pytorch/caffe2/python/hypothesis_test.py
Paul Jesse Hellemn b875fb281c
Update from facebook (#7451)
* [bootcamp] Improve "Shape" operator to support axes specification

To improve .shape operator of Caffe2 to support x.shape(tensor, axes), which takes an optional int array "axes" as input. For example, x.shape(tensor, [1, 0]) will return the dimension for axis 1 and 0 following the specified order. For current version, "axes" input allows duplications and can have arbitrary length.

* Back out "Add barrier net that runs before training nets"

Original commit changeset: b373fdc9c30f. Need additional changes to some callers to support barrier failures.

* Change warning to verbose log to reduce log spam

The `LOG(WARNING)` was a bit spammy for regular use so lets just make it a `VLOG`.

* Extract the shared code from different caffe2_benchmark binaries

The OSS benchmark and Internal benchmark will share most functions in the benchmark.

* Support MFR in sequence training

As titled.

* Make knowledge distillation work with using logged prediction feature as teacher label.

1) Add loading raw dense feature as teacher label.
2) Optional calibration function for teacher label
3) Add teacher label into generic unit test
4) Deprecated TTSN workflow version using feature_options to config teacher label

* [C2/CUDA]: unjoined cross entropy sigmoid

as desc

* Add async_scheduling executor into deferrable_net_exec_test

Add async_scheduling into tests and fix some exception cases

* Fix Event disabled error

When disabling event in RNN ops make sure we don't call Finish on disabled
event from op's RunAsync

* cuda ensure cpu output op can handle both TensorCPU and TensorCUDA

as desc.

* [C2 Core] Infer input device option in C2 hypothesis_test checkers

Improve how we default input blob device options.
Previously it defaults as where op lives but it is not necessarily the case.

For example:
CopyCPUToGPU

* [C2 Op]SplitByLengthsOp CPU/GPU implementation

[C2 Op]SplitByLengthsOp CPU/GPU implementation

* fix undefined symbol error

not sure why we're getting undefined symbol even with link_whole = True
Need to figure out why but need this workaround for now

* Add tools in DAIPlayground platform to help debugging models

Add additional tools to allow Plauground override individual method defined in AnyExp.  This will allow user to create module that specificly change certain default method behavior.  An example included in this diff is deactivating test model and checkpointing.  When debugging any model problems, switching off components helps me quickly narrow down the location of the bug.  The technique is extensively used in task T27038712 (Steady memory increase in EDPM, eventually resulting in gloo/cuda.cu:34: out of memory)

* add shape and type inference for int8 conversion operator

* Fix flaky test for group_norm

Fix flaky test for group_norm

* Fix group_norm_op_test flaky

Fix group_norm_op_test flaky

* Implementation of composite learning rate policy

In many state-of-the-arts deep learning works, people use a simple trick to
schedule the learning rate: use a fixed learning rate until error plateaus
and then switch to a different fixed learning rate, and so on. In this diff,
we implemented a simple version of the composite learning rate. The user gives
a set of learning rates policies and corresponding iteration nums, and the
optimizer will change the learning rate policy based on the number of iterations so far.

For example, the user give two learning rate policies, one is FixedLearningRate
and PolyLearningRate, with an iteration number of 1k. Then the first 1k iteration,
we use FixedLearningRate. For the following iterations, we use PolyLearningRate.

* Split two use cases of CachedReader into two classes, DBFileReader and CachedReader

# Use Cases:

1). input: DB file -> output: DatasetReader.

Use DBFileReader.

2). input: Reader -> build cache DB file -> output: DatasetReader.

Use CachedReader.

# Changes to CachedReader:

1). Move db_path to the constructor.
Because in mock reader. cache will always be built ahead.

# Changes to tests:

1). Make a separate TestCase class for CachedReader and DBFileReader.

2). Make it possible to add more test functions by adding setUp, tearDown and _make_temp_path.

3). Make delete db_path more general. `db_path` could be a file for `log_file_db`, but could also be a directory for `leveldb`.

* Back out "On Mobile phones, call GlobalInit with no arguments in predictor in case we need to perform initialization"

Original commit changeset: 4489c6133f11

* Fix LARS bug

Fixed a bug in the LARS implementation which caused all subsequent blobs not using LARS to have the LARS learning rate multiplier applied to them.

* [tum] support sparse init & add uniformFill option

as title

* Propagate exception for async nets

Capture the exception when an exception is thrown in async nets and re-throw it after wait().  This allows exceptions to be propagated up to the caller.

This diff was a part of D7752068.  We split the diff so that C2 core files changes are in a separate diff.

* Automatic update of fbcode/onnx to 69894f207dfcd72d1e70497d387201cec327efbc

Previous import was 403ccfbd0161c38f0834413d790bad0874afbf9a

Included changes:
- **[69894f2](https://github.com/onnx/onnx/commit/69894f2)**: Use op schema.all tensor types in random like definitions (#865) <Scott McKay>
- **[b9d6b90](https://github.com/onnx/onnx/commit/b9d6b90)**: Clarify random like operators (#846) <Scott McKay>
- **[fc6b5fb](https://github.com/onnx/onnx/commit/fc6b5fb)**: Refactor shape inference implementation (#855) <anderspapitto>
- **[b7d8dc8](https://github.com/onnx/onnx/commit/b7d8dc8)**: fix cmake warning message (#863) <Eric S. Yu>
- **[f585c5d](https://github.com/onnx/onnx/commit/f585c5d)**: add pytorch-operator test for tile (#831) <Wenhao Hu>
- **[993fe70](https://github.com/onnx/onnx/commit/993fe70)**: add install step (#832) <Eric S. Yu>
- **[68bc26c](https://github.com/onnx/onnx/commit/68bc26c)**: add type inference for traditional ml ops except classifier ops. (#857) <Ke Zhang>
- **[9cc0cda](https://github.com/onnx/onnx/commit/9cc0cda)**: fix string representation of scalar types (#858) <G. Ramalingam>
- **[1078925](https://github.com/onnx/onnx/commit/1078925)**: fix y in pow test case to scalar (#852) <Wenhao Hu>
- **[c66fb6f](https://github.com/onnx/onnx/commit/c66fb6f)**: Add some math function shape inference (#845) <anderspapitto>
- **[ff667d1](https://github.com/onnx/onnx/commit/ff667d1)**: Refactor return type and docs for ONNXIFI_BACKEND_DIRECTX_ID (#853) <Marat Dukhan>
- **[11c6876](https://github.com/onnx/onnx/commit/11c6876)**: clear initializer names when clear initializer (#849) <Wenhao Hu>
- **[73c34ae](https://github.com/onnx/onnx/commit/73c34ae)**: Clarify FeatureVectorizer description. (#843) <Scott McKay>
- **[1befb9b](https://github.com/onnx/onnx/commit/1befb9b)**: Remove useless text in docs (#850) <Lu Fang>
- **[e84788f](https://github.com/onnx/onnx/commit/e84788f)**: Fix SELU attributes' default values (#839) <Lu Fang>
- **[ebac046](https://github.com/onnx/onnx/commit/ebac046)**: Add tile test case (#823) <Wenhao Hu>
- **[8b7a925](https://github.com/onnx/onnx/commit/8b7a925)**: a few more shape inference functions (#772) <anderspapitto>
- **[9718f42](https://github.com/onnx/onnx/commit/9718f42)**: Make the coefficient non optional for LinearClassifier (#836) <Jaliya Ekanayake>
- **[ef083d0](https://github.com/onnx/onnx/commit/ef083d0)**: Add save_tensor and load_tensor functions for Protos (#770) <Lu Fang>
- **[45ceb55](https://github.com/onnx/onnx/commit/45ceb55)**: Check if CMAKE_BUILD_TYPE set before project(). (#812) <Sergii Dymchenko>
- **[4b3d2b0](https://github.com/onnx/onnx/commit/4b3d2b0)**: [WIP] reenable shape inference tests (#834) <anderspapitto>
- **[22d17ee](https://github.com/onnx/onnx/commit/22d17ee)**: RNN tests: LSTM, GRU, SimpleRNN (#739) <Peyman Manikashani>
- **[de65b95](https://github.com/onnx/onnx/commit/de65b95)**: dimension denotation (#443) <Tian Jin>
- **[eccc76e](https://github.com/onnx/onnx/commit/eccc76e)**: fix field number issue in onnx operator proto and enable its build (#829) <Ke Zhang>
- **[d582beb](https://github.com/onnx/onnx/commit/d582beb)**: disable shape inference test to unbreak ci (#830) <Lu Fang>
- **[485b787](https://github.com/onnx/onnx/commit/485b787)**: function proto for composite op. (#802) <Ke Zhang>
- **[cd58928](https://github.com/onnx/onnx/commit/cd58928)**: specify defaults for attributes of Affine op (#820) <G. Ramalingam>
- **[7ee2cf9](https://github.com/onnx/onnx/commit/7ee2cf9)**: merge the dummy backend back into the main one (#743) <anderspapitto>
- **[1c03a5a](https://github.com/onnx/onnx/commit/1c03a5a)**: [Proposal] ONNX Interface for Framework Integration (previously ONNX Backend API) header and docs (#551) <Marat Dukhan>
- **[3769a98](https://github.com/onnx/onnx/commit/3769a98)**: Rename real model test case from VGG-16 to ZFNet (#821) <Lu Fang>

* [C2]ReluN Op

relu n op.

tf reference: https://www.tensorflow.org/api_docs/python/tf/nn/relu6

* Call destructor when assigning a blob value

* Add executor overrides

Add executor overrides flag to enable migration to async_scheduling executor

* Add barrier net that runs before training nets - attempt #2

Add a synchonize barrier net that is run before training nets.  With this net, shards that are faster will wait for other shards before start training.  This reduce chances of the faster shards timing out during GLOO AllReduce.
Removed explicit data_parallel_model.py.synchronize call in holmes workflow.

This change was landed previously but caused errors for some EDPM workflows - See https://fb.facebook.com/groups/1426530000692545/permalink/1906766366002237/ - because EDPM assumes any call to CreateOrCloneCommonWorld and Gloo ops are wrapped in exception handlers but in this case exception thrown in the barrier init net is not handled.

To address this issue, we add _CreateOrCloneCommonWorld to the param_init_net instead of a new barrier init net.  Since errors for param_init_net run is handled gracefully and re-rendezvous, it should fixes the problem.

* Handle empty nets in async_scheduling

Make sure we don't get stuck on empty nets

* use CUDA_ARCH for conditional compile

* [C2 fix] infer function for ensure_cpu_output_op

* Update group_norm test to reduce flaky test

* Fix lr_multiplier for GPU
2018-05-10 23:14:27 -07:00

2318 lines
87 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import copy
import time
from functools import partial, reduce
from future.utils import viewitems, viewkeys
from hypothesis import assume, given, settings, HealthCheck
import hypothesis.strategies as st
import unittest
from caffe2.python import core, workspace, tt_core, dyndep
import caffe2.python.hypothesis_test_util as hu
from caffe2.proto.caffe2_pb2 import TensorProto
dyndep.InitOpsLibrary('@/caffe2/caffe2/fb/optimizers:sgd_simd_ops')
def sigmoid(x):
return 1.0 / (1.0 + np.exp(-x))
@st.composite
def _tensor_and_prefix(draw, dtype, elements, min_dim=1, max_dim=4, **kwargs):
dims_ = draw(
st.lists(hu.dims(**kwargs), min_size=min_dim, max_size=max_dim))
extra_ = draw(
st.lists(hu.dims(**kwargs), min_size=min_dim, max_size=max_dim))
assume(len(dims_) + len(extra_) < max_dim)
return (draw(hu.arrays(dims_ + extra_, dtype, elements)),
draw(hu.arrays(extra_, dtype, elements)))
def _tensor_and_indices(min_dim=1, max_dim=4, dtype=np.float32,
elements=None, **kwargs):
""" generates a tensor and a list of indices of larger tensor of same dim"""
data_dims_ = st.lists(hu.dims(**kwargs), min_size=min_dim, max_size=max_dim)
original_dim = st.integers(min_value=2, max_value=10)
return st.tuples(data_dims_, original_dim).flatmap(lambda pair: st.tuples(
st.just(pair[1]), # original dimension
hu.arrays(pair[0], dtype, elements), # data tensor
hu.arrays(pair[0][0], dtype=np.int64, elements=st.integers(
min_value=0, max_value=pair[1] - 1)),
))
_NUMPY_TYPE_TO_ENUM = {
np.float32: core.DataType.FLOAT,
np.int32: core.DataType.INT32,
np.bool: core.DataType.BOOL,
np.uint8: core.DataType.UINT8,
np.int8: core.DataType.INT8,
np.uint16: core.DataType.UINT16,
np.int16: core.DataType.INT16,
np.int64: core.DataType.INT64,
np.float64: core.DataType.DOUBLE,
}
def _dtypes(dtypes=None):
dtypes = dtypes if dtypes else [np.int32, np.int64, np.float32]
return st.sampled_from(dtypes)
def _test_binary(name, ref, filter_=None, gcs=hu.gcs,
test_gradient=False, allow_inplace=False, dtypes=_dtypes):
@given(
inputs=dtypes().flatmap(
lambda dtype: hu.tensors(
n=2, dtype=dtype,
elements=hu.elements_of_type(dtype, filter_=filter_))),
out=st.sampled_from(('Y', 'X1', 'X2') if allow_inplace else ('Y',)),
**gcs)
@settings(max_examples=3, timeout=100)
def test_binary(self, inputs, out, gc, dc):
op = core.CreateOperator(name, ["X1", "X2"], [out])
X1, X2 = inputs
self.assertDeviceChecks(dc, op, [X1, X2], [0])
# We only do gradient check with float32 types.
if test_gradient and X1.dtype == np.float32:
self.assertGradientChecks(gc, op, [X1, X2], 0, [0])
self.assertReferenceChecks(gc, op, [X1, X2], ref)
return test_binary
def _test_binary_broadcast(name, ref, filter_=None,
gcs=hu.gcs, allow_inplace=False, dtypes=_dtypes):
@given(
inputs=dtypes().flatmap(lambda dtype: _tensor_and_prefix(
dtype=dtype,
elements=hu.elements_of_type(dtype, filter_=filter_))),
in_place=(st.booleans() if allow_inplace else st.just(False)),
**gcs)
@settings(max_examples=3, timeout=100)
def test_binary_broadcast(self, inputs, in_place, gc, dc):
op = core.CreateOperator(
name, ["X1", "X2"], ["X1" if in_place else "Y"], broadcast=1)
X1, X2 = inputs
self.assertDeviceChecks(dc, op, [X1, X2], [0])
def cast_ref(x, y):
return (np.array(ref(x, y)[0], dtype=x.dtype), )
# gradient not implemented yet
# self.assertGradientChecks(gc, op, [X1, X2], 0, [0])
self.assertReferenceChecks(gc, op, [X1, X2], cast_ref)
return test_binary_broadcast
class TestOperators(hu.HypothesisTestCase):
def test_comparison_ops(self):
ops = {"LT": lambda x1, x2: [x1 < x2],
"LE": lambda x1, x2: [x1 <= x2],
"GT": lambda x1, x2: [x1 > x2],
"GE": lambda x1, x2: [x1 >= x2]}
for name, ref in viewitems(ops):
_test_binary(name, ref, gcs=hu.gcs_cpu_only)(self)
_test_binary_broadcast(name, ref, gcs=hu.gcs_cpu_only)(self)
@given(inputs=hu.tensors(n=2), in_place=st.booleans(), **hu.gcs)
def test_sum(self, inputs, in_place, gc, dc):
op = core.CreateOperator("Sum", ["X1", "X2"],
["Y" if not in_place else "X1"])
X1, X2 = inputs
self.assertDeviceChecks(dc, op, [X1, X2], [0])
self.assertGradientChecks(gc, op, [X1, X2], 0, [0])
@given(inputs=hu.tensors(n=2, min_dim=2, max_dim=2), **hu.gcs_cpu_only)
def test_row_mul(self, inputs, gc, dc):
op = core.CreateOperator("RowMul", ["X1", "X2"], ["Y"])
X1, Xtmp = inputs
X2 = Xtmp[:, 0]
def ref(x, y):
ret = np.zeros(shape=x.shape, dtype=x.dtype)
for i in range(y.size):
ret[i, ] = x[i, ] * y[i]
return [ret]
self.assertDeviceChecks(dc, op, [X1, X2], [0])
for i in range(2):
self.assertGradientChecks(gc, op, [X1, X2], i, [0])
self.assertReferenceChecks(gc, op, [X1, X2], ref)
@given(inputs=hu.tensors(n=2), **hu.gcs_cpu_only)
def test_max(self, inputs, gc, dc):
op = core.CreateOperator("Max", ["X1", "X2"], ["Y"])
X1, X2 = inputs
# Make X1 and X2 far from each other, since X1=X2 is not differentiable
# and the step size of gradient checker is 0.05
X1[np.logical_and(X1 >= X2 - 0.05, X1 <= X2)] -= 0.05
X1[np.logical_and(X1 <= X2 + 0.05, X1 >= X2)] += 0.05
self.assertDeviceChecks(dc, op, [X1, X2], [0])
for i in range(2):
self.assertGradientChecks(gc, op, [X1, X2], i, [0])
def elementwise_max(X, Y):
return [np.maximum(X, Y)]
self.assertReferenceChecks(gc, op, [X1, X2], elementwise_max)
def test_add(self):
def not_overflow(x):
if not isinstance(x, float):
return abs(x) < (1 << 30) - 1
return True
def ref(x, y):
return (x + y, )
_test_binary("Add", ref, filter_=not_overflow, test_gradient=True)(self)
_test_binary_broadcast("Add", ref, filter_=not_overflow)(self)
def test_sub(self):
def ref(x, y):
return (x - y, )
# TODO(jiayq): enable gradient test when implemented.
_test_binary("Sub", ref, test_gradient=True)(self)
_test_binary_broadcast("Sub", ref)(self)
def test_mul(self):
def not_overflow(x):
if not isinstance(x, float):
return abs(x) < (1 << 15) - 1
return True
def ref(x, y):
return (x * y, )
_test_binary("Mul", ref, filter_=not_overflow, test_gradient=True)(self)
_test_binary_broadcast("Mul", ref, filter_=not_overflow)(self)
def test_div(self):
def ref(x, y):
return (x / y, )
def non_zero(x):
return abs(x) > 1e-2
def div_dtypes():
return st.sampled_from([np.float32, np.float64])
_test_binary(
"Div", ref, filter_=non_zero, test_gradient=True,
dtypes=div_dtypes, gcs=hu.gcs_cpu_only
)(self)
_test_binary(
"Div", ref, filter_=non_zero, test_gradient=False,
dtypes=div_dtypes
)(self)
_test_binary_broadcast(
"Div", ref, filter_=non_zero, dtypes=div_dtypes)(self)
@given(X=hu.tensor(), in_place=st.booleans(), **hu.gcs)
def test_negative(self, X, in_place, gc, dc):
op = core.CreateOperator("Negative", ["X"],
["Y" if not in_place else "X"])
self.assertDeviceChecks(dc, op, [X], [0])
self.assertGradientChecks(gc, op, [X], 0, [0])
@given(X=hu.tensor(), **hu.gcs)
def test_tanh(self, X, gc, dc):
op = core.CreateOperator("Tanh", "X", "Y")
self.assertDeviceChecks(dc, op, [X], [0])
self.assertGradientChecks(gc, op, [X], 0, [0])
@given(X=hu.tensor(), **hu.gcs)
def test_averaged_loss(self, X, gc, dc):
op = core.CreateOperator("AveragedLoss", ["X"], ["loss"])
self.assertDeviceChecks(dc, op, [X], [0])
self.assertGradientChecks(gc, op, [X], 0, [0])
@given(X=hu.tensor(), inplace=st.booleans(), **hu.gcs)
def test_softsign(self, X, inplace, gc, dc):
op = core.CreateOperator("Softsign", ["X"], ["X" if inplace else "Y"])
def softsign(X):
return (X / (1 + np.abs(X)),)
self.assertDeviceChecks(dc, op, [X], [0])
self.assertReferenceChecks(gc, op, [X], softsign)
if inplace:
with self.assertRaises(Exception):
self.assertGradientChecks(gc, op, [X], 0, [0])
else:
self.assertGradientChecks(gc, op, [X], 0, [0])
@given(
device_options=st.lists(
min_size=2,
max_size=4,
elements=st.sampled_from(hu.expanded_device_options)),
set_seed=st.booleans())
def test_random_seed_behaviour(self, device_options, set_seed):
# Assume we are always operating on CUDA or CPU, since RNG is
# inconsistent between CPU and GPU.
device_options = copy.deepcopy(device_options)
assume(len({do.device_type for do in device_options}) == 1)
if set_seed:
for do in device_options:
do.random_seed = 1000
def run(do):
# Reset each time because 'Y' may already exist in the workspace
# on a different device
workspace.ResetWorkspace()
ws = workspace.C.Workspace()
op = core.CreateOperator(
"XavierFill", [], ["Y"],
device_option=do,
shape=[2])
ws.run(op)
return ws.blobs["Y"].fetch()
ys = [run(do) for do in device_options]
for y in ys[1:]:
if set_seed:
np.testing.assert_array_equal(ys[0], y)
else:
with self.assertRaises(AssertionError):
np.testing.assert_array_equal(ys[0], y)
@given(axis=st.integers(min_value=1, max_value=4),
num_output=st.integers(min_value=4, max_value=8),
engine=st.sampled_from(["", "PACKED"]),
**hu.gcs)
def test_fully_connected_axis(self, axis, num_output, engine, gc, dc):
np.random.seed(1)
X = np.random.randn(1, 2, 3, 2, 1).astype(np.float32)
def prod(xs):
p = 1
for x in xs:
p *= x
return p
K = prod(list(X.shape)[axis:])
N = num_output
W = np.random.randn(N, K).astype(np.float32)
b = np.random.randn(N).astype(np.float32)
op = core.CreateOperator(
"FC",
["X", "W", "b"],
["Y"],
engine=engine,
axis=axis)
for name, param in [("X", X), ("W", W), ("b", b)]:
self.ws.create_blob(name).feed(param)
self.ws.run(op)
Y = self.ws.blobs["Y"].fetch()
self.assertEqual(list(Y.shape), list(X.shape)[:axis] + [N])
inputs = [X, W, b]
self.assertDeviceChecks(dc, op, inputs, [0])
for param, _ in enumerate(inputs):
self.assertGradientChecks(gc, op, inputs, param, [0])
@unittest.skipIf(not workspace.has_gpu_support,
"Skipping test due to no gpu present.")
@given(hidden_size=st.integers(min_value=1, max_value=3),
num_layers=st.integers(min_value=1, max_value=3),
bidirectional=st.just(False), # TODO
rnn_mode=st.sampled_from(["lstm"]), # TODO: "gru"
input_mode=st.sampled_from(["linear"]),
dropout=st.floats(min_value=1.0, max_value=1.0),
T=st.integers(min_value=2, max_value=6),
N=st.integers(min_value=1, max_value=4),
D=st.integers(min_value=1, max_value=4))
def test_recurrent(self, hidden_size, num_layers, bidirectional, rnn_mode,
input_mode, dropout, T, N, D):
# Random seed, this one happens to pass
seed = 1234
np.random.seed(seed)
input_weight_size = hidden_size * D
upper_layer_input_weight_size = hidden_size * hidden_size
recurrent_weight_size = hidden_size * hidden_size
input_bias_size = hidden_size
recurrent_bias_size = hidden_size
num_directions = 2 if bidirectional else 1
first_layer_sz = input_weight_size + recurrent_weight_size + \
input_bias_size + recurrent_bias_size
upper_layer_sz = upper_layer_input_weight_size + \
recurrent_weight_size + input_bias_size + \
recurrent_bias_size
total_sz = 4 * (first_layer_sz + (num_layers - 1) * upper_layer_sz)
total_sz *= num_directions
W = np.random.rand(total_sz).astype(np.float32)
self.ws.create_blob("WEIGHT").feed(W, device_option=hu.gpu_do)
op = core.CreateOperator(
"Recurrent",
["INPUT", "HIDDEN_INPUT", "CELL_INPUT", "WEIGHT"],
["OUTPUT", "HIDDEN_OUTPUT", "CELL_OUTPUT",
"RNN_SCRATCH", "DROPOUT_STATES"],
hidden_size=hidden_size,
bidirectional=bidirectional,
rnn_mode=rnn_mode,
dropout=dropout,
input_mode=input_mode,
num_layers=num_layers,
seed=seed,
engine="CUDNN")
X = np.random.randn(T, N, D).astype(np.float32)
self.ws.create_blob("INPUT").feed(X, device_option=hu.gpu_do)
W = self.ws.blobs["WEIGHT"].fetch()
H = np.random.randn(
num_layers, N, hidden_size * num_directions).astype(
np.float32)
C = np.random.randn(
num_layers, N, hidden_size * num_directions).astype(
np.float32) if rnn_mode == "lstm" else \
np.empty((1,)).astype(np.float32) # unused in GRU
inputs = [X, H, C, W]
input_idxs = [i for (i, _) in enumerate(inputs)] \
if rnn_mode == "lstm" else [0, 1, 3] # ignore C
for input_idx in input_idxs:
self.assertGradientChecks(
hu.gpu_do, op, inputs, input_idx, [0],
stepsize=0.01, threshold=0.01)
@given(ndim=st.integers(1, 4),
axis=st.integers(0, 3),
add_axis=st.integers(0, 1),
num_inputs=st.integers(2, 4), **hu.gcs)
def test_depth_concat(self, ndim, axis, add_axis, num_inputs, gc, dc):
assume(axis < ndim)
input_names = ['X0', 'X1', 'X2', 'X3'][:num_inputs]
shape = [2, 3, 5, 7][:ndim]
individual_dims = [1, 2, 3, 4, 5][:num_inputs]
inputs = []
for i in range(num_inputs):
if add_axis == 0:
# Sets a unique dim and create the input.
shape[axis] = individual_dims[i]
inputs.append(np.random.randn(*shape).astype(np.float32))
op = core.CreateOperator("Concat", input_names, ["Y", "Y_dims"],
axis=axis, add_axis=add_axis)
self.assertDeviceChecks(dc, op, inputs, [0])
for i in range(num_inputs):
self.assertGradientChecks(gc, op, inputs, i, [0])
# Reference
def depth_concat(*inputs):
inputs = list(inputs)
if add_axis:
for i in range(len(inputs)):
inputs[i] = np.expand_dims(inputs[i], axis)
input_dims = np.array([np.shape(x)[axis] for x in inputs])
return [np.concatenate(inputs, axis=axis), input_dims]
self.assertReferenceChecks(gc, op, inputs, depth_concat)
@given(num_inputs=st.integers(2, 4),
order=st.sampled_from([("NCHW", 1), ("NHWC", 3)]),
**hu.gcs)
def test_depth_concat_with_order(self, num_inputs, order, gc, dc):
input_names = ['X0', 'X1', 'X2', 'X3'][:num_inputs]
shape = [2, 3, 5, 7]
individual_dims = [1, 2, 3, 4][:num_inputs]
inputs = []
for i in range(num_inputs):
# Sets a unique dim and create the input.
shape[order[1]] = individual_dims[i]
inputs.append(np.random.rand(*shape).astype(np.float32))
op = core.CreateOperator("Concat", input_names, ["Y", "Y_dims"],
order=order[0])
self.assertDeviceChecks(dc, op, inputs, [0])
for i in range(num_inputs):
self.assertGradientChecks(gc, op, inputs, i, [0])
# Reference
def depth_concat_with_order(*inputs):
inputs = list(inputs)
axis = order[1]
input_dims = np.array([np.shape(x)[axis] for x in inputs])
return [np.concatenate(inputs, axis=axis), input_dims]
self.assertReferenceChecks(gc, op, inputs, depth_concat_with_order)
@given(X=hu.arrays(dims=[5, 2],
elements=st.floats(min_value=1.0, max_value=10.0)),
**hu.gcs_cpu_only)
def test_last_n_windows(self, X, gc, dc):
workspace.FeedBlob('input', X)
workspace.FeedBlob('next', np.array(0, dtype=np.int32))
workspace.CreateBlob('output')
collect_net = core.Net('collect_net')
collect_net.LastNWindowCollector(
['output', 'next', 'input'],
['output', 'next'],
num_to_collect=7,
)
plan = core.Plan('collect_data')
plan.AddStep(core.execution_step('collect_data',
[collect_net], num_iter=2))
workspace.RunPlan(plan)
output = workspace.FetchBlob('output')
inputs = workspace.FetchBlob('input')
new_output = np.zeros([7, inputs.shape[1]])
for i in range(inputs.shape[0] * 2):
new_output[i % 7] = inputs[i % inputs.shape[0]]
import numpy.testing as npt
npt.assert_almost_equal(output, new_output, decimal=5)
@given(dtype=st.sampled_from([np.float32, np.float64, np.int32, np.bool]))
def test_print(self, dtype):
data = np.random.permutation(6).astype(dtype)
self.ws.create_blob("data").feed(data)
op = core.CreateOperator("Print", "data", [])
self.ws.run(op)
@given(inputs=hu.tensors(n=2),
in_place=st.booleans(),
momentum=st.floats(min_value=0.1, max_value=0.9),
nesterov=st.booleans(),
lr=st.floats(min_value=0.1, max_value=0.9),
**hu.gcs)
def test_momentum_sgd(
self, inputs, in_place, momentum, nesterov, lr, gc, dc):
grad, m = inputs
lr = np.asarray([lr], dtype=np.float32)
op = core.CreateOperator(
"MomentumSGD",
["grad", "m", "lr"],
["grad" if in_place else "grad_o",
"m" if in_place else "m_o"],
momentum=momentum,
nesterov=int(nesterov),
device_option=gc)
self.assertDeviceChecks(
dc, op, [grad, m, lr], [0])
# Reference
def momentum_sgd(grad, m, lr):
lr = lr[0]
if not nesterov:
adjusted_gradient = lr * grad + momentum * m
return (adjusted_gradient, adjusted_gradient)
else:
m_new = momentum * m + lr * grad
return ((1 + momentum) * m_new - momentum * m, m_new)
self.assertReferenceChecks(gc, op, [grad, m, lr], momentum_sgd)
@given(inputs=hu.tensors(n=3),
in_place=st.booleans(),
decay=st.floats(min_value=0.1, max_value=0.9),
momentum=st.floats(min_value=0.1, max_value=0.9),
lr=st.floats(min_value=0.1, max_value=0.9),
epsilon=st.floats(min_value=1e-5, max_value=1e-2),
**hu.gcs)
def test_rmsprop_sgd(self, inputs, in_place, decay, momentum, lr, epsilon,
gc, dc):
grad, ms, mom = inputs
ms = np.abs(ms) + 0.01
lr = np.asarray([lr], dtype=np.float32)
op = core.CreateOperator(
"RmsProp",
["grad", "ms", "mom", "lr"],
["grad" if in_place else "grad_o",
"ms" if in_place else "ms_o",
"mom" if in_place else "mom_o"],
momentum=momentum, decay=decay, epsilon=epsilon, device_option=gc)
self.assertDeviceChecks(dc, op, [grad, ms, mom, lr], [0])
def rmsprop(grad, ms, mom, lr):
lr = lr[0]
ms_o = ms + (1. - decay) * (np.square(grad) - ms)
mom_o = momentum * mom + lr * grad / np.sqrt(epsilon + ms_o)
grad_o = mom_o
return (grad_o, ms_o, mom_o)
self.assertReferenceChecks(gc, op, [grad, ms, mom, lr], rmsprop)
# Reference
@staticmethod
def _dense_ftrl(alpha, beta, lambda1, lambda2, w, nz, g):
if isinstance(alpha, np.ndarray):
alpha = np.asscalar(alpha)
n = np.take(nz, 0, axis=-1)
z = np.take(nz, 1, axis=-1)
# python port of Sigrid's implementation
g2 = g * g
sigma = (np.sqrt(n + g2) - np.sqrt(n)) / alpha
z += g - sigma * w
n += g2
w = (np.sign(z) * lambda1 - z) / (
(beta + np.sqrt(n)) / alpha + lambda2)
w[np.abs(z) <= lambda1] = 0
return (w, np.stack([n, z], axis=-1))
@given(inputs=hu.tensors(n=4),
in_place=st.booleans(),
alpha=st.floats(min_value=0.01, max_value=0.1),
beta=st.floats(min_value=0.1, max_value=0.9),
lambda1=st.floats(min_value=0.001, max_value=0.1),
lambda2=st.floats(min_value=0.001, max_value=0.1),
engine=st.sampled_from([None, "SIMD"]),
**hu.gcs_cpu_only)
def test_ftrl_sgd(self, inputs, in_place, alpha, beta, lambda1, lambda2,
engine, gc, dc):
var, n, z, grad = inputs
n = np.abs(n)
nz = np.stack([n, z], axis=-1)
op = core.CreateOperator(
"Ftrl",
["var", "nz", "grad"],
["var" if in_place else "var_o",
"nz" if in_place else "nz_o"],
alpha=alpha, beta=beta, lambda1=lambda1, lambda2=lambda2,
engine=engine,
device_option=gc)
self.assertDeviceChecks(
dc, op, [var, nz, grad], [0])
self.assertReferenceChecks(
gc, op, [var, nz, grad],
partial(self._dense_ftrl, alpha, beta, lambda1, lambda2))
@given(inputs=hu.tensors(n=4),
alpha=st.floats(min_value=0.01, max_value=0.1),
beta=st.floats(min_value=0.1, max_value=0.9),
lambda1=st.floats(min_value=0.001, max_value=0.1),
lambda2=st.floats(min_value=0.001, max_value=0.1),
engine=st.sampled_from([None, "SIMD"]),
**hu.gcs_cpu_only)
def test_sparse_ftrl_sgd(self, inputs, alpha, beta, lambda1, lambda2,
engine, gc, dc):
var, n, z, grad = inputs
# generate fake subset manually because hypothesis is too complicated :)
indices = np.arange(var.shape[0])
indices = indices[indices % 2 == 0]
grad = grad[indices]
n = np.abs(n)
nz = np.stack([n, z], axis=-1)
op = core.CreateOperator(
"SparseFtrl",
["var", "nz", "indices", "grad"],
["var", "nz"],
alpha=alpha, beta=beta, lambda1=lambda1, lambda2=lambda2,
engine=engine,
device_option=gc)
self.assertDeviceChecks(
dc, op, [var, nz, indices, grad], [0])
# Reference
def ftrl(w, nz, i, g):
sw, snz = self._dense_ftrl(alpha, beta, lambda1, lambda2,
w[i], nz[i], g)
w[i] = sw
nz[i] = snz
return (w, nz)
self.assertReferenceChecks(gc, op, [var, nz, indices, grad], ftrl)
# Reference
@staticmethod
def _dense_ftrl_send_alpha_by_input(beta, lambda1, lambda2, w, nz, g, alpha):
return TestOperators._dense_ftrl(alpha, beta, lambda1, lambda2, w, nz,
g)
@given(inputs=hu.tensors(n=4),
in_place=st.booleans(),
alpha=st.floats(min_value=0.01, max_value=0.1),
beta=st.floats(min_value=0.1, max_value=0.9),
lambda1=st.floats(min_value=0.001, max_value=0.1),
lambda2=st.floats(min_value=0.001, max_value=0.1),
engine=st.sampled_from([None, "SIMD"]),
**hu.gcs_cpu_only)
def test_ftrl_sgd_send_alpha_by_input(self, inputs, in_place, alpha, beta,
lambda1, lambda2, engine, gc, dc):
var, n, z, grad = inputs
n = np.abs(n)
nz = np.stack([n, z], axis=-1)
alpha = np.array(alpha).astype(np.float32)
op = core.CreateOperator(
"Ftrl",
["var", "nz", "grad", "alpha"],
["var" if in_place else "var_o",
"nz" if in_place else "nz_o"],
beta=beta, lambda1=lambda1, lambda2=lambda2,
engine=engine,
device_option=gc)
self.assertDeviceChecks(
dc, op, [var, nz, grad, alpha], [0])
self.assertReferenceChecks(
gc, op, [var, nz, grad, alpha],
partial(self._dense_ftrl_send_alpha_by_input, beta, lambda1, lambda2))
@given(inputs=hu.tensors(n=4),
alpha=st.floats(min_value=0.01, max_value=0.1),
beta=st.floats(min_value=0.1, max_value=0.9),
lambda1=st.floats(min_value=0.001, max_value=0.1),
lambda2=st.floats(min_value=0.001, max_value=0.1),
engine=st.sampled_from([None, "SIMD"]),
**hu.gcs_cpu_only)
def test_sparse_ftrl_sgd_send_alpha_by_input(self, inputs, alpha, beta,
lambda1, lambda2, engine, gc,
dc):
var, n, z, grad = inputs
# generate fake subset manually because hypothesis is too complicated :)
indices = np.arange(var.shape[0])
indices = indices[indices % 2 == 0]
grad = grad[indices]
n = np.abs(n)
nz = np.stack([n, z], axis=-1)
alpha = np.array(alpha).astype(np.float32)
op = core.CreateOperator(
"SparseFtrl",
["var", "nz", "indices", "grad", "alpha"],
["var", "nz"],
beta=beta, lambda1=lambda1, lambda2=lambda2,
engine=engine,
device_option=gc)
self.assertDeviceChecks(
dc, op, [var, nz, indices, grad, alpha], [0])
# Reference
def ftrl(w, nz, i, g, alpha):
sw, snz = self._dense_ftrl_send_alpha_by_input(beta, lambda1,
lambda2, w[i], nz[i],
g, alpha)
w[i] = sw
nz[i] = snz
return (w, nz)
self.assertReferenceChecks(gc, op, [var, nz, indices, grad, alpha],
ftrl)
@given(input=hu.tensor(max_value=20,
max_dim=1,
dtype=np.int32,
elements=st.integers(min_value=0, max_value=10)),
with_remapping=st.booleans(),
**hu.gcs)
def test_unique(self, input, with_remapping, gc, dc):
op = core.CreateOperator(
"Unique",
["input"],
["unique"] + (["remapping"] if with_remapping else []),
device_option=gc)
self.assertDeviceChecks(dc, op, [input], [0])
# Validator
def unique_valid(input, unique, remapping=None):
self.assertEqual(unique.size, len(set(input)))
self.assertEqual(sorted(unique), sorted(set(input)))
if with_remapping:
self.assertEqual(remapping.shape, input.shape)
remapped = [unique[remapping[i]] for i in range(len(input))]
np.testing.assert_array_equal(remapped, input)
self.assertValidationChecks(gc, op, [input], unique_valid)
@given(prediction=hu.arrays(dims=[10, 3],
elements=st.floats(allow_nan=False,
allow_infinity=False,
min_value=0,
max_value=1)),
labels=hu.arrays(dims=[10],
dtype=np.int32,
elements=st.integers(min_value=0,
max_value=3 - 1)),
top_k=st.integers(min_value=1, max_value=3),
**hu.gcs)
def test_accuracy(self, prediction, labels, top_k, gc, dc):
if(top_k > 1):
gc = hu.cpu_do
op = core.CreateOperator(
"Accuracy",
["prediction", "labels"],
["accuracy"],
top_k=top_k,
device_option=gc
)
def op_ref(prediction, labels, top_k):
N = prediction.shape[0]
correct = 0
for i in range(0, len(prediction)):
pred_sorted = sorted(
([item, j] for j, item in enumerate(prediction[i])),
key=lambda x: x[0],
reverse=True
)
max_ids = [x[1] for x in pred_sorted[0:top_k]]
for m in max_ids:
if m == labels[i]:
correct += 1
accuracy = correct / N
return (accuracy,)
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[prediction, labels, top_k],
reference=op_ref)
@given(target_probabilities=hu.arrays(
dims=[10], elements=st.floats(allow_nan=False,
allow_infinity=False,
min_value=0.01,
max_value=1)),
**hu.gcs)
def test_perplexity(self, target_probabilities, gc, dc):
op = core.CreateOperator(
"Perplexity",
["target_probabilities"],
["perplexity"]
)
def op_ref(target_probabilities):
N = target_probabilities.shape[0]
perplexities = np.power(target_probabilities, -1.0 / N)
perplexity = reduce(lambda x, y: x * y, perplexities)
return (perplexity,)
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[target_probabilities],
reference=op_ref)
@given(lengths=st.lists(st.integers(min_value=0, max_value=10),
min_size=0,
max_size=10),
**hu.gcs_cpu_only)
def test_lengths_to_segment_ids(self, lengths, gc, dc):
op = core.CreateOperator(
"LengthsToSegmentIds",
["lengths"],
["segment_ids"])
def op_ref(lengths):
sids = []
for i, l in enumerate(lengths):
sids.extend(l * [i])
return (np.array(sids, dtype=np.int32), )
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[np.array(lengths, dtype=np.int32)],
reference=op_ref)
@given(lengths=st.lists(st.integers(min_value=0, max_value=10),
min_size=0,
max_size=10),
**hu.gcs_cpu_only)
def test_lengths_range_fill(self, lengths, gc, dc):
op = core.CreateOperator(
"LengthsRangeFill",
["lengths"],
["increasing_seq"])
def op_ref(lengths):
sids = []
for _, l in enumerate(lengths):
sids.extend(list(range(l)))
return (np.array(sids, dtype=np.int32), )
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[np.array(lengths, dtype=np.int32)],
reference=op_ref)
@given(**hu.gcs_cpu_only)
def test_segment_ids_to_ranges(self, gc, dc):
lengths = [4, 6, 3, 2, 0, 4]
op = core.CreateOperator(
"SegmentIdsToRanges",
["segment_ids"],
["ranges"])
def op_ref(segment_ids):
ranges = [np.array([0, 0], dtype=np.int32)]
prev = 0
for i, sid in enumerate(segment_ids):
while sid != prev:
prev += 1
ranges.append(np.array([i, 0], dtype=np.int32))
ranges[-1][1] += 1
return (np.array(ranges, dtype=np.int32), )
def lengths_to_segment_ids(lengths):
sids = []
for i, l in enumerate(lengths):
sids.extend(l * [i])
return (np.array(sids, dtype=np.int32), )
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=np.array(lengths_to_segment_ids(lengths), dtype=np.int32),
reference=op_ref)
@given(lengths=st.lists(st.integers(min_value=0, max_value=10),
min_size=0,
max_size=10),
**hu.gcs_cpu_only)
def test_lengths_to_ranges(self, lengths, gc, dc):
op = core.CreateOperator(
"LengthsToRanges",
["lengths"],
["ranges"])
def op_ref(x):
if not x.size:
return (x.reshape((0, 2)), )
return (np.column_stack((np.concatenate(([0], np.cumsum(x)[:-1])),
x)), )
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[np.array(lengths, dtype=np.int32)],
reference=op_ref)
@given(prediction=hu.arrays(dims=[10, 3],
elements=st.floats(allow_nan=False,
allow_infinity=False,
min_value=0,
max_value=1)),
labels=hu.arrays(dims=[10],
dtype=np.int32,
elements=st.integers(min_value=0,
max_value=3 - 1)),
**hu.gcs)
def test_multi_class_accuracy(self, prediction, labels, gc, dc):
op = core.CreateOperator(
"MultiClassAccuracy",
["prediction", "labels"],
["accuracies", "amounts"]
)
def op_ref(prediction, labels):
N = prediction.shape[0]
D = prediction.shape[1]
accuracies = np.empty(D, dtype=float)
accuracies.fill(0)
amounts = np.empty(D, dtype=int)
amounts.fill(0)
max_ids = np.argmax(prediction, axis=1)
for i in range(0, N):
max_id = max_ids[i]
label_id = labels[i]
if max_id == label_id:
accuracies[label_id] += 1
amounts[label_id] += 1
for i in range(0, D):
amount = amounts[i]
if amount:
accuracies[i] /= amount
return (accuracies, amounts,)
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[prediction, labels],
reference=op_ref)
@given(lengths=st.lists(st.integers(min_value=0, max_value=10),
min_size=0,
max_size=10),
**hu.gcs_cpu_only)
def test_segment_ids_to_lengths(self, lengths, gc, dc):
op = core.CreateOperator(
"SegmentIdsToLengths",
["segment_ids"],
["lengths"])
def lengths_to_ids(lengths):
sids = []
for i, l in enumerate(lengths):
sids.extend(l * [i])
return sids
segment_ids = lengths_to_ids(lengths)
def ids_to_lengths(ids):
ids_length = len(ids)
if ids_length == 0:
return (np.array([], dtype=np.int32),)
lengths = []
# segment id starts with 0
prev_id = -1
tmp_length = 0
for idx in range(ids_length):
cur_id = ids[idx]
if cur_id != prev_id:
if idx != 0:
lengths.append(tmp_length)
while prev_id + 1 != cur_id:
lengths.append(0)
prev_id += 1
prev_id = cur_id
tmp_length = 0
tmp_length += 1
lengths.append(tmp_length)
return (np.array(lengths, dtype=np.int32),)
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[np.array(segment_ids, dtype=np.int32)],
reference=ids_to_lengths)
@given(lengths=st.lists(st.integers(min_value=1, max_value=10),
min_size=0,
max_size=10),
power=st.sampled_from([0.5, 1.0, 1.5, 2.0]),
**hu.gcs_cpu_only)
def test_lengths_to_weights(self, lengths, power, gc, dc):
op = core.CreateOperator(
"LengthsToWeights",
["lengths"],
["weights"],
power=power)
def lengths_to_weights(lengths):
weighted_length = []
for l in lengths:
weighted_length.extend(l * [1 / pow(l, power)])
return (np.array(weighted_length, dtype=float),)
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[np.array(lengths, dtype=np.int32)],
reference=lengths_to_weights)
@given(input_tensor=hu.arrays(
dims=[10], elements=st.floats(allow_nan=False,
allow_infinity=False)),
**hu.gcs)
def test_abs(self, input_tensor, gc, dc):
op = core.CreateOperator(
"Abs",
["input"],
["output"]
)
def abs_ref(input_tensor):
return (np.abs(input_tensor),)
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[input_tensor],
reference=abs_ref)
@given(input_tensor=hu.arrays(
dims=[10], elements=st.floats(min_value=-10,
max_value=10)),
**hu.gcs)
def test_cos(self, input_tensor, gc, dc):
op = core.CreateOperator(
"Cos",
["input"],
["output"]
)
def cos_ref(input_tensor):
return (np.cos(input_tensor),)
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[input_tensor],
reference=cos_ref)
@given(input_tensor=hu.arrays(
dims=[10], elements=st.floats(min_value=-10,
max_value=10)),
**hu.gcs)
def test_sin(self, input_tensor, gc, dc):
op = core.CreateOperator(
"Sin",
["input"],
["output"]
)
def sin_ref(input_tensor):
return (np.sin(input_tensor),)
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[input_tensor],
reference=sin_ref)
@given(input_tensor=hu.arrays(
dims=[10], elements=st.floats(allow_nan=False,
allow_infinity=False)),
**hu.gcs)
def test_exp(self, input_tensor, gc, dc):
op = core.CreateOperator(
"Exp",
["input"],
["output"]
)
def exp_ref(input_tensor):
return (np.exp(input_tensor),)
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[input_tensor],
reference=exp_ref)
@given(input_tensor=hu.arrays(
dims=[10], elements=st.floats(min_value=1,
max_value=10000)),
**hu.gcs_cpu_only)
def test_log(self, input_tensor, gc, dc):
op = core.CreateOperator(
"Log",
["input"],
["output"]
)
def log_ref(input_tensor):
return (np.log(input_tensor),)
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[input_tensor],
reference=log_ref)
self.assertGradientChecks(gc, op, [input_tensor], 0, [0])
def test_blobs_dequeue_timeout(self):
op = core.CreateOperator(
"CreateBlobsQueue",
[],
["queue"],
capacity=5,
num_blobs=1)
self.ws.run(op)
t = time.time()
op = core.CreateOperator(
"DequeueBlobs",
["queue"],
["out"],
timeout_secs=0.2)
self.assertRaises(RuntimeError, lambda: self.ws.run(op))
t = time.time() - t
self.assertGreater(t, 0.19)
@given(num_threads=st.integers(1, 10), # noqa
num_elements=st.integers(1, 100),
capacity=st.integers(1, 5),
num_blobs=st.integers(1, 3),
do=st.sampled_from(hu.device_options))
def test_blobs_queue_threading(self, num_threads, num_elements,
capacity, num_blobs, do):
"""
- Construct matrices of size N x D
- Start K threads
- Push all N rows into the queue of capacity C
- Pull all N rows out of the queue.
- Verify that the output matrices are permutation of the rows of the
original matrices.
"""
import threading
try:
import queue
except ImportError:
# Py3
import Queue as queue
op = core.CreateOperator(
"CreateBlobsQueue",
[],
["queue"],
capacity=capacity,
num_blobs=num_blobs,
device_option=do)
self.ws.run(op)
xs = [np.random.randn(num_elements, 5).astype(np.float32)
for _ in range(num_blobs)]
q = queue.Queue()
for i in range(num_elements):
q.put([x[i] for x in xs])
def enqueue(t):
while True:
feed_blobs = ["x_{}_{}".format(i, t) for i in range(num_blobs)]
op = core.CreateOperator(
"EnqueueBlobs",
["queue"] + feed_blobs,
feed_blobs,
device_option=do)
try:
elems = q.get_nowait()
for elem, feed_blob in zip(elems, feed_blobs):
self.ws.create_blob(feed_blob).feed(
elem, device_option=do)
self.ws.run(op)
except queue.Empty:
return
# Create all blobs before racing on multiple threads
# (blob creation is not threadsafe)
for t in range(num_threads):
for i in range(num_blobs):
self.ws.create_blob("x_{}_{}".format(i, t))
threads = [threading.Thread(target=enqueue, args=(t,))
for t in range(num_threads)]
for thread in threads:
thread.start()
for n in range(num_elements):
dequeue_blobs = ["y_{}_{}".format(i, n) for i in range(num_blobs)]
op = core.CreateOperator(
"DequeueBlobs",
["queue"],
dequeue_blobs,
device_option=do)
self.ws.run(op)
for thread in threads:
thread.join()
op = core.CreateOperator("CloseBlobsQueue", ["queue"], [])
self.ws.run(op)
ys = [np.vstack([self.ws.blobs["y_{}_{}".format(i, n)].fetch()
for n in range(num_elements)])
for i in range(num_blobs)]
for i in range(num_blobs):
self.assertEqual(ys[i].shape, xs[i].shape)
for j in range(num_elements):
# Verify that the rows of the returned blob are a
# permutation. The order may be different due to
# different threads racing.
self.assertTrue(
any(np.array_equal(xs[i][j], ys[i][k])
for k in range(num_elements)))
@given(num_producers=st.integers(1, 10),
num_consumers=st.integers(1, 10),
capacity=st.integers(1, 5),
num_blobs=st.integers(1, 3),
do=st.sampled_from(hu.device_options))
def test_safe_blobs_queue(self, num_producers, num_consumers,
capacity, num_blobs, do):
init_net = core.Net('init_net')
queue = init_net.CreateBlobsQueue(
[], 1, capacity=capacity, num_blobs=num_blobs)
producer_steps = []
truth = 0
for i in range(num_producers):
name = 'producer_%d' % i
net = core.Net(name)
blobs = [net.ConstantFill([], 1, value=1.0, run_once=False)
for times in range(num_blobs)]
status = net.NextName()
net.SafeEnqueueBlobs([queue] + blobs, blobs + [status])
count = (i + 1) * 10
step = core.execution_step(name, net, num_iter=count)
truth += count
producer_steps.append(step)
producer_exit_net = core.Net('producer_exit_net')
producer_exit_net.CloseBlobsQueue([queue], 0)
producer_step = core.execution_step('producer', [
core.execution_step(
'producers', producer_steps, concurrent_substeps=True),
core.execution_step('producer_exit', producer_exit_net)]
)
consumer_steps = []
counters = []
const_1 = init_net.ConstantFill([], 1, value=1.0)
for i in range(num_consumers):
name = 'consumer_%d' % i
net1 = core.Net(name)
blobs = net1.SafeDequeueBlobs([queue], num_blobs + 1)
status = blobs[-1]
net2 = core.Net(name + '_counter')
counter = init_net.ConstantFill([], 1, value=0.0)
counters.append(counter)
net2.Add([counter, const_1], counter)
consumer_steps.append(core.execution_step(
name, [net1, net2], should_stop_blob=status))
consumer_step = core.execution_step(
'consumer', consumer_steps, concurrent_substeps=True)
init_step = core.execution_step('init', init_net)
worker_step = core.execution_step(
'worker', [consumer_step, producer_step], concurrent_substeps=True)
plan = core.Plan('test')
plan.AddStep(init_step)
plan.AddStep(worker_step)
self.ws.run(plan)
v = 0
for counter in counters:
v += self.ws.blobs[str(counter)].fetch().tolist()
self.assertEqual(v, truth)
@given(num_queues=st.integers(1, 5),
num_iter=st.integers(5, 10),
capacity=st.integers(1, 5),
num_blobs=st.integers(1, 3))
def test_weighted_sample_blobs_queue(
self, num_queues, num_iter, capacity, num_blobs
):
# Create BlobsQueue for each input queue
print("num_queues", num_queues)
init_net = core.Net('init_net')
queues = [
init_net.CreateBlobsQueue(
[], 1, capacity=capacity, num_blobs=num_blobs
) for _ in range(num_queues)
]
# Create multiple producer nets and one producer exist net
producer_steps = []
producer_exit_nets = []
for i in range(num_queues):
name = 'producer_%d' % i
net = core.Net(name)
blobs = [net.ConstantFill([], 1, value=1.0, run_once=False)
for _ in range(num_blobs)]
status = net.NextName()
net.SafeEnqueueBlobs([queues[i]] + blobs, blobs + [status])
exit_net = core.Net('producer_exit_%d' % i)
exit_net.CloseBlobsQueue(queues[i], 0)
producer_exit_nets.append(exit_net)
step = core.execution_step(
name, [
core.execution_step(
'producer_%d' % i, [net], num_iter=num_iter
),
core.execution_step('producer_exit_%d' % i, [exit_net]),
]
)
producer_steps.append(step)
producer_step = core.execution_step(
'producer', [
core.execution_step(
'producers',
producer_steps,
concurrent_substeps=True,
),
]
)
status_lst = []
def append(ins, outs):
status_lst.append(ins)
# Create one consumer dequeue net and one consumer exist net
consumer_net = core.Net('weight_sample_dequeue_net')
table_idx_blob = np.random.randint(low=-1, high=num_blobs, size=1)
blobs = consumer_net.WeightedSampleDequeueBlobs(
queues,
num_blobs + 1,
weights=np.random.uniform(low=0.0, high=1.0, size=(num_queues,)),
table_idx_blob=table_idx_blob[0],
)
status = blobs[-1]
consumer_net.Python(append)(status)
consumer_step = core.execution_step(
'consumer',
[
core.execution_step(
'consumer', [consumer_net], should_stop_blob=status
),
core.execution_step('producer_exit', producer_exit_nets)
]
)
init_step = core.execution_step('init', init_net)
worker_step = core.execution_step(
'worker', [producer_step, consumer_step], concurrent_substeps=True)
plan = core.Plan('test')
plan.AddStep(init_step)
plan.AddStep(worker_step)
self.ws.run(plan)
assert len(status_lst) >= num_iter + 1
assert len(status_lst) <= num_iter * num_queues + 1
@given(
data=hu.tensor(),
**hu.gcs_cpu_only)
def test_squeeze_expand_dims(self, data, gc, dc):
dims = [0, 0]
if len(data.shape) > 2:
dims.append(2)
op = core.CreateOperator(
"ExpandDims",
["data"],
["expanded"],
dims=dims)
def expand_dims_ref(data, *args, **kw):
inc_dims = list(set(dims))
inc_dims.sort()
r = data
for dim in inc_dims:
r = np.expand_dims(r, axis=dim)
return (r, )
def squeeze_ref(data, *args, **kw):
dec_dims = list(set(dims))
dec_dims.sort(reverse=True)
r = data
for dim in dec_dims:
r = np.squeeze(r, axis=dim)
return (r, )
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[data],
reference=expand_dims_ref,
output_to_grad='expanded',
grad_reference=squeeze_ref)
@given(**hu.gcs_cpu_only)
def test_tt_layer(self, gc, dc):
seed = 1234
np.random.seed(seed)
inp_sizes = [2, 2, 2, 2]
out_sizes = [2, 2, 2, 2]
tt_ranks = [1, 3, 3, 3, 1]
op = core.CreateOperator(
"TT",
["X", "b", "cores"],
["Y"],
inp_sizes=inp_sizes,
out_sizes=out_sizes,
tt_ranks=tt_ranks,
)
X = np.expand_dims(
np.random.rand(16).astype(np.float32), axis=0)
b = np.array([0] * 16).astype(np.float32)
cores = tt_core.init_tt_cores(inp_sizes, out_sizes, tt_ranks)
self.ws.create_blob("X").feed(X)
self.ws.create_blob("b").feed(b)
self.ws.create_blob("cores").feed(cores)
self.ws.run(op)
Y = self.ws.blobs[("Y")].fetch()
Y = Y.reshape([16])
golden = np.array([-9.51763490e-07, -1.28442286e-06,
-2.86281141e-07, 2.28865644e-07,
-1.96180017e-06, -1.78920531e-06,
9.31094666e-07, -2.04273989e-07,
1.70017107e-06, 1.64845711e-06,
-1.06099132e-06, -4.69111137e-07,
6.57552358e-08, -1.28942040e-08,
-2.29114004e-07, -1.04262714e-06])
# This golden array is dependent on the specified inp_sizes, out_sizes,
# tt_ranks, and seed. Changing these will cause the test to fail.
self.assertAlmostEqual(np.linalg.norm(golden - Y), 0, delta=1e-10)
@given(num_workers=st.integers(1, 10),
net_type=st.sampled_from(
["simple", "dag"] +
(["async_dag"] if workspace.has_gpu_support else [])),
do=st.sampled_from(hu.device_options))
def test_dag_net_forking(self, net_type, num_workers, do):
from caffe2.python.model_helper import ModelHelper
from caffe2.python import brew
m = ModelHelper(name="test_model")
n = 10
d = 2
depth = 2
iters = 5
np.random.seed(1701)
# Build a binary tree of FC layers, summing at each node.
for i in reversed(range(depth)):
for j in range(2 ** i):
bottom_1 = "{}_{}".format(i + 1, 2 * j)
bottom_2 = "{}_{}".format(i + 1, 2 * j + 1)
mid_1 = "{}_{}_m".format(i + 1, 2 * j)
mid_2 = "{}_{}_m".format(i + 1, 2 * j + 1)
top = "{}_{}".format(i, j)
brew.fc(
m,
bottom_1, mid_1,
dim_in=d, dim_out=d,
weight_init=('ConstantFill', dict(value=np.random.randn())),
bias_init=('ConstantFill', dict(value=np.random.randn())))
brew.fc(
m,
bottom_2, mid_2,
dim_in=d, dim_out=d,
weight_init=('ConstantFill', dict(value=np.random.randn())),
bias_init=('ConstantFill', dict(value=np.random.randn())))
m.net.Sum([mid_1, mid_2], top)
m.net.SquaredL2Distance(["0_0", "label"], "xent")
m.net.AveragedLoss("xent", "loss")
input_to_grad = m.AddGradientOperators(["loss"])
m.Proto().device_option.CopyFrom(do)
m.param_init_net.Proto().device_option.CopyFrom(do)
m.Proto().type = net_type
m.Proto().num_workers = num_workers
self.ws.run(m.param_init_net)
print(str(m.Proto()))
def run():
import numpy as np
np.random.seed(1701)
input_blobs = ["{}_{}".format(depth, j) for j in range(2 ** depth)]
for input_blob in input_blobs:
self.ws.create_blob(input_blob).feed(
np.random.randn(n, d).astype(np.float32),
device_option=do)
self.ws.create_blob("label").feed(
np.random.randn(n, d).astype(np.float32),
device_option=do)
self.ws.run(m.net)
gradients = [
self.ws.blobs[str(input_to_grad[input_blob])].fetch()
for input_blob in input_blobs]
return gradients
outputs = [run() for _ in range(iters)]
for output in outputs[1:]:
np.testing.assert_array_equal(outputs[0], output)
self.assertAlmostEqual(np.sum(np.square(output)), 91.81752,
delta=1e-2)
@given(input=hu.tensor(min_dim=2, max_dim=6, dtype=np.int32,
elements=st.integers(min_value=0,
max_value=2**32 - 1)),
slice_dim=st.integers(),
a=st.integers(),
b=st.integers(),
is_empty=st.booleans(),
**hu.gcs_cpu_only)
def test_slice(self, input, slice_dim, a, b, is_empty, gc, dc):
slice_dim = slice_dim % len(input.shape)
if (is_empty):
input = np.random.rand(*([0] + list(input.shape))).astype(np.int32)
slice_dim += 1
a = a % input.shape[slice_dim]
b = b % input.shape[slice_dim] + 1
start_vec = np.zeros(len(input.shape), dtype=np.int32)
end_vec = np.ones(len(input.shape), dtype=np.int32) * -1
start_vec[slice_dim] = min(a, b)
end_vec[slice_dim] = max(a, b)
op = core.CreateOperator(
"Slice",
["input", "start", "end"],
["output"])
def slice_ref(x, s, e):
if len(s.shape) == 0:
return x
slc = [slice(si, None if ei == -1 else ei) for si, ei in zip(s, e)]
return (x[slc], )
self.assertReferenceChecks(gc, op, [input, start_vec, end_vec],
slice_ref)
@given(data=hu.tensor(), **hu.gcs_cpu_only)
def test_shape(self, data, gc, dc):
op = core.CreateOperator("Shape", ["data"], ["shape"])
self.assertReferenceChecks(gc, op, [data], lambda x: (x.shape, ))
@given(data=hu.tensor(), **hu.gcs_cpu_only)
def test_shape_with_axes(self, data, gc, dc):
def shape_ref(x, y):
return ([x.shape[i] for i in y],)
axes = np.random.randint(len(data.shape), size=10).tolist()
op = core.CreateOperator("Shape", ["data"], ["shape"], axes=axes)
self.assertReferenceChecks(gc, op, [data, axes], shape_ref)
@given(data=hu.tensor(), **hu.gcs_cpu_only)
def test_has_elements(self, data, gc, dc):
op = core.CreateOperator("HasElements", ["data"], ["has_elements"])
self.assertReferenceChecks(gc, op, [data], lambda x: (len(x) > 0, ))
op = core.CreateOperator("IsEmpty", ["data"], ["is_empty"])
self.assertReferenceChecks(gc, op, [data], lambda x: (len(x) == 0, ))
@given(initial_iters=st.integers(0, 100),
max_iters=st.integers(0, 100))
def test_should_stop_as_criteria_net_execution_step(
self, initial_iters, max_iters):
net = core.Net("net")
net.Iter(["iter"], ["iter"])
self.ws.create_blob("iter").feed(
np.asarray([initial_iters]).astype(np.int64))
self.ws.create_blob("num_iters").feed(
np.asarray([max_iters]).astype(np.int64))
criteria_net = core.Net("criteria")
criteria_net.GE(["iter", "num_iters"], ["stop"])
criteria_net.Proto().external_output.extend(["stop"])
plan = core.Plan('plan')
plan.AddStep(core.execution_step(
'step', [criteria_net, net],
should_stop_blob=core.BlobReference("stop")))
self.ws.run(plan)
iters = self.ws.blobs[("iter")].fetch()
self.assertEqual(iters.dtype, np.int64)
self.assertEqual(iters[0], max(initial_iters, max_iters))
def test_disabled_execution_step(self):
def createNets(i, disabled):
should_stop = 'should_stop_{}'.format(i)
output = 'output_{}'.format(i)
# init content and stop signal
init = core.Net("init_{}".format(i))
init.ConstantFill(
[],
[output],
shape=[1],
value=0.0
)
init.Cast([output], [should_stop], to='bool')
# decide if disabled or not
criterion = core.Net("criterion_{}".format(i))
tmp = criterion.ConstantFill(
[],
shape=[1],
value=1.0 if disabled else 0.0
)
criterion.Cast([tmp], [should_stop], to='bool')
criterion.Proto().external_output.extend([should_stop])
# the body net is just to turn a 0 blob to 1
net = core.Net("net_{}".format(i))
net.ConstantFill(
[],
[output],
shape=[1],
value=1.0
)
# always end the loop
ender = core.Net("ender_{}".format(i))
tmp = ender.ConstantFill(
[],
shape=[1],
value=1.0
)
ender.Cast([tmp], [should_stop], to='bool')
ender.Proto().external_output.extend([should_stop])
return [init, criterion, net, ender]
nets = [createNets(1, False),
createNets(2, True),
createNets(3, False)]
steps = [
core.execution_step(
'step_1', nets[0],
should_stop_blob=core.BlobReference('should_stop_1')),
core.execution_step(
'step_2', nets[1],
should_stop_blob=core.BlobReference('should_stop_2')),
core.execution_step('step_3', nets[2])
]
expected = [1.0, 0.0, 1.0]
plan = core.Plan('plan')
plan.AddStep(core.execution_step('all_steps', steps, num_iter=3))
self.ws.run(plan)
for i, _ in enumerate(nets):
self.assertEqual(
self.ws.blobs['output_{}'.format(i + 1)].fetch()[0],
expected[i])
@given(initial_iters=st.integers(0, 100),
num_iters=st.integers(0, 100))
def test_iter_count_with_execution_step(self, initial_iters, num_iters):
net = core.Net("net")
net.Iter(["iter"], ["iter"])
self.ws.create_blob("iter").feed(
np.asarray([initial_iters]).astype(np.int64))
step = core.ExecutionStep("step", [net])
step.SetIter(num_iters)
plan = core.Plan("plan")
plan.AddStep(step)
self.ws.run(plan)
iters = self.ws.blobs[("iter")].fetch()
self.assertEqual(iters.dtype, np.int64)
self.assertEqual(iters[0], initial_iters + num_iters)
@given(initial_iters=st.integers(0, 100),
num_iters=st.integers(0, 100),
num_nets=st.integers(0, 5))
def test_atomic_iter_with_concurrent_steps(self, initial_iters, num_iters,
num_nets):
init_net = core.Net("init_net")
iter_mutex = init_net.CreateMutex([], ["iter_mutex"])
self.ws.create_blob("iter").feed(
np.asarray([initial_iters]).astype(np.int64))
concurrent_steps = core.ExecutionStep("concurrent_steps",
num_iter=num_iters)
for i in range(num_nets):
net = core.Net("net_{}".format(i))
net.AtomicIter([iter_mutex, "iter"], ["iter"])
step = core.ExecutionStep("step", [net])
concurrent_steps.AddSubstep(step)
concurrent_steps.SetConcurrentSubsteps(True)
plan = core.Plan("plan")
plan.AddStep(concurrent_steps)
stats_net = core.Net("stats_net")
stats_net.StatRegistryExport([], ["stats_key", "stats_val", "stats_ts"])
self.ws.run(init_net)
self.ws.run(plan)
self.ws.run(stats_net)
iters = self.ws.blobs[("iter")].fetch()
self.assertEqual(iters.dtype, np.int64)
self.assertEqual(iters[0], initial_iters + num_iters * num_nets)
if num_iters * num_nets > 0:
stats_key = self.ws.blobs[("stats_key")].fetch()
self.assertEqual(b'atomic_iter/stats/iter/num_iter', stats_key[0])
stat_val = self.ws.blobs[("stats_val")].fetch()
self.assertEqual(num_iters * num_nets, stat_val[0])
@given(a=hu.tensor(),
src=st.sampled_from(list(viewkeys(_NUMPY_TYPE_TO_ENUM))),
dst=st.sampled_from(list(viewkeys(_NUMPY_TYPE_TO_ENUM))),
use_name=st.booleans(),
**hu.gcs)
def test_cast(self, a, src, dst, use_name, gc, dc):
a = a.astype(src)
# Casting from a float type outside the range of the integral
# type is UB.
ftypes = [np.float32, np.float64]
if src in ftypes and dst not in ftypes and dst is not np.bool:
info = np.iinfo(dst)
a = np.clip(a, info.min, info.max)
def ref(data):
return [data.astype(dst)]
to = _NUMPY_TYPE_TO_ENUM[dst]
if use_name:
to = TensorProto.DataType.Name(to).lower()
op = core.CreateOperator('Cast', ["X"], ["Y"], to=to)
self.assertDeviceChecks(dc, op, [a], [0])
out, = self.assertReferenceChecks(gc, op, [a], ref)
self.assertEqual(dst, out.dtype)
@given(a=hu.tensor(),
eps=st.floats(min_value=1e-4, max_value=1e-2),
a_grad=hu.tensor(elements=st.floats(min_value=0.01, max_value=0.99)),
eps_grad=st.floats(min_value=1e-4, max_value=1e-3),
**hu.gcs)
def test_logit(self, a, eps, a_grad, eps_grad, gc, dc):
def ref(data):
data = np.clip(data, eps, 1.0 - eps)
return (np.log(data / (1 - data)), )
# forward testing carried out in the full range of input
# to ensure original test coverage.
# gradient test carried out with reduced input range
# because the sharp increase of the logit curve at 0 and 1
# error increases dramtically when input is close to 0 or 1
# and it will fail the test.
# So we only run gradient test in the range of (0.01, 0.99)
# very occationally, test may fail due to random accumulated error
# reduce test range to (0.02, 0.98) will improve test stability
op = core.CreateOperator('Logit', ["X"], ["Y"], eps=eps)
self.assertDeviceChecks(dc, op, [a], [0])
self.assertReferenceChecks(gc, op, [a], ref)
op_grad = core.CreateOperator('Logit', ["X"], ["Y"], eps=eps_grad)
self.assertGradientChecks(gc, op_grad, [a_grad], 0, [0],
threshold=0.04, stepsize=2e-3)
@given(a=hu.tensor(elements=st.floats(allow_nan=True)),
value=st.floats(min_value=-10, max_value=10),
**hu.gcs)
def test_replace_nan(self, a, value, gc, dc):
def ref(data):
out = np.copy(data)
out[np.isnan(data)] = value
return (out, )
op = core.CreateOperator('ReplaceNaN', ["X"], ["Y"], value=value)
self.assertDeviceChecks(dc, op, [a], [0])
self.assertReferenceChecks(gc, op, [a], ref)
@given(data=_dtypes(dtypes=[np.int32, np.int64, np.float32, np.bool]).
flatmap(lambda dtype: hu.tensor(
min_dim=1, dtype=dtype, elements=hu.elements_of_type(dtype))),
has_input=st.booleans(),
has_extra_shape=st.booleans(),
extra_shape=st.lists(
min_size=1, max_size=5, elements=st.integers(1, 5)),
**hu.gcs)
def test_constant_fill(self, data, has_input, has_extra_shape, extra_shape,
gc, dc):
dtype = data.dtype.type
# in opt mode, np.bool is converted into np.bool_
if data.dtype == np.dtype(np.bool):
dtype = np.bool
value = data.item(0)
gt_shape = data.shape
inputs = [data]
enum_type = _NUMPY_TYPE_TO_ENUM[dtype]
if has_input:
if has_extra_shape:
op = core.CreateOperator('ConstantFill', ["X"], ["Y"],
dtype=enum_type,
extra_shape=extra_shape,
value=value)
gt_shape += tuple(extra_shape)
else:
op = core.CreateOperator('ConstantFill', ["X"], ["Y"],
dtype=enum_type,
value=value)
else:
op = core.CreateOperator('ConstantFill', [], ["Y"],
dtype=enum_type,
value=value,
shape=list(gt_shape))
inputs = []
def ref(inputs=None):
outputs = np.full(shape=gt_shape, fill_value=value, dtype=dtype)
return [outputs]
self.assertDeviceChecks(dc, op, inputs, [0])
out, = self.assertReferenceChecks(gc, op, inputs, ref)
self.assertEqual(dtype, out.dtype)
@given(t=st.integers(1, 5),
n=st.integers(1, 5),
d=st.integers(1, 5))
def test_elman_recurrent_network(self, t, n, d):
from caffe2.python import model_helper, brew
np.random.seed(1701)
step_net = model_helper.ModelHelper(name="Elman")
# TODO: name scope external inputs and outputs
step_net.Proto().external_input.extend(
["input_t", "seq_lengths", "timestep",
"hidden_t_prev", "gates_t_w", "gates_t_b"])
step_net.Proto().type = "simple"
step_net.Proto().external_output.extend(["hidden_t", "gates_t"])
brew.fc(step_net,
"hidden_t_prev", "gates_t", dim_in=d, dim_out=d, axis=2)
step_net.net.Sum(["gates_t", "input_t"], ["gates_t"])
step_net.net.Sigmoid(["gates_t"], ["hidden_t"])
# Initialize params for step net in the parent net
for op in step_net.param_init_net.Proto().op:
workspace.RunOperatorOnce(op)
backward_ops, backward_mapping = core.GradientRegistry.GetBackwardPass(
step_net.Proto().op, {"hidden_t": "hidden_t_grad"})
backward_mapping = {
str(k): str(v) for k, v in viewitems(backward_mapping)
}
backward_step_net = core.Net("ElmanBackward")
del backward_step_net.Proto().op[:]
backward_step_net.Proto().op.extend(backward_ops)
assert backward_mapping["input_t"] == "gates_t_grad"
links = [
("hidden_t_prev", "hidden", 0),
("hidden_t", "hidden", 1),
("input_t", "input", 0),
]
link_internal, link_external, link_offset = zip(*links)
backward_links = [
("hidden_t_prev_grad", "hidden_grad", 0),
("hidden_t_grad", "hidden_grad", 1),
("gates_t_grad", "input_grad", 0),
]
backward_link_internal, backward_link_external, backward_link_offset = \
zip(*backward_links)
backward_step_net.Proto().external_input.extend(["hidden_t_grad"])
backward_step_net.Proto().external_input.extend(
step_net.Proto().external_input)
backward_step_net.Proto().external_input.extend(
step_net.Proto().external_output)
inputs = ["input", "seq_lengths", "gates_t_w", "gates_t_b", "hidden_input"]
recurrent_inputs = ["hidden_input"]
op = core.CreateOperator(
"RecurrentNetwork",
inputs,
["output", "hidden", "hidden_output", "step_workspaces"],
alias_src=["hidden", "hidden"],
alias_dst=["output", "hidden_output"],
alias_offset=[1, -1],
recurrent_states=["hidden"],
initial_recurrent_state_ids=[
inputs.index(i) for i in recurrent_inputs
],
link_internal=link_internal,
link_external=link_external,
link_offset=link_offset,
backward_link_internal=backward_link_internal,
backward_link_external=backward_link_external,
backward_link_offset=backward_link_offset,
param=[inputs.index(p) for p in step_net.params],
step_net=step_net.Proto(),
backward_step_net=backward_step_net.Proto(),
outputs_with_grads=[0],
)
workspace.FeedBlob(
"input", np.random.randn(t, n, d).astype(np.float32))
workspace.FeedBlob(
"hidden_input", np.random.randn(1, n, d).astype(np.float32))
workspace.FeedBlob(
"seq_lengths", np.random.randint(0, t, size=(n,)).astype(np.int32))
def reference(input, seq_lengths, gates_w, gates_b, hidden_input):
T = input.shape[0]
N = input.shape[1]
D = input.shape[2]
hidden = np.zeros(shape=(T + 1, N, D))
assert hidden.shape[0] == T + 1
assert hidden.shape[1] == N
assert hidden.shape[2] == D
hidden[0, :, :] = hidden_input
for t in range(T):
input_t = input[t].reshape(1, N, D)
hidden_t_prev = hidden[t].reshape(1, N, D)
gates = np.dot(hidden_t_prev, gates_w.T)
gates = gates.reshape(1, N, D) + input_t.reshape(1, N, D)
hidden[t + 1] = sigmoid(gates)
return hidden[1:], hidden, hidden[-1].reshape(1, N, D)
self.assertReferenceChecks(
hu.cpu_do,
op,
[workspace.FetchBlob(name)
for name in ["input", "seq_lengths", "gates_t_w", "gates_t_b",
"hidden_input"]],
reference,
outputs_to_check=[0, 1, 2])
for param in [0, 2, 3]:
self.assertGradientChecks(
hu.cpu_do,
op,
[workspace.FetchBlob(name)
for name in ["input", "seq_lengths", "gates_t_w", "gates_t_b",
"hidden_input"]],
param,
[0])
@settings(suppress_health_check=[HealthCheck.filter_too_much])
@given(n=st.integers(1, 5),
c=st.integers(1, 5),
h=st.integers(1, 5),
w=st.integers(1, 5),
pad=st.integers(0, 2),
block_size=st.integers(2, 3),
**hu.gcs)
def test_space_to_batch(self, n, c, h, w, pad, block_size, gc, dc):
assume((h + 2 * pad) % block_size == 0)
assume((w + 2 * pad) % block_size == 0)
X = np.random.randn(n, c, h, w).astype(np.float32)
op = core.CreateOperator("SpaceToBatch", ["X"], ["Y"],
pad=pad, block_size=block_size)
self.assertDeviceChecks(dc, op, [X], [0])
self.assertGradientChecks(gc, op, [X], 0, [0])
@settings(suppress_health_check=[HealthCheck.filter_too_much])
@given(n=st.integers(1, 5),
c=st.integers(1, 5),
h=st.integers(1, 5),
w=st.integers(1, 5),
pad=st.integers(0, 2),
block_size=st.integers(2, 3),
**hu.gcs)
def test_batch_to_space(self, n, c, h, w, pad, block_size, gc, dc):
assume((h + 2 * pad) % block_size == 0)
assume((w + 2 * pad) % block_size == 0)
X = np.random.randn(
n * block_size * block_size,
c,
(h + 2 * pad) // block_size,
(w + 2 * pad) // block_size).astype(np.float32)
op = core.CreateOperator("BatchToSpace", ["X"], ["Y"],
pad=pad, block_size=block_size)
self.assertDeviceChecks(dc, op, [X], [0])
self.assertGradientChecks(gc, op, [X], 0, [0])
@given(X=hu.tensor(),
in_place=st.booleans(),
scale=st.floats(min_value=-2.0, max_value=2.0),
**hu.gcs)
def test_scale(self, X, in_place, scale, gc, dc):
op = core.CreateOperator(
"Scale", ["X"], ["Y" if not in_place else "X"],
scale=scale)
self.assertDeviceChecks(dc, op, [X], [0])
self.assertGradientChecks(gc, op, [X], 0, [0])
@given(s=st.text())
def test_string_serde(self, s):
s = s.encode('ascii', 'ignore')
self.ws.create_blob("a").feed(s)
serialized = self.ws.blobs["a"].serialize("a")
self.ws.create_blob("b").deserialize(serialized)
self.assertEqual(s, self.ws.blobs[("a")].fetch())
self.assertEqual(s, self.ws.blobs[("b")].fetch())
@given(pad=st.integers(0, 3),
size=st.integers(1, 10),
input_channels=st.integers(1, 5),
batch_size=st.integers(1, 5),
order=st.sampled_from(["NCHW", "NHWC"]),
mode=st.sampled_from(["constant", "reflect", "edge"]),
**hu.gcs)
def test_same_pad_image(self, pad, size, input_channels, batch_size, order,
mode, gc, dc):
assume(size > pad)
op = core.CreateOperator(
"PadImage",
["X"],
["Y"],
pad=pad,
mode=mode,
order=order,
)
if order == "NHWC":
X = np.random.rand(
batch_size, size, size, input_channels).astype(np.float32) - 0.5
def numpy_pad_ref(x):
return (np.pad(
x, ((0, 0), (pad, pad), (pad, pad), (0, 0)), mode),)
else:
X = np.random.rand(
batch_size, input_channels, size, size).astype(np.float32) - 0.5
def numpy_pad_ref(x):
return (np.pad(
x, ((0, 0), (0, 0), (pad, pad), (pad, pad)), mode),)
self.assertReferenceChecks(gc, op, [X], numpy_pad_ref)
self.assertDeviceChecks(dc, op, [X], [0])
self.assertGradientChecks(gc, op, [X], 0, [0])
@given(pad_t=st.integers(0, 3),
pad_l=st.integers(0, 3),
pad_b=st.integers(0, 3),
pad_r=st.integers(0, 3),
size=st.integers(1, 10),
input_channels=st.integers(1, 5),
batch_size=st.integers(1, 5),
order=st.sampled_from(["NCHW", "NHWC"]),
mode=st.sampled_from(["constant", "reflect", "edge"]),
**hu.gcs)
def test_pad_image(self, pad_t, pad_l, pad_b, pad_r, size, input_channels,
batch_size, order, mode, gc, dc):
assume(size > max(pad_b, pad_r, pad_t, pad_l))
op = core.CreateOperator(
"PadImage",
["X"],
["Y"],
pad_t=pad_t,
pad_l=pad_l,
pad_b=pad_b,
pad_r=pad_r,
mode=mode,
order=order,
)
if order == "NHWC":
X = np.random.rand(
batch_size, size, size, input_channels).astype(np.float32) - 0.5
def numpy_pad_ref(x):
return (np.pad(
x, ((0, 0), (pad_t, pad_b), (pad_l, pad_r), (0, 0)),
mode),)
else:
X = np.random.rand(
batch_size, input_channels, size, size).astype(np.float32) - 0.5
def numpy_pad_ref(x):
return (np.pad(
x, ((0, 0), (0, 0), (pad_t, pad_b), (pad_l, pad_r)),
mode),)
self.assertReferenceChecks(gc, op, [X], numpy_pad_ref)
self.assertDeviceChecks(dc, op, [X], [0])
self.assertGradientChecks(gc, op, [X], 0, [0])
@given(size=st.integers(7, 10),
input_channels=st.integers(1, 10),
batch_size=st.integers(1, 3),
order=st.sampled_from(["NCHW", "NHWC"]),
epsilon=st.floats(min_value=1e-4, max_value=1e-2),
**hu.gcs_cpu_only)
def test_instance_norm(self, size, input_channels, batch_size, order,
epsilon, gc, dc):
op = core.CreateOperator(
"InstanceNorm",
["X", "scale", "bias"],
["Y"],
order=order,
epsilon=epsilon,
)
np.random.seed(1701)
scale = np.random.rand(input_channels).astype(np.float32) + 0.5
bias = np.random.rand(input_channels).astype(np.float32) - 0.5
X = np.random.rand(
batch_size, input_channels, size, size).astype(np.float32) - 0.5
if order == "NHWC":
X = X.swapaxes(1, 2).swapaxes(2, 3)
def ref_nchw(x, scale, bias):
x = x.reshape(batch_size * input_channels, size * size)
y = (x - x.mean(1)[:, np.newaxis])
y /= np.sqrt(x.var(1) + epsilon)[:, np.newaxis]
y = y.reshape(batch_size, input_channels, size, size)
y = y * scale.reshape(1, input_channels, 1, 1)
y = y + bias.reshape(1, input_channels, 1, 1)
return (y, )
def ref_nhwc(x, scale, bias):
x = x.swapaxes(2, 3).swapaxes(1, 2)
y = ref_nchw(x, scale, bias)[0]
return (y.swapaxes(1, 2).swapaxes(2, 3), )
self.assertReferenceChecks(
gc, op, [X, scale, bias],
ref_nchw if order == "NCHW" else ref_nhwc)
# TODO(jiayq): when there are backward and GPU implementations, enable
# these two.
# self.assertDeviceChecks(dc, op, [X, scale, bias], [0])
# self.assertGradientChecks(gc, op, [X, scale, bias], 0, [0])
ws = workspace.C.Workspace()
feeds = [("X", X), ("scale", scale), ("bias", bias)]
for blob, arr in feeds:
ws.create_blob(blob).feed(arr)
for _ in range(100):
ws.run(op)
for blob, arr in feeds:
np.testing.assert_array_equal(ws.blobs[blob].fetch(), arr)
@given(sizes=st.lists(st.integers(1, 100), min_size=1),
in_place=st.booleans(),
**hu.gcs)
def test_unsafe_coalesce(self, sizes, in_place, gc, dc):
gAlignment = 32
Xs = [np.random.randn(size)
.astype(np.random.choice([np.float32, np.float64, np.uint8]))
for size in sizes]
op = core.CreateOperator(
"UnsafeCoalesce",
["X_{}".format(i) for i, _ in enumerate(sizes)],
[("X_{}" if in_place else "Y_{}").format(i)
for i, _ in enumerate(sizes)] + ["coalesced"])
self.assertDeviceChecks(dc, op, Xs, list(range(len(sizes) + 1)))
def unsafe_coalesce(*xs):
def to_uint8(x):
x_aligned_bytes = ((x.nbytes + gAlignment - 1) // gAlignment) \
* gAlignment
x_aligned = np.zeros(
shape=(x_aligned_bytes // x.dtype.itemsize, ),
dtype=x.dtype)
x_aligned[:x.size] = x
x_cast = np.fromstring(x_aligned.tobytes(), dtype='<u1')
return x_cast
flat = [to_uint8(x) for x in xs]
coalesced = np.concatenate(flat)
return list(xs) + [coalesced]
self.assertReferenceChecks(gc, op, Xs, unsafe_coalesce)
@given(inp=_dtypes().flatmap(lambda dt: _tensor_and_indices(
elements=st.floats(min_value=0, max_value=1), dtype=dt)),
**hu.gcs)
def test_sparse_to_dense(self, inp, gc, dc):
first_dim, X, I = inp
if X.dtype != np.dtype('float32') and gc.device_type == 1:
# Cuda only support 32 bit float
print("Bailout {}".format(X.dtype))
return
if gc.device_type == 1:
# Cuda version only support int32
I = I.astype(np.int32)
# values don't matter
D = np.zeros((first_dim,) + X.shape[1:]).astype(X.dtype)
op = core.CreateOperator("SparseToDense", ["I", "X", "D"], ["Y"])
def sparse_to_dense(I, X, D):
O = np.zeros(D.shape)
for i, p in enumerate(I):
O[p] += X[i]
return [O]
self.assertReferenceChecks(gc, op, [I, X, D], sparse_to_dense)
X = X.astype(np.float32)
self.assertGradientChecks(gc, op, [I, X, D], 1, [0])
@given(inputs=hu.tensors(n=2, min_dim=2, max_dim=2), **hu.gcs_cpu_only)
def test_dot_product(self, inputs, gc, dc):
X, Y = inputs
op = core.CreateOperator("DotProduct", ["X", "Y"], 'out')
def dotproduct(X, Y):
return (np.sum(X * Y, axis=1), )
self.assertReferenceChecks(gc, op, [X, Y], dotproduct)
self.assertDeviceChecks(dc, op, [X, Y], [0])
self.assertGradientChecks(gc, op, [X, Y], 0, [0])
self.assertGradientChecks(gc, op, [X, Y], 1, [0])
@given(N=st.integers(min_value=2, max_value=10),
M=st.integers(min_value=2, max_value=10),
K=st.integers(min_value=2, max_value=10),
pad_value=st.floats(min_value=0.1, max_value=1.0),
**hu.gcs_cpu_only)
def test_dot_product_with_padding(self, N, M, K, pad_value, gc, dc):
X = np.random.rand(N, M).astype(np.float32) - 0.5
Y = np.random.rand(N, K).astype(np.float32) - 0.5
op = core.CreateOperator("DotProductWithPadding", ["X", "Y"], 'out',
pad_value=pad_value)
def dotproduct(X, Y):
Z = np.ones((N, max(M, K))).astype(np.float32) * pad_value
if M < K:
Z[:, :M] = X
return (np.sum(Z * Y, axis=1), )
else:
Z[:, :K] = Y
return (np.sum(Z * X, axis=1), )
self.assertReferenceChecks(gc, op, [X, Y], dotproduct)
self.assertDeviceChecks(dc, op, [X, Y], [0])
self.assertGradientChecks(gc, op, [X, Y], 0, [0])
self.assertGradientChecks(gc, op, [X, Y], 1, [0])
@given(N=st.integers(min_value=2, max_value=10),
M=st.integers(min_value=2, max_value=10),
pad_value=st.floats(min_value=0.1, max_value=1.0),
**hu.gcs_cpu_only)
def test_dot_product_with_rep_padding(self, N, M, pad_value, gc, dc):
K = 2 * M
X = np.random.rand(N, M).astype(np.float32) - 0.5
Y = np.random.rand(N, K).astype(np.float32) - 0.5
op = core.CreateOperator("DotProductWithPadding", ["X", "Y"], 'out',
replicate=True,
pad_value=pad_value)
def dotproduct(X, Y):
import numpy.matlib as npm
if M < K:
Z = npm.repmat(X, 1, K // M)
return (np.sum(Z * Y, axis=1), )
else:
Z = npm.repmat(Y, 1, M // K)
return (np.sum(Z * X, axis=1), )
self.assertReferenceChecks(gc, op, [X, Y], dotproduct)
self.assertDeviceChecks(dc, op, [X, Y], [0])
self.assertGradientChecks(gc, op, [X, Y], 0, [0])
self.assertGradientChecks(gc, op, [X, Y], 1, [0])
@given(N=st.integers(min_value=2, max_value=10),
M=st.integers(min_value=2, max_value=10), **hu.gcs_cpu_only)
def test_ensure_dense(self, N, M, gc, dc):
# in place
X = np.random.rand(N, M).astype(np.float32) - 0.5
op = core.CreateOperator("EnsureDense", ["X"], "X")
self.assertReferenceChecks(gc, op, [X], lambda x: [x])
self.assertDeviceChecks(dc, op, [X], [0])
# or not
X = np.random.rand(N, M).astype(np.float32) - 0.5
op = core.CreateOperator("EnsureDense", ["X"], "out")
self.assertReferenceChecks(gc, op, [X], lambda x: [x])
self.assertDeviceChecks(dc, op, [X], [0])
@given(N=st.integers(min_value=10, max_value=100),
M=st.integers(min_value=2, max_value=10),
num_buckets=st.integers(min_value=1, max_value=5),
**hu.gcs_cpu_only)
def test_accumulate_histogram_op(self, N, M, num_buckets, gc, dc):
X = np.random.rand(N, M).astype(np.float32)
lower_bound, upper_bound = 0.1, 0.9
op = core.CreateOperator("AccumulateHistogram", ["X"],
['cur_hist', 'acc_hist'],
lower_bound=lower_bound,
upper_bound=upper_bound,
num_buckets=num_buckets)
def histogram(X):
hist = np.zeros((num_buckets + 2, ), dtype=np.int32)
segment = (upper_bound - lower_bound) / num_buckets
Y = np.zeros((N, M), dtype=np.int32)
Y[X < lower_bound] = 0
Y[X >= upper_bound] = num_buckets + 1
Y[(X >= lower_bound) & (X < upper_bound)] = \
((X[(X >= lower_bound) & (X < upper_bound)] - lower_bound) /
segment + 1).astype(np.int32)
for i in range(Y.shape[0]):
for j in range(Y.shape[1]):
hist[Y[i][j]] += 1
cur_hist, acc_hist = hist, hist
return [cur_hist, acc_hist]
self.assertDeviceChecks(dc, op, [X], [0, 1])
self.assertReferenceChecks(gc, op, [X], histogram)
if __name__ == "__main__":
unittest.main()