their 'params' value
|
|
def update_group(group, new_group):
|
|
new_group['params'] = group['params']
|
|
return new_group
|
|
param_groups = [
|
|
update_group(g, ng) for g, ng in zip(groups, saved_groups)]
|
|
self.__setstate__({'state': state, 'param_groups': param_groups})
|
|
|
|
def zero_grad(self, set_to_none: bool = True):
|
|
r"""Sets the gradients of all optimized :class:`torch.Tensor` s to zero.
|
|
|
|
Args:
|
|
set_to_none (bool): instead of setting to zero, set the grads to None.
|
|
This will in general have lower memory footprint, and can modestly improve performance.
|
|
However, it changes certain behaviors. For example:
|
|
1. When the user tries to access a gradient and perform manual ops on it,
|
|
a None attribute or a Tensor full of 0s will behave differently.
|
|
2. If the user requests ``zero_grad(set_to_none=True)`` followed by a backward pass, ``.grad``\ s
|
|
are guaranteed to be None for params that did not receive a gradient.
|
|
3. ``torch.optim`` optimizers have a different behavior if the gradient is 0 or None
|
|
(in one case it does the step with a gradient of 0 and in the other it skips
|
|
the step altogether).
|
|
"""
|
|
foreach = self.defaults.get('foreach', False)
|
|
|
|
if not hasattr(self, "_zero_grad_profile_name"):
|
|
self._patch_step_function()
|
|
if foreach:
|
|
per_device_and_dtype_grads = defaultdict(lambda: defaultdict(list))
|
|
with torch.autograd.profiler.record_function(self._zero_grad_profile_name):
|
|
for group in self.param_groups:
|
|
for p in group['params']:
|
|
if p.grad is not None:
|
|
if set_to_none:
|
|
p.grad = None
|
|
else:
|
|
if p.grad.grad_fn is not None:
|
|
p.grad.detach_()
|
|
else:
|
|
p.grad.requires_grad_(False)
|
|
if (not foreach or p.grad.is_sparse):
|
|
p.grad.zero_()
|
|
else:
|
|
per_device_and_dtype_grads[p.grad.device][p.grad.dtype].append(p.grad)
|
|
if foreach:
|
|
for _, per_dtype_grads in per_device_and_dtype_grads.items():
|
|
for grads in per_dtype_grads.values():
|
|
torch._foreach_zero_(grads)
|
|
|
|
def step(self, closure):
|
|
r"""Performs a single optimization step (parameter update).
|
|
|
|
Args:
|
|
closure (Callable): A closure that reevaluates the model and
|
|
returns the loss. Optional for most optimizers.
|
|
|
|
.. note::
|
|
Unless otherwise specified, this function should not modify the
|
|
``.grad`` field of the parameters.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def add_param_group(self, param_group):
|
|
r"""Add a param group to the :class:`Optimizer` s `param_groups`.
|
|
|
|
This can be useful when fine tuning a pre-trained network as frozen layers can be made
|
|
trainable and added to the :class:`Optimizer` as training progresses.
|
|
|
|
Args:
|
|
param_group (dict): Specifies what Tensors should be optimized along with group
|
|
specific optimization options.
|
|
"""
|
|
assert isinstance(param_group, dict), "param group must be a dict"
|
|
|
|
params = param_group['params']
|
|
if isinstance(params, torch.Tensor):
|
|
param_group['params'] = [params]
|
|
elif isinstance(params, set):
|
|
raise TypeError('optimizer parameters need to be organized in ordered collections, but '
|
|
'the ordering of tensors in sets will change between runs. Please use a list instead.')
|
|
else:
|
|
param_group['params'] = list(params)
|
|
|
|
for param in param_group['params']:
|
|
if not isinstance(param, torch.Tensor):
|
|
raise TypeError("optimizer can only optimize Tensors, "
|
|
"but one of the params is " + torch.typename(param))
|
|
if not self.defaults.get('differentiable', None) and not (param.is_leaf or param.retains_grad):
|
|
raise ValueError("can't optimize a non-leaf Tensor")
|
|
|
|
for name, default in self.defaults.items():
|
|
if default is required and name not in param_group:
|
|
raise ValueError("parameter group didn't specify a value of required optimization parameter " +
|
|
name)
|
|
else:
|
|
param_group.setdefault(name, default)
|
|
|
|
params = param_group['params']
|
|
if len(params) != len(set(params)):
|
|
warnings.warn("optimizer contains a parameter group with duplicate parameters; "
|
|
"in future, this will cause an error; "
|
|
"see github.com/pytorch/pytorch/issues/40967 for more information", stacklevel=3)
|
|
|
|
param_set = set()
|
|
for group in self.param_groups:
|
|
param_set.update(set(group['params']))
|
|
|
|
if not param_set.isdisjoint(set(param_group['params'])):
|
|
raise ValueError("some parameters appear in more than one parameter group")
|
|
|
|
self.param_groups.append(param_group)
|