mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: https://fb.workplace.com/groups/257735836456307/permalink/657458576484029/ upload cprofile to manifold D56696397 has a script to convert profiler stats to dot graphs (see its test plan) Test Plan: non-MAST `TORCH_COMPILE_CPROFILE=1 buck2 run mode/opt mode/inplace //pytorch/benchmark:run -- ads_mc_igctr_mc3_v0 -d cuda -t train --torchdynamo inductor --profile --profile-export-chrome-trace` https://www.internalfb.com/manifold/explorer/pyper_traces/tree/compilation_cprofile/test/20240428_234002_7562397568 MAST `buck2 run mode/opt aps_models/ads/icvr:icvr_launcher -- mode=mast_ctr_cvr_cmf_rep launcher.fbl_entitlement=ai_infra_training_rnd_tc features=ctr_cvr_conso_cmf_pipeline_features_455876776_3teach model=ctr_cvr_cmf_when_rep_config_msmn_3teach model_name=ctr_cvr_when model.when_arch.use_extended_residual_contexts=True optimizers.dense_default.lr_schedule.0.max_iters=20000 training.planner.storage_reservation_policy=FixedPercentage training.planner.storage_reservation_percentage=0.72 data_loader.dataset.batch_size=2048 trainer.garbage_collection.garbage_collection_interval=100 model.when_arch.layer_norm_init_weight=0.3 optimizers.dense_default.lr_schedule.0.value=0.001 model.when_arch.customized_mlp_init_scale=0.3 launcher.num_workers=128 launcher.max_retries=10 launcher.data_project=oncall_ads_model_platform launcher.hardware=ZIONEX_80G data_loader.dataset.table_ds="[2024-01-01]" launcher.job_name=test_inductor_logging` https://www.internalfb.com/manifold/explorer/pyper_traces/tree/compilation_cprofile/aps-test_inductor_logging-745febb51a Generating dotty files from D56696397 ``` Generating dot file from cprofile stats /home/daohang/aps-test_inductor_logging-745febb51a/0/0/_compile1.profile ... P1225733598: https://www.internalfb.com/intern/paste/P1225733598/ Dotty: https://www.internalfb.com/intern/graphviz/?paste=1225733598 Generating dot file from cprofile stats /home/daohang/aps-test_inductor_logging-745febb51a/0/0/_compile10.profile ... P1225733629: https://www.internalfb.com/intern/paste/P1225733629/ Dotty: https://www.internalfb.com/intern/graphviz/?paste=1225733629 Generating dot file from cprofile stats /home/daohang/aps-test_inductor_logging-745febb51a/0/0/_compile0.profile ... P1225733649: https://www.internalfb.com/intern/paste/P1225733649/ Dotty: https://www.internalfb.com/intern/graphviz/?paste=1225733649 ``` Differential Revision: D56679561 Pull Request resolved: https://github.com/pytorch/pytorch/pull/125162 Approved by: https://github.com/anijain2305
197 lines
6.3 KiB
Python
197 lines
6.3 KiB
Python
import functools
|
|
import logging
|
|
import os
|
|
import sys
|
|
import tempfile
|
|
from typing import Any, Dict
|
|
|
|
import torch
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
# this arbitrary-looking assortment of functionality is provided here
|
|
# to have a central place for overrideable behavior. The motivating
|
|
# use is the FB build environment, where this source file is replaced
|
|
# by an equivalent.
|
|
|
|
if torch._running_with_deploy():
|
|
# __file__ is meaningless in the context of frozen torch used in torch deploy.
|
|
# setting empty torch_parent should allow below functions to operate without crashing,
|
|
# but it's unclear if there is a valid use case for them in the context of deploy.
|
|
torch_parent = ""
|
|
else:
|
|
if os.path.basename(os.path.dirname(__file__)) == "shared":
|
|
torch_parent = os.path.dirname(os.path.dirname(os.path.dirname(__file__)))
|
|
else:
|
|
torch_parent = os.path.dirname(os.path.dirname(__file__))
|
|
|
|
|
|
def get_file_path(*path_components: str) -> str:
|
|
return os.path.join(torch_parent, *path_components)
|
|
|
|
|
|
def get_file_path_2(*path_components: str) -> str:
|
|
return os.path.join(*path_components)
|
|
|
|
|
|
def get_writable_path(path: str) -> str:
|
|
if os.access(path, os.W_OK):
|
|
return path
|
|
return tempfile.mkdtemp(suffix=os.path.basename(path))
|
|
|
|
|
|
def prepare_multiprocessing_environment(path: str) -> None:
|
|
pass
|
|
|
|
|
|
def resolve_library_path(path: str) -> str:
|
|
return os.path.realpath(path)
|
|
|
|
|
|
def throw_abstract_impl_not_imported_error(opname, module, context):
|
|
if module in sys.modules:
|
|
raise NotImplementedError(
|
|
f"{opname}: We could not find the fake impl for this operator. "
|
|
)
|
|
else:
|
|
raise NotImplementedError(
|
|
f"{opname}: We could not find the fake impl for this operator. "
|
|
f"The operator specified that you may need to import the '{module}' "
|
|
f"Python module to load the fake impl. {context}"
|
|
)
|
|
|
|
|
|
# Meta only, act as nop otherwise.
|
|
def compile_time_strobelight_meta(phase_name):
|
|
def compile_time_strobelight_meta_inner(function):
|
|
@functools.wraps(function)
|
|
def wrapper_function(*args, **kwargs):
|
|
return function(*args, **kwargs)
|
|
|
|
return wrapper_function
|
|
|
|
return compile_time_strobelight_meta_inner
|
|
|
|
|
|
# Meta only, see
|
|
# https://www.internalfb.com/intern/wiki/ML_Workflow_Observability/User_Guides/Adding_instrumentation_to_your_code/
|
|
#
|
|
# This will cause an event to get logged to Scuba via the signposts API. You
|
|
# can view samples on the API at https://fburl.com/scuba/workflow_signpost/zh9wmpqs
|
|
# we log to subsystem "torch", and the category and name you provide here.
|
|
# Each of the arguments translate into a Scuba column. We're still figuring
|
|
# out local conventions in PyTorch, but category should be something like
|
|
# "dynamo" or "inductor", and name should be a specific string describing what
|
|
# kind of event happened.
|
|
#
|
|
# Killswitch is at
|
|
# https://www.internalfb.com/intern/justknobs/?name=pytorch%2Fsignpost#event
|
|
def signpost_event(category: str, name: str, parameters: Dict[str, Any]):
|
|
log.info("%s %s: %r", category, name, parameters)
|
|
|
|
|
|
def log_compilation_event(metrics):
|
|
log.info("%s", metrics)
|
|
|
|
|
|
def upload_graph(graph):
|
|
pass
|
|
|
|
|
|
def set_pytorch_distributed_envs_from_justknobs():
|
|
pass
|
|
|
|
|
|
def log_export_usage(**kwargs):
|
|
pass
|
|
|
|
|
|
def log_torchscript_usage(api: str):
|
|
_ = api
|
|
return
|
|
|
|
|
|
def export_api_rollout_check() -> bool:
|
|
return False
|
|
|
|
|
|
def justknobs_check(name: str) -> bool:
|
|
"""
|
|
This function can be used to killswitch functionality in FB prod,
|
|
where you can toggle this value to False in JK without having to
|
|
do a code push. In OSS, we always have everything turned on all
|
|
the time, because downstream users can simply choose to not update
|
|
PyTorch. (If more fine-grained enable/disable is needed, we could
|
|
potentially have a map we lookup name in to toggle behavior. But
|
|
the point is that it's all tied to source code in OSS, since there's
|
|
no live server to query.)
|
|
|
|
This is the bare minimum functionality I needed to do some killswitches.
|
|
We have a more detailed plan at
|
|
https://docs.google.com/document/d/1Ukerh9_42SeGh89J-tGtecpHBPwGlkQ043pddkKb3PU/edit
|
|
In particular, in some circumstances it may be necessary to read in
|
|
a knob once at process start, and then use it consistently for the
|
|
rest of the process. Future functionality will codify these patterns
|
|
into a better high level API.
|
|
|
|
WARNING: Do NOT call this function at module import time, JK is not
|
|
fork safe and you will break anyone who forks the process and then
|
|
hits JK again.
|
|
"""
|
|
return True
|
|
|
|
|
|
def justknobs_getval_int(name: str) -> int:
|
|
"""
|
|
Read warning on justknobs_check
|
|
"""
|
|
return 0
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def max_clock_rate():
|
|
if not torch.version.hip:
|
|
from triton.testing import nvsmi
|
|
|
|
return nvsmi(["clocks.max.sm"])[0]
|
|
else:
|
|
# Manually set max-clock speeds on ROCm until equivalent nvmsi
|
|
# functionality in triton.testing or via pyamdsmi enablement. Required
|
|
# for test_snode_runtime unit tests.
|
|
gcn_arch = str(torch.cuda.get_device_properties(0).gcnArchName.split(":", 1)[0])
|
|
if "gfx94" in gcn_arch:
|
|
return 1700
|
|
elif "gfx90a" in gcn_arch:
|
|
return 1700
|
|
elif "gfx908" in gcn_arch:
|
|
return 1502
|
|
elif "gfx11" in gcn_arch:
|
|
return 1700
|
|
elif "gfx103" in gcn_arch:
|
|
return 1967
|
|
elif "gfx101" in gcn_arch:
|
|
return 1144
|
|
else:
|
|
return 1100
|
|
|
|
|
|
TEST_MASTER_ADDR = "127.0.0.1"
|
|
TEST_MASTER_PORT = 29500
|
|
# USE_GLOBAL_DEPS controls whether __init__.py tries to load
|
|
# libtorch_global_deps, see Note [Global dependencies]
|
|
USE_GLOBAL_DEPS = True
|
|
# USE_RTLD_GLOBAL_WITH_LIBTORCH controls whether __init__.py tries to load
|
|
# _C.so with RTLD_GLOBAL during the call to dlopen.
|
|
USE_RTLD_GLOBAL_WITH_LIBTORCH = False
|
|
# If an op was defined in C++ and extended from Python using the
|
|
# torch.library.register_fake, returns if we require that there be a
|
|
# m.set_python_module("mylib.ops") call from C++ that associates
|
|
# the C++ op with a python module.
|
|
REQUIRES_SET_PYTHON_MODULE = False
|
|
|
|
|
|
def maybe_upload_prof_stats_to_manifold(profile_path: str) -> None:
|
|
print("Uploading profile stats (fb-only otherwise no-op)")
|
|
pass
|