mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
The batch-size for this model is 64 previously. Later on we change that to 256 and cause OOM in cudagraphs setting. This PR tune the batch size down to 128. Share more logs from my local run ``` cuda,res2net101_26w_4s,128,1.603578,110.273572,335.263494,1.042566,11.469964,11.001666,807,2,7,6,0,0 cuda,res2net101_26w_4s,256,1.714980,207.986155,344.013071,1.058278,22.260176,21.034332,807,2,7,6,0,0 ``` The log shows that torch.compile uses 11GB for 128 batch size and 21GB for 256 batch size. I guess the benchmark script has extra overhead cause the model OOM for 256 batch size in the dashboard run. Pull Request resolved: https://github.com/pytorch/pytorch/pull/122977 Approved by: https://github.com/Chillee |
||
|---|---|---|
| .. | ||
| distributed | ||
| dynamo | ||
| fastrnns | ||
| framework_overhead_benchmark | ||
| functional_autograd_benchmark | ||
| fuser | ||
| gpt_fast | ||
| inference | ||
| instruction_counts | ||
| nested | ||
| operator_benchmark | ||
| overrides_benchmark | ||
| profiler_benchmark | ||
| record_function_benchmark | ||
| serialization | ||
| sparse | ||
| static_runtime | ||
| tensorexpr | ||
| transformer | ||
| compare-fastrnn-results.py | ||
| compare.sh | ||
| README.md | ||
| upload_scribe.py | ||
PyTorch Benchmarks
This folder contains scripts that produce reproducible timings of various PyTorch features.
It also provides mechanisms to compare PyTorch with other frameworks.
Setup environment
Make sure you're on a machine with CUDA, torchvision, and pytorch installed. Install in the following order:
# Install torchvision. It comes with the pytorch stable release binary
conda install pytorch torchvision -c pytorch
# Install the latest pytorch master from source.
# It should supersede the installation from the release binary.
cd $PYTORCH_HOME
python setup.py build develop
# Check the pytorch installation version
python -c "import torch; print(torch.__version__)"
Benchmark List
Please refer to each subfolder to discover each benchmark suite. Links are provided where descriptions exist: