pytorch/torch/utils/_triton.py
drisspg 75e72e1408 Adding lowering to persistent-tma device kernel for _scaled_mm (#142045)
# Summary
This PR adds an alternative triton lowering for _scaled_mm. This uses an updated mm template that utilizes persistent scheduling + TMAs on A and B matrices.

Limitations:
* This implementations does not work with Bias values: 0602676c8d/torch/_inductor/kernel/mm_scaled.py (L106) Plan is to remove this work around and enforce that both scaling + bias is properly done as epilogues onto the existing templates
* K dim must be 32 or greater for these to take effect
* Gated by a config flag ( currently defaults to Off, maybe should be on)

## Testing
We dont have any tests exercising this code in CI/CD but I updated the relevant tests in test_fp8 and they are all green:
<img width="1680" alt="Screenshot 2024-12-05 at 7 24 07 PM" src="https://github.com/user-attachments/assets/9c520541-d97a-416f-9af7-e68b366ec90f">

## Follow Ups
* Work to update the base mm triton templates and utilize the same template from mm/addmm/scaled_mm w/ respective epilogues
* Tuning on Persistent kernel configs. I found ones that work for my problem shapes but need to do some more NCU work

### Some profiling code I was using

Code I am using to iterate w/
```Python
import torch
from dataclasses import dataclass
from jsonargparse import CLI
import logging
from pathlib import Path

from transformer_nuggets.utils.benchmark import ProfileConfig, profile_function
from torchao.float8.inference import (
    addmm_float8_unwrapped_inference,
    preprocess_data,
    Float8MMConfig,
)
from transformer_nuggets.fp8.fp8_matmul import (
    matmul_persistent,
    matmul_tma_persistent,
    matmul_device_tma_persistent,
)
from enum import Enum

logging.getLogger("transformer_nuggets").setLevel(logging.INFO)

class FP8Kernel(Enum):
    PERSISTENT = "Persistent"
    PERSISTENT_TMA = "Persistent-TMA"
    DEVICE_TMA = "Device-TMA"
    SCALED_MM = "Scaled-MM"

class ScalingStrategy(Enum):
    PER_TENSOR = "PerTensor"
    PER_ROW = "PerRow"

@dataclass(frozen=True)
class ExperimentConfig:
    M: int
    K: int
    N: int
    scaling_strategy: ScalingStrategy
    fp8_kernel: FP8Kernel
    compile: bool

def get_fp8_matmul(
    A: torch.Tensor,
    B: torch.Tensor,
    scaling_strategy: ScalingStrategy,
    fp8_kernel: FP8Kernel,
):
    A_fp8 = A.to(torch.float8_e4m3fn)
    B_fp8 = B.to(torch.float8_e4m3fn)
    A_fp8, B_fp8 = preprocess_data(A_fp8, B_fp8, Float8MMConfig(use_fast_accum=True))

    if scaling_strategy == ScalingStrategy.PER_TENSOR:
        a_scale = torch.tensor(1, device="cuda", dtype=torch.float32)
        b_scale = torch.tensor(1, device="cuda", dtype=torch.float32)
    elif scaling_strategy == ScalingStrategy.PER_ROW:
        a_scale = torch.ones((A_fp8.size(0), 1), device="cuda", dtype=torch.float32)
        b_scale = torch.ones((B_fp8.size(1), 1), device="cuda", dtype=torch.float32).T
    else:
        raise ValueError(f"Invalid scaling strategy: {scaling_strategy}")

    assert fp8_kernel == FP8Kernel.SCALED_MM
    return lambda: addmm_float8_unwrapped_inference(
        A_fp8, a_scale, B_fp8, b_scale, output_dtype=torch.bfloat16, use_fast_accum=True
    )

def run_matmul(config: ExperimentConfig):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    A = torch.randn(config.M, config.K, device=device, dtype=torch.bfloat16)
    B = torch.randn(config.K, config.N, device=device, dtype=torch.bfloat16)

    fp8_matmul = get_fp8_matmul(A, B, config.scaling_strategy, config.fp8_kernel)

    if config.compile and config.fp8_kernel == FP8Kernel.SCALED_MM:
        fp8_matmul = torch.compile(fp8_matmul, mode="max-autotune-no-cudagraphs")

    _ = fp8_matmul()

    return

def main():
    torch.random.manual_seed(123)

    # Define your experiment configuration here
    config = ExperimentConfig(
        M=8192,
        K=8192,
        N=8192,
        scaling_strategy=ScalingStrategy.PER_TENSOR,
        fp8_kernel=FP8Kernel.SCALED_MM,
        compile=True,
    )

    run_matmul(config)

if __name__ == "__main__":
    CLI(main)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142045
Approved by: https://github.com/eellison
2024-12-09 01:48:40 +00:00

136 lines
3.6 KiB
Python

# mypy: allow-untyped-defs
import functools
import hashlib
@functools.lru_cache(None)
def has_triton_package() -> bool:
try:
from triton.compiler.compiler import triton_key
return triton_key is not None
except ImportError:
return False
except RuntimeError:
return False
@functools.lru_cache(None)
def has_triton_tma():
if has_triton_package():
import torch
if (
torch.cuda.is_available()
and torch.cuda.get_device_capability() >= (9, 0)
and not torch.version.hip
):
try:
from triton.tools.experimental_descriptor import ( # noqa: F401
create_1d_tma_descriptor,
create_2d_tma_descriptor,
)
return True
except ImportError:
pass
return False
@functools.lru_cache(None)
def has_triton_tma_device():
if has_triton_package():
import torch
if (
torch.cuda.is_available()
and torch.cuda.get_device_capability() >= (9, 0)
and not torch.version.hip
):
try:
from triton.language.extra.cuda import ( # noqa: F401
experimental_device_tensormap_create1d,
experimental_device_tensormap_create2d,
)
return True
except ImportError:
pass
return False
@functools.lru_cache(None)
def has_triton() -> bool:
if not has_triton_package():
return False
from torch._dynamo.device_interface import get_interface_for_device
def cuda_extra_check(device_interface):
return device_interface.Worker.get_device_properties().major >= 7
def cpu_extra_check(device_interface):
import triton.backends
return "cpu" in triton.backends.backends
def _return_true(device_interface):
return True
triton_supported_devices = {
"cuda": cuda_extra_check,
"xpu": _return_true,
"cpu": cpu_extra_check,
}
def is_device_compatible_with_triton():
for device, extra_check in triton_supported_devices.items():
device_interface = get_interface_for_device(device)
if device_interface.is_available() and extra_check(device_interface):
return True
return False
return is_device_compatible_with_triton()
@functools.lru_cache(None)
def triton_backend():
from triton.compiler.compiler import make_backend
from triton.runtime.driver import driver
target = driver.active.get_current_target()
return make_backend(target)
@functools.lru_cache(None)
def triton_hash_with_backend():
from triton.compiler.compiler import triton_key
backend = triton_backend()
key = f"{triton_key()}-{backend.hash()}"
# Hash is upper case so that it can't contain any Python keywords.
return hashlib.sha256(key.encode("utf-8")).hexdigest().upper()
def dtype_to_string(dtype):
if dtype.name.startswith("fp"):
suffix = "float" + dtype.name[2:]
elif dtype.name.startswith("bf"):
suffix = "bfloat" + dtype.name[2:]
else:
suffix = dtype.name
return "triton.language." + suffix
def patch_triton_dtype_repr():
import triton
# Hack to get triton dtype repr to produce an evaluatable expression
# triton.language.float32 emits triton.language.fp32 which does not
# exist
# REMOVE when https://github.com/openai/triton/pull/3342 lands
triton.language.dtype.__repr__ = lambda self: dtype_to_string(self)