mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
The official move of `OnnxRegistry` to `torch.onnx` allows it to become one of the parameters in `torch.onnx.ExportOption`. By incorporating `OnnxRegistry` in `torch.onnx.ExportOption`, users gain access to various functionalities, including the ability to register custom operators using `register_custom_op`, check whether an operator is supported using `is_registered_op`, and obtain symbolic functions that support specific operators using `get_functions`. Additionally, `opset_version` is now exclusively available in `torch.onnx.OnnxRegistry` as it is removed from `torch.onnx.ExportOption`. The initialization of the registry with torchlib under the provided opset version ensures that the exporter uses the specified opset version as the primary version for exporting. These changes encompass scenarios where users can: 1. Register an unsupported ATen operator with a custom implementation using onnx-script. 2. Override an existing symbolic function (onnx invariant). NOTE: The custom registered function will be prioritized in onnx dispatcher, and if there are multiple custom ones, the one registered the last will be picked. Pull Request resolved: https://github.com/pytorch/pytorch/pull/106140 Approved by: https://github.com/justinchuby, https://github.com/thiagocrepaldi
695 lines
22 KiB
Python
695 lines
22 KiB
Python
# Owner(s): ["module: onnx"]
|
|
|
|
from __future__ import annotations
|
|
|
|
import contextlib
|
|
|
|
import copy
|
|
import dataclasses
|
|
import io
|
|
import os
|
|
import unittest
|
|
import warnings
|
|
from typing import (
|
|
Any,
|
|
Callable,
|
|
Collection,
|
|
Iterable,
|
|
List,
|
|
Mapping,
|
|
Optional,
|
|
Sequence,
|
|
Tuple,
|
|
Type,
|
|
Union,
|
|
)
|
|
|
|
import numpy as np
|
|
|
|
import onnxruntime
|
|
import pytest
|
|
import pytorch_test_common
|
|
import torch
|
|
from torch.onnx import _constants, verification
|
|
from torch.onnx._internal import _beartype
|
|
from torch.testing._internal.opinfo import core as opinfo_core
|
|
from torch.types import Number
|
|
|
|
_NumericType = Union[Number, torch.Tensor, np.ndarray]
|
|
_ModelType = Union[torch.nn.Module, Callable]
|
|
_InputArgsType = Optional[
|
|
Union[torch.Tensor, int, float, bool, Sequence[Any], Mapping[str, Any]]
|
|
]
|
|
_OutputsType = Sequence[_NumericType]
|
|
|
|
onnx_model_dir = os.path.join(
|
|
os.path.dirname(os.path.realpath(__file__)),
|
|
os.pardir,
|
|
"repos",
|
|
"onnx",
|
|
"onnx",
|
|
"backend",
|
|
"test",
|
|
"data",
|
|
)
|
|
|
|
|
|
pytorch_converted_dir = os.path.join(onnx_model_dir, "pytorch-converted")
|
|
|
|
|
|
pytorch_operator_dir = os.path.join(onnx_model_dir, "pytorch-operator")
|
|
|
|
|
|
def run_model_test(test_suite: _TestONNXRuntime, *args, **kwargs):
|
|
options = verification.VerificationOptions()
|
|
|
|
kwargs["opset_version"] = test_suite.opset_version
|
|
kwargs["keep_initializers_as_inputs"] = test_suite.keep_initializers_as_inputs
|
|
if hasattr(test_suite, "check_shape"):
|
|
options.check_shape = test_suite.check_shape
|
|
if hasattr(test_suite, "check_dtype"):
|
|
options.check_dtype = test_suite.check_dtype
|
|
|
|
names = {f.name for f in dataclasses.fields(options)}
|
|
keywords_to_pop = []
|
|
for k, v in kwargs.items():
|
|
if k in names:
|
|
setattr(options, k, v)
|
|
keywords_to_pop.append(k)
|
|
for k in keywords_to_pop:
|
|
kwargs.pop(k)
|
|
|
|
return verification.verify(*args, options=options, **kwargs)
|
|
|
|
|
|
def parameterize_class_name(cls: Type, idx: int, input_dicts: Mapping[Any, Any]):
|
|
"""Combine class name with the parameterized arguments.
|
|
|
|
This function is passed to `parameterized.parameterized_class` as the
|
|
`class_name_func` argument.
|
|
"""
|
|
suffix = "_".join(f"{k}_{v}" for k, v in input_dicts.items())
|
|
return f"{cls.__name__}_{suffix}"
|
|
|
|
|
|
class _TestONNXRuntime(pytorch_test_common.ExportTestCase):
|
|
opset_version = _constants.ONNX_DEFAULT_OPSET
|
|
keep_initializers_as_inputs = True # For IR version 3 type export.
|
|
is_script = False
|
|
check_shape = True
|
|
check_dtype = True
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
onnxruntime.set_seed(0)
|
|
if torch.cuda.is_available():
|
|
torch.cuda.manual_seed_all(0)
|
|
os.environ["ALLOW_RELEASED_ONNX_OPSET_ONLY"] = "0"
|
|
self.is_script_test_enabled = True
|
|
|
|
# The exported ONNX model may have less inputs than the pytorch model because of const folding.
|
|
# This mostly happens in unit test, where we widely use torch.size or torch.shape.
|
|
# So the output is only dependent on the input shape, not value.
|
|
# remained_onnx_input_idx is used to indicate which pytorch model input idx is remained in ONNX model.
|
|
def run_test(
|
|
self,
|
|
model,
|
|
input_args,
|
|
input_kwargs=None,
|
|
rtol=1e-3,
|
|
atol=1e-7,
|
|
do_constant_folding=True,
|
|
dynamic_axes=None,
|
|
additional_test_inputs=None,
|
|
input_names=None,
|
|
output_names=None,
|
|
fixed_batch_size=False,
|
|
training=torch.onnx.TrainingMode.EVAL,
|
|
remained_onnx_input_idx=None,
|
|
verbose=False,
|
|
):
|
|
def _run_test(m, remained_onnx_input_idx, flatten=True, ignore_none=True):
|
|
return run_model_test(
|
|
self,
|
|
m,
|
|
input_args=input_args,
|
|
input_kwargs=input_kwargs,
|
|
rtol=rtol,
|
|
atol=atol,
|
|
do_constant_folding=do_constant_folding,
|
|
dynamic_axes=dynamic_axes,
|
|
additional_test_inputs=additional_test_inputs,
|
|
input_names=input_names,
|
|
output_names=output_names,
|
|
fixed_batch_size=fixed_batch_size,
|
|
training=training,
|
|
remained_onnx_input_idx=remained_onnx_input_idx,
|
|
flatten=flatten,
|
|
ignore_none=ignore_none,
|
|
verbose=verbose,
|
|
)
|
|
|
|
if isinstance(remained_onnx_input_idx, dict):
|
|
scripting_remained_onnx_input_idx = remained_onnx_input_idx["scripting"]
|
|
tracing_remained_onnx_input_idx = remained_onnx_input_idx["tracing"]
|
|
else:
|
|
scripting_remained_onnx_input_idx = remained_onnx_input_idx
|
|
tracing_remained_onnx_input_idx = remained_onnx_input_idx
|
|
|
|
is_model_script = isinstance(
|
|
model, (torch.jit.ScriptModule, torch.jit.ScriptFunction)
|
|
)
|
|
|
|
if self.is_script_test_enabled and self.is_script:
|
|
script_model = model if is_model_script else torch.jit.script(model)
|
|
_run_test(
|
|
script_model,
|
|
scripting_remained_onnx_input_idx,
|
|
flatten=False,
|
|
ignore_none=False,
|
|
)
|
|
if not is_model_script and not self.is_script:
|
|
_run_test(model, tracing_remained_onnx_input_idx)
|
|
|
|
@_beartype.beartype
|
|
def run_test_with_fx_to_onnx_exporter_and_onnx_runtime(
|
|
self,
|
|
model: _ModelType,
|
|
input_args: Sequence[_InputArgsType],
|
|
input_kwargs: Optional[Mapping[str, _InputArgsType]] = None,
|
|
rtol: Optional[float] = 1e-3,
|
|
atol: Optional[float] = 1e-7,
|
|
has_mutation: bool = False,
|
|
verbose: bool = False,
|
|
additional_test_inputs: Optional[
|
|
List[
|
|
Union[
|
|
Tuple[Sequence[_InputArgsType], Mapping[str, _InputArgsType]],
|
|
Tuple[Sequence[_InputArgsType]],
|
|
]
|
|
]
|
|
] = None,
|
|
):
|
|
"""Compare the results of PyTorch model with exported ONNX model
|
|
|
|
Args:
|
|
model (_ModelType): PyTorch model
|
|
input_args (Sequence[_InputArgsType]): torch input arguments
|
|
input_kwargs (Mapping[str, _InputArgsType]): torch input kwargs
|
|
rtol (float, optional): relative tolerance. Defaults to 1e-3.
|
|
atol (float, optional): absolute tolerance. Defaults to 1e-7.
|
|
has_mutation (bool, optional): Whether the model mutates its input or state.
|
|
`mutation` as `True` incurs extra overhead of cloning the inputs and model.
|
|
Defaults to False.
|
|
verbose (bool, optional): Whether to save diagnostics as Sarif log and print
|
|
verbose information. Defaults to False.
|
|
additional_test_inputs: Test the models with another dataset input, which
|
|
is designed for dynamic axes testing. Defaults to None. It's a list of
|
|
different input sets in tuples. Inside tuple, the first element is a tuple
|
|
of args, and the second element is a dict of kwargs. Remember to put comma
|
|
even if the following element is not provided.
|
|
For example,
|
|
additional_test_inputs = [((args1, args2), {"kwargs":1}), ((args1,),), ((), {"kwargs":1})]
|
|
|
|
"""
|
|
|
|
# avoid mutable data structure
|
|
if input_kwargs is None:
|
|
input_kwargs = {}
|
|
|
|
if has_mutation:
|
|
ref_model = _try_clone_model(model)
|
|
ref_input_args, ref_input_kwargs = _try_clone_inputs(
|
|
input_args, input_kwargs
|
|
)
|
|
else:
|
|
ref_model = model
|
|
ref_input_args = input_args
|
|
ref_input_kwargs = input_kwargs
|
|
|
|
# Feed args and kwargs into exporter.
|
|
# Note that exporter should flatten kwargs into positional args the exported model;
|
|
# since ONNX doesn't represent kwargs.
|
|
export_output = torch.onnx.dynamo_export(
|
|
ref_model,
|
|
*ref_input_args,
|
|
**ref_input_kwargs,
|
|
export_options=torch.onnx.ExportOptions(
|
|
op_level_debug=self.op_level_debug,
|
|
dynamic_shapes=self.dynamic_shapes,
|
|
),
|
|
)
|
|
|
|
if verbose:
|
|
export_output.diagnostic_context.dump(
|
|
f"test_report_{self._testMethodName}"
|
|
f"_op_level_debug_{self.op_level_debug}"
|
|
f"_dynamic_axes_{self.dynamic_shapes}"
|
|
".sarif",
|
|
compress=False,
|
|
)
|
|
|
|
_compare_pytorch_onnx_with_ort(
|
|
export_output,
|
|
model,
|
|
input_args,
|
|
input_kwargs,
|
|
atol,
|
|
rtol,
|
|
has_mutation=has_mutation,
|
|
)
|
|
# This confirms the exported mode accepts different input shapes
|
|
# when dynamic shape is enabled.
|
|
if additional_test_inputs and self.dynamic_shapes:
|
|
for another_input in additional_test_inputs:
|
|
if len(another_input) > 2:
|
|
raise ValueError(
|
|
f"test_inputs should only have tuple args and dictionary kwargs. But receives: {len(another_input)}"
|
|
)
|
|
additional_input_args = another_input[0]
|
|
additional_input_kwargs = (
|
|
another_input[1]
|
|
if len(another_input) == 2 and another_input[1] is not None
|
|
else {}
|
|
)
|
|
_compare_pytorch_onnx_with_ort(
|
|
export_output,
|
|
model,
|
|
additional_input_args,
|
|
additional_input_kwargs,
|
|
atol,
|
|
rtol,
|
|
has_mutation=has_mutation,
|
|
)
|
|
|
|
|
|
@_beartype.beartype
|
|
def run_ort(
|
|
onnx_model: Union[str, torch.onnx.ExportOutput],
|
|
pytorch_inputs: Sequence[_InputArgsType],
|
|
) -> _OutputsType:
|
|
"""Run ORT on the given ONNX model and inputs
|
|
|
|
Used in test_fx_to_onnx_with_onnxruntime.py
|
|
|
|
Args:
|
|
onnx_model (Union[str, torch.onnx.ExportOutput]): Converter ONNX model
|
|
pytorch_inputs (Sequence[_InputArgsType]): The given torch inputs
|
|
|
|
Raises:
|
|
AssertionError: ONNX and PyTorch should have the same input sizes
|
|
|
|
Returns:
|
|
_OutputsType: ONNX model predictions
|
|
"""
|
|
if isinstance(onnx_model, torch.onnx.ExportOutput):
|
|
buffer = io.BytesIO()
|
|
onnx_model.save(buffer)
|
|
ort_model = buffer.getvalue()
|
|
else:
|
|
ort_model = onnx_model
|
|
|
|
# NOTE: Inline model before running in onnxruntime.
|
|
# This is a workaround since onnxruntime crashes or segfaults when loading model
|
|
# with nested functions.
|
|
# Ref: https://github.com/microsoft/onnxruntime/issues/15849
|
|
try:
|
|
import onnx.inliner
|
|
except ImportError:
|
|
warnings.warn("Cannot import onnx.inliner. Skip inlining model.")
|
|
else:
|
|
if isinstance(ort_model, bytes):
|
|
buffer = io.BytesIO(ort_model)
|
|
else:
|
|
assert isinstance(ort_model, str)
|
|
buffer = ort_model
|
|
|
|
model_proto = onnx.load(buffer)
|
|
inlined_model_proto = onnx.inliner.inline_local_functions(model_proto)
|
|
ort_model = inlined_model_proto.SerializeToString()
|
|
|
|
# Suppress floods of warnings from ONNX Runtime
|
|
session_options = onnxruntime.SessionOptions()
|
|
session_options.log_severity_level = 3 # Error
|
|
session = onnxruntime.InferenceSession(
|
|
ort_model, providers=["CPUExecutionProvider"], sess_options=session_options
|
|
)
|
|
input_names = [ort_input.name for ort_input in session.get_inputs()]
|
|
|
|
if len(input_names) != len(pytorch_inputs):
|
|
raise AssertionError(
|
|
f"Expected {len(input_names)} inputs, got {len(pytorch_inputs)}"
|
|
)
|
|
|
|
ort_input = {k: v.cpu().numpy() for k, v in zip(input_names, pytorch_inputs)}
|
|
return session.run(None, ort_input)
|
|
|
|
|
|
@_beartype.beartype
|
|
def _try_clone_model(model: _ModelType) -> _ModelType:
|
|
"""Used for preserving original model in case forward mutates model states."""
|
|
try:
|
|
return copy.deepcopy(model)
|
|
except Exception:
|
|
warnings.warn(
|
|
"Failed to clone model. Model state might be mutated during verification."
|
|
)
|
|
return model
|
|
|
|
|
|
@_beartype.beartype
|
|
def _try_clone_inputs(input_args, input_kwargs):
|
|
ref_input_args = copy.deepcopy(input_args)
|
|
ref_input_kwargs = copy.deepcopy(input_kwargs)
|
|
return ref_input_args, ref_input_kwargs
|
|
|
|
|
|
@_beartype.beartype
|
|
def _compare_pytorch_onnx_with_ort(
|
|
export_output: torch.onnx.ExportOutput,
|
|
model: _ModelType,
|
|
input_args: Sequence[_InputArgsType],
|
|
input_kwargs: Mapping[str, _InputArgsType],
|
|
atol: Optional[float] = None,
|
|
rtol: Optional[float] = None,
|
|
has_mutation: bool = False,
|
|
):
|
|
if has_mutation:
|
|
ref_model = _try_clone_model(model)
|
|
ref_input_args, ref_input_kwargs = _try_clone_inputs(input_args, input_kwargs)
|
|
else:
|
|
ref_model = model
|
|
ref_input_args = input_args
|
|
ref_input_kwargs = input_kwargs
|
|
|
|
# Format original model inputs into the format expected by exported ONNX model.
|
|
onnx_format_args = export_output.adapt_torch_inputs_to_onnx(
|
|
*input_args, **input_kwargs
|
|
)
|
|
|
|
ref_outputs = export_output.adapt_torch_outputs_to_onnx(
|
|
ref_model(*ref_input_args, **ref_input_kwargs)
|
|
)
|
|
ort_outputs = run_ort(export_output, onnx_format_args)
|
|
|
|
if len(ref_outputs) != len(ort_outputs):
|
|
raise AssertionError(
|
|
f"Expected {len(ref_outputs)} outputs, got {len(ort_outputs)}"
|
|
)
|
|
for ref_output, ort_output in zip(ref_outputs, ort_outputs):
|
|
torch.testing.assert_close(
|
|
ref_output, torch.tensor(ort_output), rtol=rtol, atol=atol
|
|
)
|
|
|
|
|
|
# The min onnx opset version to test for
|
|
MIN_ONNX_OPSET_VERSION = 9
|
|
# The max onnx opset version to test for
|
|
MAX_ONNX_OPSET_VERSION = _constants.ONNX_MAX_OPSET
|
|
TESTED_OPSETS = range(MIN_ONNX_OPSET_VERSION, MAX_ONNX_OPSET_VERSION + 1)
|
|
|
|
# TODO(titaiwang): Change this when more versions are supported
|
|
# The min onnx opset version to test for
|
|
FX_MIN_ONNX_OPSET_VERSION = 18
|
|
# The max onnx opset version to test for
|
|
FX_MAX_ONNX_OPSET_VERSION = 18
|
|
FX_TESTED_OPSETS = range(FX_MIN_ONNX_OPSET_VERSION, FX_MAX_ONNX_OPSET_VERSION + 1)
|
|
|
|
BOOL_TYPES = (torch.bool,)
|
|
|
|
INT_TYPES = (
|
|
torch.int8,
|
|
torch.int16,
|
|
torch.int32,
|
|
torch.int64,
|
|
torch.uint8,
|
|
)
|
|
|
|
QINT_TYPES = (
|
|
torch.qint8,
|
|
torch.quint8,
|
|
)
|
|
|
|
FLOAT_TYPES = (
|
|
torch.float16,
|
|
torch.float32,
|
|
# torch.float64, ORT doesn't support
|
|
)
|
|
|
|
COMPLEX_TYPES = (
|
|
# torch.complex32, NOTE: torch.complex32 is experimental in torch
|
|
torch.complex64,
|
|
# torch.complex128, ORT doesn't support
|
|
)
|
|
|
|
TESTED_DTYPES = (
|
|
# Boolean
|
|
torch.bool,
|
|
# Integers
|
|
*INT_TYPES,
|
|
# Floating types
|
|
*FLOAT_TYPES,
|
|
)
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class DecorateMeta:
|
|
"""Information about a test case to skip or xfail.
|
|
|
|
Adapted from functorch: functorch/test/common_utils.py
|
|
|
|
Attributes:
|
|
op_name: The name of the operator.
|
|
variant_name: The name of the OpInfo variant.
|
|
decorator: The decorator to apply to the test case.
|
|
opsets: The opsets to apply the decorator to.
|
|
dtypes: The dtypes to apply the decorator to.
|
|
reason: The reason for skipping.
|
|
test_behavior: The behavior of the test case. [skip or xfail]
|
|
matcher: The matcher to apply to the test case.
|
|
enabled_if: Whether to enable test behavior. Usually used on onnx/ort version control
|
|
"""
|
|
|
|
op_name: str
|
|
variant_name: str
|
|
decorator: Callable
|
|
opsets: Optional[Collection[Union[int, Callable[[int], bool]]]]
|
|
dtypes: Optional[Collection[torch.dtype]]
|
|
reason: str
|
|
test_behavior: str
|
|
matcher: Optional[Callable[[Any], bool]] = None
|
|
enabled_if: bool = True
|
|
|
|
def contains_opset(self, opset: int) -> bool:
|
|
if self.opsets is None:
|
|
return True
|
|
return any(
|
|
opset == opset_spec if isinstance(opset_spec, int) else opset_spec(opset)
|
|
for opset_spec in self.opsets
|
|
)
|
|
|
|
|
|
def xfail(
|
|
op_name: str,
|
|
variant_name: str = "",
|
|
*,
|
|
reason: str,
|
|
opsets: Optional[Collection[Union[int, Callable[[int], bool]]]] = None,
|
|
dtypes: Optional[Collection[torch.dtype]] = None,
|
|
matcher: Optional[Callable[[Any], bool]] = None,
|
|
enabled_if: bool = True,
|
|
):
|
|
"""Expects a OpInfo test to fail.
|
|
|
|
Args:
|
|
op_name: The name of the operator.
|
|
variant_name: The name of the variant.
|
|
opsets: The opsets to expect the failure. e.g. [9, 10] or [opsets_before(11)]
|
|
dtypes: The dtypes to expect the failure.
|
|
reason: The reason for the failure.
|
|
matcher: A function that matches the test sample input. It is used only when
|
|
xfail is in the SKIP_XFAIL_SUBTESTS list.
|
|
enabled_if: Whether to enable xfail. Usually used on onnx/ort version control
|
|
"""
|
|
return DecorateMeta(
|
|
op_name=op_name,
|
|
variant_name=variant_name,
|
|
decorator=unittest.expectedFailure,
|
|
opsets=opsets,
|
|
dtypes=dtypes,
|
|
enabled_if=enabled_if,
|
|
matcher=matcher,
|
|
reason=reason,
|
|
test_behavior="xfail",
|
|
)
|
|
|
|
|
|
def skip(
|
|
op_name: str,
|
|
variant_name: str = "",
|
|
*,
|
|
reason: str,
|
|
opsets: Optional[Collection[Union[int, Callable[[int], bool]]]] = None,
|
|
dtypes: Optional[Collection[torch.dtype]] = None,
|
|
matcher: Optional[Callable[[Any], Any]] = None,
|
|
enabled_if: bool = True,
|
|
):
|
|
"""Skips a test case in OpInfo that we don't care about.
|
|
|
|
Likely because ONNX does not support the use case or it is by design.
|
|
|
|
Args:
|
|
op_name: The name of the operator.
|
|
variant_name: The name of the variant.
|
|
opsets: The opsets to expect the failure. e.g. [9, 10] or [opsets_before(11)]
|
|
dtypes: The dtypes to expect the failure.
|
|
reason: The reason for the failure.
|
|
matcher: A function that matches the test sample input. It is used only when
|
|
skip is in the SKIP_XFAIL_SUBTESTS list.
|
|
enabled_if: Whether to enable skip. Usually used on onnx/ort version control
|
|
"""
|
|
return DecorateMeta(
|
|
op_name=op_name,
|
|
variant_name=variant_name,
|
|
decorator=unittest.skip(f"Skip: {reason}"),
|
|
opsets=opsets,
|
|
dtypes=dtypes,
|
|
reason=reason,
|
|
matcher=matcher,
|
|
enabled_if=enabled_if,
|
|
test_behavior="skip",
|
|
)
|
|
|
|
|
|
def add_decorate_info(
|
|
all_opinfos: Sequence[opinfo_core.OpInfo],
|
|
test_class_name: str,
|
|
base_test_name: str,
|
|
opset: int,
|
|
skip_or_xfails: Iterable[DecorateMeta],
|
|
):
|
|
"""Decorates OpInfo tests with decorators based on the skip_or_xfails list.
|
|
|
|
Args:
|
|
all_opinfos: All OpInfos.
|
|
test_class_name: The name of the test class.
|
|
base_test_name: The name of the test method.
|
|
opset: The opset to decorate for.
|
|
skip_or_xfails: DecorateMeta's.
|
|
"""
|
|
ops_mapping = {(info.name, info.variant_test_name): info for info in all_opinfos}
|
|
for decorate_meta in skip_or_xfails:
|
|
if not decorate_meta.contains_opset(opset):
|
|
# Skip does not apply to this opset
|
|
continue
|
|
opinfo = ops_mapping.get((decorate_meta.op_name, decorate_meta.variant_name))
|
|
assert (
|
|
opinfo is not None
|
|
), f"Couldn't find OpInfo for {decorate_meta}. Did you need to specify variant_name?"
|
|
decorators = list(opinfo.decorators)
|
|
new_decorator = opinfo_core.DecorateInfo(
|
|
decorate_meta.decorator,
|
|
test_class_name,
|
|
base_test_name,
|
|
dtypes=decorate_meta.dtypes,
|
|
active_if=decorate_meta.enabled_if,
|
|
)
|
|
decorators.append(new_decorator)
|
|
opinfo.decorators = tuple(decorators)
|
|
|
|
# This decorator doesn't modify fn in any way
|
|
def wrapped(fn):
|
|
return fn
|
|
|
|
return wrapped
|
|
|
|
|
|
def opsets_before(opset: int) -> Callable[[int], bool]:
|
|
"""Returns a comparison function that decides if the given opset is before the specified."""
|
|
|
|
def compare(other_opset: int):
|
|
return other_opset < opset
|
|
|
|
return compare
|
|
|
|
|
|
def opsets_after(opset: int) -> Callable[[int], bool]:
|
|
"""Returns a comparison function that decides if the given opset is after the specified."""
|
|
|
|
def compare(other_opset: int):
|
|
return other_opset > opset
|
|
|
|
return compare
|
|
|
|
|
|
def reason_onnx_script_does_not_support(
|
|
operator: str, dtypes: Optional[Sequence[str]] = None
|
|
) -> str:
|
|
"""Formats the reason: ONNX script doesn't support the given dtypes."""
|
|
return f"{operator} on {dtypes or 'dtypes'} not supported by ONNX script"
|
|
|
|
|
|
def reason_onnx_runtime_does_not_support(
|
|
operator: str, dtypes: Optional[Sequence[str]] = None
|
|
) -> str:
|
|
"""Formats the reason: ONNX Runtime doesn't support the given dtypes."""
|
|
return f"{operator} on {dtypes or 'dtypes'} not supported by ONNX Runtime"
|
|
|
|
|
|
def reason_onnx_does_not_support(
|
|
operator: str, dtypes: Optional[Sequence[str]] = None
|
|
) -> str:
|
|
"""Formats the reason: ONNX doesn't support the given dtypes."""
|
|
return f"{operator} on {dtypes or 'certain dtypes'} not supported by the ONNX Spec"
|
|
|
|
|
|
def reason_dynamo_does_not_support(
|
|
operator: str, dtypes: Optional[Sequence[str]] = None
|
|
) -> str:
|
|
"""Formats the reason: Dynamo doesn't support the given dtypes."""
|
|
return (
|
|
f"{operator} on {dtypes or 'certain dtypes'} not supported by the Dynamo Spec"
|
|
)
|
|
|
|
|
|
def reason_jit_tracer_error(info: str) -> str:
|
|
"""Formats the reason: JIT tracer errors."""
|
|
return f"JIT tracer error on {info}"
|
|
|
|
|
|
def reason_flaky() -> str:
|
|
"""Formats the reason: test is flaky."""
|
|
return "flaky test"
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def normal_xfail_skip_test_behaviors(
|
|
test_behavior: Optional[str] = None, reason: Optional[str] = None
|
|
):
|
|
"""This context manager is used to handle the different behaviors of xfail and skip.
|
|
|
|
Args:
|
|
test_behavior (optional[str]): From DecorateMeta name, can be 'skip', 'xfail', or None.
|
|
reason (optional[str]): The reason for the failure or skip.
|
|
|
|
Raises:
|
|
e: Any exception raised by the test case if it's not an expected failure.
|
|
"""
|
|
|
|
# We need to skip as soon as possible, as SegFault might also be a case.
|
|
if test_behavior == "skip":
|
|
pytest.skip(reason=reason)
|
|
|
|
try:
|
|
yield
|
|
# We could use `except (AssertionError, RuntimeError, ...) as e:`, but it needs
|
|
# to go over all test cases to find the right exception type.
|
|
except Exception as e: # pylint: disable=broad-exception-caught
|
|
if test_behavior is None:
|
|
raise e
|
|
if test_behavior == "xfail":
|
|
pytest.xfail(reason=reason)
|
|
else:
|
|
if test_behavior == "xfail":
|
|
pytest.fail("Test unexpectedly passed")
|