mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 00:20:18 +01:00
Type checking Python is a pain. Here are my learnings: * The types for heavily polymorphic code is going to be verbose, no way around it. I originally was hoping I could lean on polymorphism with a bounded TypeVar to compactly write signatures for many of the ValueRanges methods, but I ran into some unworkaroundable mypy bugs. Writing out all the types explicitly and using `@overload` liberally works pretty well, so I think I recommend people do that instead of trying to do fancy things. * Sympy is missing annotations for assumptions, because they are all metaprogrammed. I don't really relish maintaining a typeshed for sympy, so I wrote a small mypy plugin to add them in. * GADT style refinement is... just not a good idea in practice. Mypy easily gets confused whether or not a return value from a refined section is allowed for the outer return type. So many of these have been replaced with less informative implementation types and more informative external types via overloads. Hopefully this is good for use sites. Signed-off-by: Edward Z. Yang <ezyang@meta.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/118870 Approved by: https://github.com/Skylion007, https://github.com/albanD
780 lines
26 KiB
Python
780 lines
26 KiB
Python
from __future__ import annotations
|
|
|
|
import dataclasses
|
|
import itertools
|
|
import sympy
|
|
from sympy.logic.boolalg import BooleanAtom, Boolean as SympyBoolean
|
|
import operator
|
|
import math
|
|
import logging
|
|
import torch
|
|
from typing import Dict, Optional, SupportsFloat, TypeVar, Generic, Union, overload, Callable, TYPE_CHECKING
|
|
from typing_extensions import TypeGuard
|
|
|
|
from torch._prims_common import dtype_to_type
|
|
from .interp import sympy_interp
|
|
from .functions import Round, RoundDecimal
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
__all__ = ["ValueRanges", "ValueRangeAnalysis", "bound_sympy"]
|
|
|
|
_T = TypeVar('_T', sympy.Expr, SympyBoolean)
|
|
|
|
class ValueRangeError(RuntimeError):
|
|
pass
|
|
|
|
|
|
# Like sympify, but supports less stuff, and also ensures that direct
|
|
# sympy expressions don't have free variables
|
|
def simple_sympify(e):
|
|
if isinstance(e, bool):
|
|
return sympy.true if e else sympy.false
|
|
elif isinstance(e, int):
|
|
return sympy.Integer(e)
|
|
elif isinstance(e, float):
|
|
# infinity is special; we use it to bracket integers as well
|
|
if math.isinf(e):
|
|
return sympy.oo if e > 0 else -sympy.oo
|
|
return sympy.Float(e)
|
|
elif isinstance(e, sympy.Expr):
|
|
assert e.is_number, e
|
|
# NaNs can occur when doing things like 0 * sympy.oo, but it is better
|
|
# if the operator notices this and takes care of it, because sometimes
|
|
# the NaN is inappropriate (for example, for ints, the [-oo, oo] range
|
|
# should go to zero when multiplied with [0, 0])
|
|
assert e != sympy.nan
|
|
return e
|
|
elif isinstance(e, BooleanAtom):
|
|
return e
|
|
else:
|
|
raise AssertionError(f"not simple sympy type {type(e)}: {e}")
|
|
|
|
|
|
# Sympy atomics only. Unlike <=, it also works on Sympy bools.
|
|
def sympy_generic_le(lower, upper):
|
|
if isinstance(lower, sympy.Expr):
|
|
assert isinstance(upper, sympy.Expr)
|
|
return lower <= upper
|
|
else:
|
|
# only negative condition is True > False
|
|
assert isinstance(lower, SympyBoolean) and isinstance(upper, SympyBoolean)
|
|
return not (lower and not upper)
|
|
|
|
|
|
def vr_is_bool(vr: ValueRanges[_T]) -> TypeGuard[ValueRanges[SympyBoolean]]:
|
|
return vr.is_bool
|
|
|
|
|
|
def vr_is_expr(vr: ValueRanges[_T]) -> TypeGuard[ValueRanges[sympy.Expr]]:
|
|
return not vr.is_bool
|
|
|
|
|
|
ExprIn = Union[int, float, sympy.Expr]
|
|
BoolIn = Union[bool, SympyBoolean]
|
|
AllIn = Union[ExprIn, BoolIn]
|
|
ExprFn = Callable[[sympy.Expr], sympy.Expr]
|
|
ExprFn2 = Callable[[sympy.Expr, sympy.Expr], sympy.Expr]
|
|
BoolFn = Callable[[SympyBoolean], SympyBoolean]
|
|
BoolFn2 = Callable[[SympyBoolean, SympyBoolean], SympyBoolean]
|
|
AllFn = Union[ExprFn, BoolFn]
|
|
AllFn2 = Union[ExprFn2, BoolFn2]
|
|
|
|
|
|
@dataclasses.dataclass(frozen=True)
|
|
class ValueRanges(Generic[_T]):
|
|
if TYPE_CHECKING:
|
|
# ruff doesn't understand circular references but mypy does
|
|
ExprVR = ValueRanges[sympy.Expr] # noqa: F821
|
|
BoolVR = ValueRanges[SympyBoolean] # noqa: F821
|
|
AllVR = Union[ExprVR, BoolVR]
|
|
|
|
# Although the type signature here suggests you can pass any
|
|
# sympy expression, in practice the analysis here only works
|
|
# with constant sympy expressions
|
|
lower: _T
|
|
upper: _T
|
|
is_bool: bool
|
|
|
|
@overload
|
|
def __init__(self: ValueRanges[sympy.Expr], lower: ExprIn, upper: ExprIn) -> None:
|
|
...
|
|
|
|
@overload
|
|
def __init__(self: ValueRanges[SympyBoolean], lower: BoolIn, upper: BoolIn) -> None:
|
|
...
|
|
|
|
def __init__(self, lower: AllIn, upper: AllIn) -> None:
|
|
lower = simple_sympify(lower)
|
|
upper = simple_sympify(upper)
|
|
# TODO: when the bounds have free variables, this may be
|
|
# nontrivial to actually verify
|
|
if not sympy_generic_le(lower, upper):
|
|
raise ValueRangeError(f"Invalid ranges [{lower}:{upper}]")
|
|
# Because this is a frozen class
|
|
object.__setattr__(self, "lower", lower)
|
|
object.__setattr__(self, "upper", upper)
|
|
object.__setattr__(self, "is_bool", isinstance(lower, SympyBoolean))
|
|
assert isinstance(upper, SympyBoolean) == self.is_bool
|
|
|
|
def boolify(self) -> ValueRanges[SympyBoolean]:
|
|
if vr_is_bool(self):
|
|
return self
|
|
elif self == ValueRanges.unknown():
|
|
return ValueRanges.unknown_bool()
|
|
else:
|
|
raise AssertionError(f"not bool like {self}")
|
|
|
|
def __contains__(self, x: AllIn) -> bool:
|
|
x = simple_sympify(x)
|
|
return sympy_generic_le(self.lower, x) and sympy_generic_le(x, self.upper)
|
|
|
|
def tighten(self, other) -> ValueRanges:
|
|
"""Given two ValueRanges, returns their intersection"""
|
|
return self & other
|
|
|
|
# Intersection
|
|
@overload
|
|
def __and__(self: ValueRanges[sympy.Expr], other: ValueRanges[sympy.Expr]) -> ValueRanges[sympy.Expr]:
|
|
...
|
|
|
|
@overload
|
|
def __and__(self: ValueRanges[SympyBoolean], other: ValueRanges[SympyBoolean]) -> ValueRanges[SympyBoolean]:
|
|
...
|
|
|
|
def __and__(self: AllVR, other: AllVR) -> AllVR:
|
|
if other == ValueRanges.unknown():
|
|
return self
|
|
if self == ValueRanges.unknown():
|
|
return other
|
|
assert self.is_bool == other.is_bool, (self, other)
|
|
if self.is_bool:
|
|
return ValueRanges(sympy.Or(self.lower, other.lower), sympy.And(self.upper, other.upper))
|
|
else:
|
|
return ValueRanges(sympy.Max(self.lower, other.lower), sympy.Min(self.upper, other.upper))
|
|
|
|
# Union
|
|
@overload
|
|
def __or__(self: ValueRanges[sympy.Expr], other: ValueRanges[sympy.Expr]) -> ValueRanges[sympy.Expr]:
|
|
...
|
|
|
|
@overload
|
|
def __or__(self: ValueRanges[SympyBoolean], other: ValueRanges[SympyBoolean]) -> ValueRanges[SympyBoolean]:
|
|
...
|
|
|
|
def __or__(self: AllVR, other: AllVR) -> AllVR:
|
|
if ValueRanges.unknown() in (self, other):
|
|
return ValueRanges.unknown()
|
|
assert self.is_bool == other.is_bool, (self, other)
|
|
if self.is_bool:
|
|
return ValueRanges(sympy.And(self.lower, other.lower), sympy.Or(self.upper, other.upper))
|
|
else:
|
|
return ValueRanges(sympy.Min(self.lower, other.lower), sympy.Max(self.upper, other.upper))
|
|
|
|
def is_singleton(self) -> bool:
|
|
return self.lower == self.upper
|
|
|
|
# TODO: this doesn't work with bools but arguably it should
|
|
@staticmethod
|
|
def unknown() -> ValueRanges[sympy.Expr]:
|
|
return ValueRanges(-sympy.oo, sympy.oo)
|
|
|
|
@staticmethod
|
|
def unknown_bool() -> ValueRanges[SympyBoolean]:
|
|
return ValueRanges(sympy.false, sympy.true)
|
|
|
|
@overload
|
|
@staticmethod
|
|
# work around the fact that bool and int overlap
|
|
def wrap(arg: Union[ExprIn, ExprVR]) -> ExprVR: # type: ignore[overload-overlap]
|
|
...
|
|
|
|
@overload
|
|
@staticmethod
|
|
def wrap(arg: Union[BoolIn, BoolVR]) -> BoolVR:
|
|
...
|
|
|
|
@staticmethod
|
|
def wrap(arg: Union[AllIn, AllVR]) -> AllVR:
|
|
if isinstance(arg, ValueRanges):
|
|
return arg
|
|
# arg is either ExprIn or BoolIn, but we don't know it here
|
|
return ValueRanges(arg, arg) # type: ignore[arg-type]
|
|
|
|
@staticmethod
|
|
def increasing_map(x: Union[ExprIn, ExprVR], fn: ExprFn) -> ExprVR:
|
|
"""Increasing: x <= y => f(x) <= f(y)."""
|
|
x = ValueRanges.wrap(x)
|
|
return ValueRanges(fn(x.lower), fn(x.upper))
|
|
|
|
@overload
|
|
@staticmethod
|
|
def decreasing_map(x: Union[ExprIn, ExprVR], fn: ExprFn) -> ExprVR:
|
|
...
|
|
|
|
@overload
|
|
@staticmethod
|
|
def decreasing_map(x: Union[BoolIn, BoolVR], fn: BoolFn) -> BoolVR:
|
|
...
|
|
|
|
@staticmethod
|
|
def decreasing_map(x: Union[AllIn, AllVR], fn: AllFn) -> AllVR:
|
|
"""Decreasing: x <= y => f(x) >= f(y)."""
|
|
x = ValueRanges.wrap(x)
|
|
# consistently either Expr or Bool, but we don't know it here
|
|
return ValueRanges(fn(x.upper), fn(x.lower)) # type: ignore[arg-type]
|
|
|
|
@staticmethod
|
|
def monotone_map(x: Union[ExprIn, ExprVR], fn: ExprFn) -> ExprVR:
|
|
"""It's increasing or decreasing."""
|
|
x = ValueRanges.wrap(x)
|
|
l = fn(x.lower)
|
|
u = fn(x.upper)
|
|
return ValueRanges(min(l, u), max(l, u))
|
|
|
|
@staticmethod
|
|
def convex_min_zero_map(x: Union[ExprIn, ExprVR], fn: ExprFn) -> ExprVR:
|
|
"""Fn is convex and has a minimum at 0."""
|
|
x = ValueRanges.wrap(x)
|
|
if 0 in x:
|
|
return ValueRanges(0, max(fn(x.lower), fn(x.upper)))
|
|
else:
|
|
return ValueRanges.monotone_map(x, fn)
|
|
|
|
@overload
|
|
@staticmethod
|
|
def coordinatewise_increasing_map(x: Union[ExprIn, ExprVR], y: Union[ExprIn, ExprVR], fn: ExprFn2) -> ExprVR:
|
|
...
|
|
|
|
@overload
|
|
@staticmethod
|
|
def coordinatewise_increasing_map(x: Union[BoolIn, BoolVR], y: Union[BoolIn, BoolVR], fn: BoolFn2) -> BoolVR:
|
|
...
|
|
|
|
@staticmethod
|
|
def coordinatewise_increasing_map(x: Union[AllIn, AllVR], y: Union[AllIn, AllVR], fn: AllFn2) -> AllVR:
|
|
"""
|
|
It's increasing on each coordinate.
|
|
|
|
Mathematically:
|
|
For every 1 <= i <= n and x_i <= y_i we have that
|
|
f(x1, .., xn) <= f(x1, , yi, ..., xn)
|
|
"""
|
|
x, y = ValueRanges.wrap(x), ValueRanges.wrap(y)
|
|
return ValueRanges(
|
|
fn(x.lower, y.lower), # type: ignore[arg-type]
|
|
fn(x.upper, y.upper), # type: ignore[arg-type]
|
|
)
|
|
|
|
@classmethod
|
|
def coordinatewise_monotone_map(cls, x, y, fn):
|
|
"""It's increasing or decreasing on each coordinate."""
|
|
x, y = cls.wrap(x), cls.wrap(y)
|
|
products = [
|
|
fn(a, b)
|
|
for a, b in itertools.product([x.lower, x.upper], [y.lower, y.upper])
|
|
]
|
|
return ValueRanges(min(products), max(products))
|
|
|
|
class SymPyValueRangeAnalysis:
|
|
"""
|
|
It gives bounds on a SymPy operator given bounds on its arguments
|
|
See the function `bound_sympy` for a function that applies this logic to a full SymPy expression
|
|
"""
|
|
|
|
@staticmethod
|
|
def constant(value, dtype):
|
|
# NB: value is NOT a sympy expression, it's a constant!
|
|
is_python = isinstance(value, (int, float, bool))
|
|
assert is_python or isinstance(value, (BooleanAtom, sympy.Integer, sympy.Number))
|
|
|
|
# using nan makes subsequent computation throw, and for the purposes of optimization
|
|
# returning -math.inf - math.inf is equivalent to giving up
|
|
if isinstance(value, SupportsFloat) and math.isnan(value):
|
|
return ValueRanges.unknown()
|
|
|
|
if is_python:
|
|
type_ = dtype_to_type(dtype)
|
|
value = type_(value)
|
|
else:
|
|
# We do a type check on a best-effort basis
|
|
# We don't want to force a cast to sympy.Float if the value is Rational to avoid losing precision
|
|
if dtype == torch.bool:
|
|
assert isinstance(value, BooleanAtom)
|
|
elif dtype.is_floating_point:
|
|
assert not value.is_finite or value.is_real
|
|
else:
|
|
# dtype is intXX
|
|
assert value.is_integer
|
|
|
|
return ValueRanges.wrap(value)
|
|
|
|
@staticmethod
|
|
def not_(a):
|
|
a = ValueRanges.wrap(a)
|
|
a = a.boolify()
|
|
assert a.is_bool
|
|
return ValueRanges.decreasing_map(a, sympy.Not)
|
|
|
|
@staticmethod
|
|
def or_(a, b):
|
|
return ValueRanges.coordinatewise_increasing_map(a, b, sympy.Or)
|
|
|
|
@staticmethod
|
|
def and_(a, b):
|
|
return ValueRanges.coordinatewise_increasing_map(a, b, sympy.And)
|
|
|
|
@staticmethod
|
|
def eq(a, b):
|
|
a = ValueRanges.wrap(a)
|
|
b = ValueRanges.wrap(b)
|
|
if a.is_singleton() and b.is_singleton() and a.lower == b.lower:
|
|
return ValueRanges.wrap(sympy.true)
|
|
elif a.lower > b.upper or b.lower > a.upper: # ranges disjoint
|
|
return ValueRanges.wrap(sympy.false)
|
|
return ValueRanges(sympy.false, sympy.true)
|
|
|
|
@classmethod
|
|
def ne(cls, a, b):
|
|
return cls.not_(cls.eq(a, b))
|
|
|
|
@classmethod
|
|
def lt(cls, a, b):
|
|
a = ValueRanges.wrap(a)
|
|
b = ValueRanges.wrap(b)
|
|
assert a.is_bool == b.is_bool
|
|
if a.is_bool:
|
|
return cls.and_(cls.not_(a), b)
|
|
else:
|
|
if a.upper < b.lower:
|
|
return ValueRanges.wrap(sympy.true)
|
|
elif a.lower >= b.upper:
|
|
return ValueRanges.wrap(sympy.false)
|
|
return ValueRanges(sympy.false, sympy.true)
|
|
|
|
@classmethod
|
|
def gt(cls, a, b):
|
|
return cls.lt(b, a)
|
|
|
|
@classmethod
|
|
def le(cls, a, b):
|
|
return cls.not_(cls.gt(a, b))
|
|
|
|
@classmethod
|
|
def ge(cls, a, b):
|
|
return cls.not_(cls.lt(a, b))
|
|
|
|
@staticmethod
|
|
def add(a, b):
|
|
return ValueRanges.coordinatewise_increasing_map(a, b, operator.add)
|
|
|
|
@classmethod
|
|
def mul(cls, a, b):
|
|
a = ValueRanges.wrap(a)
|
|
b = ValueRanges.wrap(b)
|
|
|
|
assert a.is_bool == b.is_bool
|
|
if a.is_bool:
|
|
return cls.and_(a, b)
|
|
|
|
def safe_mul(a, b):
|
|
# Make unknown() * wrap(0) == wrap(0)
|
|
if a == 0:
|
|
return a
|
|
elif b == 0:
|
|
return b
|
|
else:
|
|
return a * b
|
|
|
|
return ValueRanges.coordinatewise_monotone_map(a, b, safe_mul)
|
|
|
|
@classmethod
|
|
def div(cls, a, b):
|
|
return cls.truediv(a, b)
|
|
|
|
@staticmethod
|
|
def truediv(a, b):
|
|
a = ValueRanges.wrap(a)
|
|
b = ValueRanges.wrap(b)
|
|
if 0 in b or ((-sympy.oo in a or sympy.oo in a) and (-sympy.oo in b or sympy.oo in b)):
|
|
return ValueRanges.unknown()
|
|
else:
|
|
return ValueRanges.coordinatewise_monotone_map(a, b, operator.truediv)
|
|
|
|
@staticmethod
|
|
def floordiv(a, b):
|
|
a = ValueRanges.wrap(a)
|
|
b = ValueRanges.wrap(b)
|
|
if 0 in b or ((-sympy.oo in a or sympy.oo in a) and (-sympy.oo in b or sympy.oo in b)):
|
|
return ValueRanges.unknown()
|
|
else:
|
|
return ValueRanges.coordinatewise_monotone_map(a, b, operator.floordiv)
|
|
|
|
@staticmethod
|
|
def mod(x, y):
|
|
x = ValueRanges.wrap(x)
|
|
y = ValueRanges.wrap(y)
|
|
if x.is_singleton() and y.is_singleton() and y.lower != 0:
|
|
return ValueRanges.wrap(x.lower % y.lower)
|
|
if y.lower <= 0:
|
|
return ValueRanges.unknown()
|
|
return ValueRanges(0, y.upper)
|
|
|
|
@classmethod
|
|
def modular_indexing(cls, a, b, c):
|
|
return cls.mod(cls.floordiv(a, b), c)
|
|
|
|
@classmethod
|
|
def is_non_overlapping_and_dense_indicator(cls, *args):
|
|
return ValueRanges.unknown()
|
|
|
|
@classmethod
|
|
def pow(cls, a, b):
|
|
def is_integer(val):
|
|
return isinstance(val, int) or (
|
|
hasattr(val, "is_integer") and val.is_integer
|
|
)
|
|
|
|
a = ValueRanges.wrap(a)
|
|
b = ValueRanges.wrap(b)
|
|
# Not implemented yet. It's a bit tricky
|
|
# If you want to implement it, compute the partial derivatives of a ** b
|
|
# and check the ranges where the function is increasing / decreasing
|
|
# Another non-tight way of doing this is defaulting to doing noting that for a > 0, a ** b == exp(b * log(a))
|
|
# If this second option is implemented, by carefult about the types and possible infinities here and there.
|
|
if not b.is_singleton():
|
|
return ValueRanges.unknown()
|
|
|
|
b = b.lower
|
|
if a.is_singleton():
|
|
a = a.lower
|
|
r = a ** b
|
|
if not r.is_finite:
|
|
return ValueRanges.unknown()
|
|
return ValueRanges.wrap(r)
|
|
|
|
if b == 0:
|
|
if not a.lower.is_finite:
|
|
return ValueRanges.unknown()
|
|
type_ = sympy.Float if a.lower.is_real else sympy.Integer
|
|
return ValueRanges.wrap(type_(1))
|
|
|
|
if b < 0:
|
|
a = cls.reciprocal(a)
|
|
b = -b
|
|
|
|
if a == ValueRanges.unknown():
|
|
return ValueRanges.unknown()
|
|
|
|
# Here b > 0
|
|
if not is_integer(b):
|
|
# If the base is positive, then we're good, otherwise nothing's defined
|
|
if a.lower >= 0:
|
|
return ValueRanges.increasing_map(a, lambda x: x ** b)
|
|
else:
|
|
return ValueRanges.unknown()
|
|
else:
|
|
# b > 0 integer
|
|
if b % 2 == 0:
|
|
# x^n where n is even
|
|
return ValueRanges.convex_min_zero_map(a, lambda x: x ** b)
|
|
else:
|
|
# x^n where n is odd
|
|
return ValueRanges.increasing_map(a, lambda x: x ** b)
|
|
|
|
@staticmethod
|
|
def reciprocal(x):
|
|
""" Needed as it's used in pow, but it won't appear on a SymPy expression """
|
|
x = ValueRanges.wrap(x)
|
|
if 0 in x:
|
|
return ValueRanges.unknown()
|
|
else:
|
|
return ValueRanges.decreasing_map(x, lambda y: 1 / y)
|
|
|
|
@staticmethod
|
|
def abs(x):
|
|
return ValueRanges.convex_min_zero_map(x, abs)
|
|
|
|
@staticmethod
|
|
def exp(x):
|
|
return ValueRanges.increasing_map(x, sympy.functions.elementary.exponential.exp)
|
|
|
|
@staticmethod
|
|
def log(x):
|
|
x = ValueRanges.wrap(x)
|
|
if x.lower <= 0:
|
|
return ValueRanges.unknown()
|
|
return ValueRanges.increasing_map(x, sympy.log)
|
|
|
|
@classmethod
|
|
def minimum(cls, a, b):
|
|
return cls.min_or_max(a, b, sympy.Min)
|
|
|
|
@classmethod
|
|
def maximum(cls, a, b):
|
|
return cls.min_or_max(a, b, sympy.Max)
|
|
|
|
@staticmethod
|
|
def min_or_max(a, b, fn):
|
|
a = ValueRanges.wrap(a)
|
|
b = ValueRanges.wrap(b)
|
|
|
|
# Performs upcasting first
|
|
def fn_(x: sympy.Expr, y: sympy.Expr) -> sympy.Expr:
|
|
# Poorman's version of upcasting in Sympy
|
|
# Inf is not a float...
|
|
if x.is_Integer and y.is_Integer:
|
|
result_type = sympy.Integer
|
|
elif x.is_rational and y.is_rational:
|
|
result_type = sympy.Rational
|
|
else:
|
|
assert x.is_real or not x.is_finite or y.is_real or not y.is_finite
|
|
result_type = sympy.Float
|
|
return fn(result_type(x), result_type(y))
|
|
|
|
return ValueRanges.coordinatewise_increasing_map(a, b, fn_)
|
|
|
|
@classmethod
|
|
def floor(cls, x):
|
|
return ValueRanges.increasing_map(x, sympy.functions.elementary.integers.floor)
|
|
|
|
@classmethod
|
|
def ceil(cls, x):
|
|
return ValueRanges.increasing_map(x, sympy.functions.elementary.integers.ceiling)
|
|
|
|
@classmethod
|
|
def round(cls, number, ndigits=None):
|
|
if ndigits is None:
|
|
fn = Round
|
|
else:
|
|
assert ndigits.is_singleton()
|
|
ndigits = ndigits.lower
|
|
# We can't use functools.partial here since sympy doesn't support keyword arguments, but we have to bind
|
|
# the second parameter.
|
|
fn = lambda number: RoundDecimal(number, ndigits) # type: ignore[misc, assignment] # noqa: E731
|
|
|
|
return ValueRanges.increasing_map(number, fn)
|
|
|
|
# It's used in some models on symints
|
|
@staticmethod
|
|
def sqrt(x):
|
|
x = ValueRanges.wrap(x)
|
|
if x.lower < 0:
|
|
return ValueRanges.unknown()
|
|
return ValueRanges.increasing_map(x, sympy.sqrt)
|
|
|
|
@staticmethod
|
|
def where(a, b, c):
|
|
b = ValueRanges.wrap(b)
|
|
c = ValueRanges.wrap(c)
|
|
a = a.boolify()
|
|
assert b.is_bool == c.is_bool
|
|
if b.is_bool:
|
|
return ValueRanges(sympy.And(b.lower, c.lower), sympy.Or(b.upper, c.upper))
|
|
else:
|
|
return ValueRanges(sympy.Min(b.lower, c.lower), sympy.Max(b.upper, c.upper))
|
|
|
|
# expr_cond_pair is used to represent a single (expr, condition) pair in piecewise.
|
|
# We just return the value range of the expression and its corresponding condition as a tuple
|
|
# and defer the analysis to piecewise
|
|
@staticmethod
|
|
def expr_cond_pair(a, b):
|
|
b = b.boolify()
|
|
return (a, b)
|
|
|
|
# piecewise function can be used to convert a SymBool to SymInt:
|
|
# int_expr = Piecewise((1, bool_expr), (0, True)), it evalutes to 1 when sym_bool is True and 0 otherwise.
|
|
#
|
|
# ranges is a sequence of (expr_range, condition_range) pairs. The range pair is constructed in expr_cond_pair.
|
|
# The ValueRange of Piecewise is just the union of all expr ranges whose condition expr can be True.
|
|
@staticmethod
|
|
def piecewise(*ranges):
|
|
init_range = None
|
|
for expr_range, cond_range in ranges:
|
|
if sympy.true in cond_range:
|
|
if init_range is None:
|
|
init_range = expr_range
|
|
else:
|
|
init_range = init_range | expr_range
|
|
return init_range
|
|
|
|
@staticmethod
|
|
def cos(x):
|
|
# TODO: We should tighten value ranges
|
|
# If input range span is pi + 2*pi*k, then output range is (-1, 1)
|
|
# otherwise the minimum of the value of the function on the extremes
|
|
return ValueRanges(-1.0, 1.0)
|
|
|
|
@staticmethod
|
|
def cosh(x):
|
|
x = ValueRanges.wrap(x)
|
|
if x.lower > 0:
|
|
return ValueRanges.increasing_map(x, sympy.cosh)
|
|
elif x.upper < 0:
|
|
return ValueRanges.decreasing_map(x, sympy.cosh)
|
|
return ValueRanges(0.0, sympy.oo)
|
|
|
|
@staticmethod
|
|
def sin(x):
|
|
# TODO: We should tighten value ranges
|
|
# See details on cos
|
|
return ValueRanges(-1.0, 1.0)
|
|
|
|
@staticmethod
|
|
def sinh(x):
|
|
return ValueRanges.increasing_map(x, sympy.sinh)
|
|
|
|
@staticmethod
|
|
def tan(x):
|
|
return ValueRanges(-sympy.oo, sympy.oo)
|
|
|
|
@staticmethod
|
|
def tanh(x):
|
|
return ValueRanges.increasing_map(x, sympy.tanh)
|
|
|
|
@staticmethod
|
|
def asin(x):
|
|
x = ValueRanges.wrap(x)
|
|
if -1 <= x.lower and x.upper <= 1:
|
|
return ValueRanges.increasing_map(x, sympy.asin)
|
|
return ValueRanges.unknown()
|
|
|
|
@staticmethod
|
|
def acos(x):
|
|
x = ValueRanges.wrap(x)
|
|
if -1 <= x.lower and x.upper <= 1:
|
|
return ValueRanges.decreasing_map(x, sympy.acos)
|
|
return ValueRanges.unknown()
|
|
|
|
@staticmethod
|
|
def atan(x):
|
|
return ValueRanges.increasing_map(x, sympy.atan)
|
|
|
|
|
|
class ValueRangeAnalysis(SymPyValueRangeAnalysis):
|
|
def __init__(self):
|
|
self.name = "ValueRangeAnalysis"
|
|
boolean_operators = (
|
|
"xor",
|
|
"logical_and",
|
|
"logical_or",
|
|
"logical_not",
|
|
)
|
|
for op in boolean_operators:
|
|
setattr(self, op, self.bool_handler)
|
|
|
|
@staticmethod
|
|
def bool_handler(*args, **kwargs):
|
|
# just assuming bools can have both values
|
|
return ValueRanges(sympy.false, sympy.true) # type: ignore[arg-type]
|
|
|
|
@staticmethod
|
|
def default_handler(*args, **kwargs):
|
|
# many ops are unlikely to show up in optimizable indexing compute,
|
|
# so we dont have full coverage
|
|
return ValueRanges.unknown()
|
|
|
|
def load(self, name: str, index: sympy.Expr):
|
|
return ValueRanges.unknown()
|
|
|
|
def store(self, name, index, value, mode=None):
|
|
return
|
|
|
|
def reduction(self, name, dtype, src_dtype, reduction_type, index, value):
|
|
return ValueRanges.unknown()
|
|
|
|
def index_expr(self, index, dtype):
|
|
assert isinstance(index, ValueRanges)
|
|
return index
|
|
|
|
@staticmethod
|
|
def to_dtype(x, dtype: torch.dtype, src_dtype: Optional[torch.dtype] = None):
|
|
x = ValueRanges.wrap(x)
|
|
|
|
if dtype == torch.bool:
|
|
if x.is_singleton():
|
|
return ValueRanges.wrap(x.lower != 0)
|
|
elif 0 not in x:
|
|
return ValueRanges.wrap(sympy.true)
|
|
else:
|
|
return ValueRanges(sympy.false, sympy.true)
|
|
|
|
def cast(x, dtype):
|
|
# dtype is int or float
|
|
if dtype.is_floating_point:
|
|
return sympy.Float(x)
|
|
else:
|
|
try:
|
|
return sympy.Integer(x)
|
|
except TypeError:
|
|
# inf cannot be cast to Integer
|
|
return x
|
|
|
|
if x.is_bool:
|
|
if x.is_singleton():
|
|
val = 1 if x.lower else 0
|
|
return ValueRanges.wrap(cast(val, dtype))
|
|
else:
|
|
return ValueRanges(cast(0, dtype), cast(1, dtype))
|
|
else:
|
|
# int to float or float to int
|
|
return ValueRanges(cast(x.lower, dtype), cast(x.upper, dtype))
|
|
|
|
@staticmethod
|
|
def square(x):
|
|
return ValueRanges.convex_min_zero_map(x, lambda y: y * y)
|
|
|
|
@staticmethod
|
|
def neg(x):
|
|
return ValueRanges.decreasing_map(x, operator.neg)
|
|
|
|
@classmethod
|
|
def truncdiv(cls, a, b):
|
|
x = cls.truediv(a, b)
|
|
if x == ValueRanges.unknown():
|
|
return x
|
|
|
|
def trunc(x):
|
|
return sympy.Integer(x) if x.is_finite else x
|
|
|
|
return ValueRanges.increasing_map(x, trunc)
|
|
|
|
@classmethod
|
|
def sub(cls, a, b):
|
|
return cls.add(a, cls.neg(b))
|
|
|
|
def __getattr__(self, name):
|
|
log.debug("unhandled ValueRange op %s", name)
|
|
return self.default_handler
|
|
|
|
|
|
def bound_sympy(expr: sympy.Expr, ranges: Optional[Dict[sympy.Symbol, ValueRanges]] = None) -> ValueRanges:
|
|
if isinstance(expr, sympy.Number):
|
|
return ValueRanges.wrap(expr)
|
|
|
|
ranges = ranges or {}
|
|
|
|
# If there's a tracing context, augment available constrained ranges.
|
|
context = torch._guards.TracingContext.try_get()
|
|
if context and context.fake_mode.shape_env:
|
|
ranges = {**ranges, **context.fake_mode.shape_env.var_to_range}
|
|
|
|
unbounded_vars = expr.free_symbols - ranges.keys()
|
|
if unbounded_vars:
|
|
# Give some bounds to the free variables via their SymPy assumptions
|
|
# TODO A better way of doing this would be to assign them a range upon creation, as
|
|
# size variables can come with a lower bound of 2, as we specialise on 0 and 1
|
|
unbounded_ranges: Dict[sympy.Symbol, ValueRanges] = {}
|
|
for s in unbounded_vars:
|
|
assert s.is_integer # type: ignore[attr-defined]
|
|
if s.is_positive: # type: ignore[attr-defined]
|
|
lower = 1
|
|
elif s.is_nonnegative: # type: ignore[attr-defined]
|
|
lower = 0
|
|
else:
|
|
lower = -math.inf # type: ignore[assignment]
|
|
unbounded_ranges[s] = ValueRanges(lower, math.inf) # type: ignore[index]
|
|
ranges = {**ranges, **unbounded_ranges}
|
|
|
|
return sympy_interp(SymPyValueRangeAnalysis, ranges, expr)
|