pytorch/tools/autograd/gen_python_functions.py
kshitij12345 b737e09f60 expose return_types in Python (#66614)
Summary:
https://github.com/facebookresearch/functorch/issues/87

TODO:
* [x] Add comments
* [x] Add test
* [x] Fix XLA

<details>

<summary>Generated python_return_types.cpp</summary>

```cpp
#include <Python.h>

#include <vector>
#include <map>
#include <string>

#include "torch/csrc/autograd/python_return_types.h"
#include "torch/csrc/utils/structseq.h"
#include "torch/csrc/Exceptions.h"

namespace {
PyTypeObject* get__det_lu_based_helper_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"det", ""}, {"lu", ""}, {"pivs", ""},  {nullptr} };
    static PyTypeObject _det_lu_based_helperNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types._det_lu_based_helper", nullptr, NamedTuple_fields, 3 };
    if (!is_initialized) {
        PyStructSequence_InitType(&_det_lu_based_helperNamedTuple, &desc);
        _det_lu_based_helperNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &_det_lu_based_helperNamedTuple;
}
PyTypeObject* get__fake_quantize_per_tensor_affine_cachemask_tensor_qparams_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"output", ""}, {"mask", ""},  {nullptr} };
    static PyTypeObject _fake_quantize_per_tensor_affine_cachemask_tensor_qparamsNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types._fake_quantize_per_tensor_affine_cachemask_tensor_qparams", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&_fake_quantize_per_tensor_affine_cachemask_tensor_qparamsNamedTuple, &desc);
        _fake_quantize_per_tensor_affine_cachemask_tensor_qparamsNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &_fake_quantize_per_tensor_affine_cachemask_tensor_qparamsNamedTuple;
}
PyTypeObject* get__fused_moving_avg_obs_fq_helper_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"output", ""}, {"mask", ""},  {nullptr} };
    static PyTypeObject _fused_moving_avg_obs_fq_helperNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types._fused_moving_avg_obs_fq_helper", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&_fused_moving_avg_obs_fq_helperNamedTuple, &desc);
        _fused_moving_avg_obs_fq_helperNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &_fused_moving_avg_obs_fq_helperNamedTuple;
}
PyTypeObject* get__lu_with_info_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"LU", ""}, {"pivots", ""}, {"info", ""},  {nullptr} };
    static PyTypeObject _lu_with_infoNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types._lu_with_info", nullptr, NamedTuple_fields, 3 };
    if (!is_initialized) {
        PyStructSequence_InitType(&_lu_with_infoNamedTuple, &desc);
        _lu_with_infoNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &_lu_with_infoNamedTuple;
}
PyTypeObject* get__unpack_dual_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"primal", ""}, {"tangent", ""},  {nullptr} };
    static PyTypeObject _unpack_dualNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types._unpack_dual", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&_unpack_dualNamedTuple, &desc);
        _unpack_dualNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &_unpack_dualNamedTuple;
}
PyTypeObject* get_aminmax_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"min", ""}, {"max", ""},  {nullptr} };
    static PyTypeObject aminmaxNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.aminmax", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&aminmaxNamedTuple, &desc);
        aminmaxNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &aminmaxNamedTuple;
}

PyTypeObject* get_aminmax_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"min", ""}, {"max", ""},  {nullptr} };
    static PyTypeObject aminmax_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.aminmax_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&aminmax_outNamedTuple1, &desc);
        aminmax_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &aminmax_outNamedTuple1;
}
PyTypeObject* get_cummax_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject cummaxNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.cummax", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&cummaxNamedTuple, &desc);
        cummaxNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &cummaxNamedTuple;
}

PyTypeObject* get_cummax_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject cummax_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.cummax_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&cummax_outNamedTuple1, &desc);
        cummax_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &cummax_outNamedTuple1;
}
PyTypeObject* get_cummin_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject cumminNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.cummin", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&cumminNamedTuple, &desc);
        cumminNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &cumminNamedTuple;
}

PyTypeObject* get_cummin_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject cummin_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.cummin_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&cummin_outNamedTuple1, &desc);
        cummin_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &cummin_outNamedTuple1;
}
PyTypeObject* get_eig_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"eigenvalues", ""}, {"eigenvectors", ""},  {nullptr} };
    static PyTypeObject eig_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.eig_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&eig_outNamedTuple, &desc);
        eig_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &eig_outNamedTuple;
}

PyTypeObject* get_eig_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"eigenvalues", ""}, {"eigenvectors", ""},  {nullptr} };
    static PyTypeObject eigNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.eig", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&eigNamedTuple1, &desc);
        eigNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &eigNamedTuple1;
}
PyTypeObject* get_frexp_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"mantissa", ""}, {"exponent", ""},  {nullptr} };
    static PyTypeObject frexpNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.frexp", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&frexpNamedTuple, &desc);
        frexpNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &frexpNamedTuple;
}

PyTypeObject* get_frexp_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"mantissa", ""}, {"exponent", ""},  {nullptr} };
    static PyTypeObject frexp_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.frexp_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&frexp_outNamedTuple1, &desc);
        frexp_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &frexp_outNamedTuple1;
}
PyTypeObject* get_geqrf_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"a", ""}, {"tau", ""},  {nullptr} };
    static PyTypeObject geqrf_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.geqrf_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&geqrf_outNamedTuple, &desc);
        geqrf_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &geqrf_outNamedTuple;
}

PyTypeObject* get_geqrf_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"a", ""}, {"tau", ""},  {nullptr} };
    static PyTypeObject geqrfNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.geqrf", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&geqrfNamedTuple1, &desc);
        geqrfNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &geqrfNamedTuple1;
}
PyTypeObject* get_histogram_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"hist", ""}, {"bin_edges", ""},  {nullptr} };
    static PyTypeObject histogram_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.histogram_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&histogram_outNamedTuple, &desc);
        histogram_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &histogram_outNamedTuple;
}

PyTypeObject* get_histogram_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"hist", ""}, {"bin_edges", ""},  {nullptr} };
    static PyTypeObject histogramNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.histogram", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&histogramNamedTuple1, &desc);
        histogramNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &histogramNamedTuple1;
}
PyTypeObject* get_kthvalue_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject kthvalueNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.kthvalue", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&kthvalueNamedTuple, &desc);
        kthvalueNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &kthvalueNamedTuple;
}

PyTypeObject* get_kthvalue_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject kthvalue_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.kthvalue_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&kthvalue_outNamedTuple1, &desc);
        kthvalue_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &kthvalue_outNamedTuple1;
}
PyTypeObject* get_linalg_cholesky_ex_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"L", ""}, {"info", ""},  {nullptr} };
    static PyTypeObject linalg_cholesky_exNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_cholesky_ex", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_cholesky_exNamedTuple, &desc);
        linalg_cholesky_exNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_cholesky_exNamedTuple;
}

PyTypeObject* get_linalg_cholesky_ex_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"L", ""}, {"info", ""},  {nullptr} };
    static PyTypeObject linalg_cholesky_ex_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_cholesky_ex_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_cholesky_ex_outNamedTuple1, &desc);
        linalg_cholesky_ex_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_cholesky_ex_outNamedTuple1;
}
PyTypeObject* get_linalg_eig_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"eigenvalues", ""}, {"eigenvectors", ""},  {nullptr} };
    static PyTypeObject linalg_eigNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_eig", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_eigNamedTuple, &desc);
        linalg_eigNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_eigNamedTuple;
}

PyTypeObject* get_linalg_eig_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"eigenvalues", ""}, {"eigenvectors", ""},  {nullptr} };
    static PyTypeObject linalg_eig_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_eig_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_eig_outNamedTuple1, &desc);
        linalg_eig_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_eig_outNamedTuple1;
}
PyTypeObject* get_linalg_eigh_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"eigenvalues", ""}, {"eigenvectors", ""},  {nullptr} };
    static PyTypeObject linalg_eighNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_eigh", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_eighNamedTuple, &desc);
        linalg_eighNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_eighNamedTuple;
}

PyTypeObject* get_linalg_eigh_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"eigenvalues", ""}, {"eigenvectors", ""},  {nullptr} };
    static PyTypeObject linalg_eigh_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_eigh_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_eigh_outNamedTuple1, &desc);
        linalg_eigh_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_eigh_outNamedTuple1;
}
PyTypeObject* get_linalg_inv_ex_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"inverse", ""}, {"info", ""},  {nullptr} };
    static PyTypeObject linalg_inv_exNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_inv_ex", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_inv_exNamedTuple, &desc);
        linalg_inv_exNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_inv_exNamedTuple;
}

PyTypeObject* get_linalg_inv_ex_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"inverse", ""}, {"info", ""},  {nullptr} };
    static PyTypeObject linalg_inv_ex_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_inv_ex_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_inv_ex_outNamedTuple1, &desc);
        linalg_inv_ex_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_inv_ex_outNamedTuple1;
}
PyTypeObject* get_linalg_lstsq_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"solution", ""}, {"residuals", ""}, {"rank", ""}, {"singular_values", ""},  {nullptr} };
    static PyTypeObject linalg_lstsqNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_lstsq", nullptr, NamedTuple_fields, 4 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_lstsqNamedTuple, &desc);
        linalg_lstsqNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_lstsqNamedTuple;
}

PyTypeObject* get_linalg_lstsq_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"solution", ""}, {"residuals", ""}, {"rank", ""}, {"singular_values", ""},  {nullptr} };
    static PyTypeObject linalg_lstsq_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_lstsq_out", nullptr, NamedTuple_fields, 4 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_lstsq_outNamedTuple1, &desc);
        linalg_lstsq_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_lstsq_outNamedTuple1;
}
PyTypeObject* get_linalg_qr_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"Q", ""}, {"R", ""},  {nullptr} };
    static PyTypeObject linalg_qrNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_qr", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_qrNamedTuple, &desc);
        linalg_qrNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_qrNamedTuple;
}

PyTypeObject* get_linalg_qr_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"Q", ""}, {"R", ""},  {nullptr} };
    static PyTypeObject linalg_qr_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_qr_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_qr_outNamedTuple1, &desc);
        linalg_qr_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_qr_outNamedTuple1;
}
PyTypeObject* get_linalg_slogdet_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"sign", ""}, {"logabsdet", ""},  {nullptr} };
    static PyTypeObject linalg_slogdetNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_slogdet", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_slogdetNamedTuple, &desc);
        linalg_slogdetNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_slogdetNamedTuple;
}

PyTypeObject* get_linalg_slogdet_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"sign", ""}, {"logabsdet", ""},  {nullptr} };
    static PyTypeObject linalg_slogdet_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_slogdet_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_slogdet_outNamedTuple1, &desc);
        linalg_slogdet_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_slogdet_outNamedTuple1;
}
PyTypeObject* get_linalg_svd_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"U", ""}, {"S", ""}, {"Vh", ""},  {nullptr} };
    static PyTypeObject linalg_svd_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_svd_out", nullptr, NamedTuple_fields, 3 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_svd_outNamedTuple, &desc);
        linalg_svd_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_svd_outNamedTuple;
}

PyTypeObject* get_linalg_svd_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"U", ""}, {"S", ""}, {"Vh", ""},  {nullptr} };
    static PyTypeObject linalg_svdNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_svd", nullptr, NamedTuple_fields, 3 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_svdNamedTuple1, &desc);
        linalg_svdNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_svdNamedTuple1;
}
PyTypeObject* get_lstsq_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"solution", ""}, {"QR", ""},  {nullptr} };
    static PyTypeObject lstsq_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.lstsq_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&lstsq_outNamedTuple, &desc);
        lstsq_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &lstsq_outNamedTuple;
}

PyTypeObject* get_lstsq_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"solution", ""}, {"QR", ""},  {nullptr} };
    static PyTypeObject lstsqNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.lstsq", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&lstsqNamedTuple1, &desc);
        lstsqNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &lstsqNamedTuple1;
}
PyTypeObject* get_lu_unpack_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"P", ""}, {"L", ""}, {"U", ""},  {nullptr} };
    static PyTypeObject lu_unpackNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.lu_unpack", nullptr, NamedTuple_fields, 3 };
    if (!is_initialized) {
        PyStructSequence_InitType(&lu_unpackNamedTuple, &desc);
        lu_unpackNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &lu_unpackNamedTuple;
}

PyTypeObject* get_lu_unpack_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"P", ""}, {"L", ""}, {"U", ""},  {nullptr} };
    static PyTypeObject lu_unpack_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.lu_unpack_out", nullptr, NamedTuple_fields, 3 };
    if (!is_initialized) {
        PyStructSequence_InitType(&lu_unpack_outNamedTuple1, &desc);
        lu_unpack_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &lu_unpack_outNamedTuple1;
}
PyTypeObject* get_max_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject maxNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.max", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&maxNamedTuple, &desc);
        maxNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &maxNamedTuple;
}

PyTypeObject* get_max_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject max_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.max_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&max_outNamedTuple1, &desc);
        max_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &max_outNamedTuple1;
}
PyTypeObject* get_median_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject medianNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.median", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&medianNamedTuple, &desc);
        medianNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &medianNamedTuple;
}

PyTypeObject* get_median_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject median_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.median_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&median_outNamedTuple1, &desc);
        median_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &median_outNamedTuple1;
}
PyTypeObject* get_min_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject minNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.min", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&minNamedTuple, &desc);
        minNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &minNamedTuple;
}

PyTypeObject* get_min_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject min_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.min_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&min_outNamedTuple1, &desc);
        min_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &min_outNamedTuple1;
}
PyTypeObject* get_mode_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject modeNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.mode", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&modeNamedTuple, &desc);
        modeNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &modeNamedTuple;
}

PyTypeObject* get_mode_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject mode_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.mode_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&mode_outNamedTuple1, &desc);
        mode_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &mode_outNamedTuple1;
}
PyTypeObject* get_nanmedian_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject nanmedianNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.nanmedian", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&nanmedianNamedTuple, &desc);
        nanmedianNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &nanmedianNamedTuple;
}

PyTypeObject* get_nanmedian_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject nanmedian_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.nanmedian_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&nanmedian_outNamedTuple1, &desc);
        nanmedian_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &nanmedian_outNamedTuple1;
}
PyTypeObject* get_qr_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"Q", ""}, {"R", ""},  {nullptr} };
    static PyTypeObject qr_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.qr_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&qr_outNamedTuple, &desc);
        qr_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &qr_outNamedTuple;
}

PyTypeObject* get_qr_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"Q", ""}, {"R", ""},  {nullptr} };
    static PyTypeObject qrNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.qr", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&qrNamedTuple1, &desc);
        qrNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &qrNamedTuple1;
}
PyTypeObject* get_slogdet_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"sign", ""}, {"logabsdet", ""},  {nullptr} };
    static PyTypeObject slogdetNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.slogdet", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&slogdetNamedTuple, &desc);
        slogdetNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &slogdetNamedTuple;
}
PyTypeObject* get_solve_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"solution", ""}, {"LU", ""},  {nullptr} };
    static PyTypeObject solveNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.solve", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&solveNamedTuple, &desc);
        solveNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &solveNamedTuple;
}

PyTypeObject* get_solve_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"solution", ""}, {"LU", ""},  {nullptr} };
    static PyTypeObject solve_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.solve_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&solve_outNamedTuple1, &desc);
        solve_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &solve_outNamedTuple1;
}
PyTypeObject* get_sort_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject sort_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.sort_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&sort_outNamedTuple, &desc);
        sort_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &sort_outNamedTuple;
}

PyTypeObject* get_sort_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject sortNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.sort", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&sortNamedTuple1, &desc);
        sortNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &sortNamedTuple1;
}
PyTypeObject* get_svd_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"U", ""}, {"S", ""}, {"V", ""},  {nullptr} };
    static PyTypeObject svd_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.svd_out", nullptr, NamedTuple_fields, 3 };
    if (!is_initialized) {
        PyStructSequence_InitType(&svd_outNamedTuple, &desc);
        svd_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &svd_outNamedTuple;
}

PyTypeObject* get_svd_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"U", ""}, {"S", ""}, {"V", ""},  {nullptr} };
    static PyTypeObject svdNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.svd", nullptr, NamedTuple_fields, 3 };
    if (!is_initialized) {
        PyStructSequence_InitType(&svdNamedTuple1, &desc);
        svdNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &svdNamedTuple1;
}
PyTypeObject* get_symeig_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"eigenvalues", ""}, {"eigenvectors", ""},  {nullptr} };
    static PyTypeObject symeig_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.symeig_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&symeig_outNamedTuple, &desc);
        symeig_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &symeig_outNamedTuple;
}

PyTypeObject* get_symeig_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"eigenvalues", ""}, {"eigenvectors", ""},  {nullptr} };
    static PyTypeObject symeigNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.symeig", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&symeigNamedTuple1, &desc);
        symeigNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &symeigNamedTuple1;
}
PyTypeObject* get_topk_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject topk_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.topk_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&topk_outNamedTuple, &desc);
        topk_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &topk_outNamedTuple;
}

PyTypeObject* get_topk_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject topkNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.topk", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&topkNamedTuple1, &desc);
        topkNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &topkNamedTuple1;
}
PyTypeObject* get_triangular_solve_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"solution", ""}, {"cloned_coefficient", ""},  {nullptr} };
    static PyTypeObject triangular_solve_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.triangular_solve_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&triangular_solve_outNamedTuple, &desc);
        triangular_solve_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &triangular_solve_outNamedTuple;
}

PyTypeObject* get_triangular_solve_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"solution", ""}, {"cloned_coefficient", ""},  {nullptr} };
    static PyTypeObject triangular_solveNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.triangular_solve", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&triangular_solveNamedTuple1, &desc);
        triangular_solveNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &triangular_solveNamedTuple1;
}
}

namespace torch {
namespace autograd {

std::map<std::string, PyTypeObject*>& get_namedtuple_types_map() {
  // [NOTE] Non-global map
  // This map calls Python functions during its initialization.
  // If it is a global static variable and in case it is loaded
  // before Python interpreter is ready, then the calls it makes during
  // initialization will SEGFAULT.
  // To avoid this we make it function static variable so that it is
  // initialized only after the Python interpreter is ready.
  static std::map<std::string, PyTypeObject*> namedtuple_types_map = {
    {"_det_lu_based_helper", get__det_lu_based_helper_namedtuple()},
    {"_fake_quantize_per_tensor_affine_cachemask_tensor_qparams", get__fake_quantize_per_tensor_affine_cachemask_tensor_qparams_namedtuple()},
    {"_fused_moving_avg_obs_fq_helper", get__fused_moving_avg_obs_fq_helper_namedtuple()},
    {"_lu_with_info", get__lu_with_info_namedtuple()},
    {"_unpack_dual", get__unpack_dual_namedtuple()},
    {"aminmax", get_aminmax_namedtuple()},
    {"aminmax_out", get_aminmax_out_namedtuple()},
    {"cummax", get_cummax_namedtuple()},
    {"cummax_out", get_cummax_out_namedtuple()},
    {"cummin", get_cummin_namedtuple()},
    {"cummin_out", get_cummin_out_namedtuple()},
    {"eig_out", get_eig_out_namedtuple()},
    {"eig", get_eig_namedtuple()},
    {"frexp", get_frexp_namedtuple()},
    {"frexp_out", get_frexp_out_namedtuple()},
    {"geqrf_out", get_geqrf_out_namedtuple()},
    {"geqrf", get_geqrf_namedtuple()},
    {"histogram_out", get_histogram_out_namedtuple()},
    {"histogram", get_histogram_namedtuple()},
    {"kthvalue", get_kthvalue_namedtuple()},
    {"kthvalue_out", get_kthvalue_out_namedtuple()},
    {"linalg_cholesky_ex", get_linalg_cholesky_ex_namedtuple()},
    {"linalg_cholesky_ex_out", get_linalg_cholesky_ex_out_namedtuple()},
    {"linalg_eig", get_linalg_eig_namedtuple()},
    {"linalg_eig_out", get_linalg_eig_out_namedtuple()},
    {"linalg_eigh", get_linalg_eigh_namedtuple()},
    {"linalg_eigh_out", get_linalg_eigh_out_namedtuple()},
    {"linalg_inv_ex", get_linalg_inv_ex_namedtuple()},
    {"linalg_inv_ex_out", get_linalg_inv_ex_out_namedtuple()},
    {"linalg_lstsq", get_linalg_lstsq_namedtuple()},
    {"linalg_lstsq_out", get_linalg_lstsq_out_namedtuple()},
    {"linalg_qr", get_linalg_qr_namedtuple()},
    {"linalg_qr_out", get_linalg_qr_out_namedtuple()},
    {"linalg_slogdet", get_linalg_slogdet_namedtuple()},
    {"linalg_slogdet_out", get_linalg_slogdet_out_namedtuple()},
    {"linalg_svd_out", get_linalg_svd_out_namedtuple()},
    {"linalg_svd", get_linalg_svd_namedtuple()},
    {"lstsq_out", get_lstsq_out_namedtuple()},
    {"lstsq", get_lstsq_namedtuple()},
    {"lu_unpack", get_lu_unpack_namedtuple()},
    {"lu_unpack_out", get_lu_unpack_out_namedtuple()},
    {"max", get_max_namedtuple()},
    {"max_out", get_max_out_namedtuple()},
    {"median", get_median_namedtuple()},
    {"median_out", get_median_out_namedtuple()},
    {"min", get_min_namedtuple()},
    {"min_out", get_min_out_namedtuple()},
    {"mode", get_mode_namedtuple()},
    {"mode_out", get_mode_out_namedtuple()},
    {"nanmedian", get_nanmedian_namedtuple()},
    {"nanmedian_out", get_nanmedian_out_namedtuple()},
    {"qr_out", get_qr_out_namedtuple()},
    {"qr", get_qr_namedtuple()},
    {"slogdet", get_slogdet_namedtuple()},
    {"solve", get_solve_namedtuple()},
    {"solve_out", get_solve_out_namedtuple()},
    {"sort_out", get_sort_out_namedtuple()},
    {"sort", get_sort_namedtuple()},
    {"svd_out", get_svd_out_namedtuple()},
    {"svd", get_svd_namedtuple()},
    {"symeig_out", get_symeig_out_namedtuple()},
    {"symeig", get_symeig_namedtuple()},
    {"topk_out", get_topk_out_namedtuple()},
    {"topk", get_topk_namedtuple()},
    {"triangular_solve_out", get_triangular_solve_out_namedtuple()},
    {"triangular_solve", get_triangular_solve_namedtuple()},
  };
  return namedtuple_types_map;
}

PyTypeObject* get_namedtuple(std::string name) {
  static auto& namedtuple_types_map = get_namedtuple_types_map();
  return namedtuple_types_map[name];
}

void initReturnTypes(PyObject* module) {
  static struct PyModuleDef def = {
      PyModuleDef_HEAD_INIT, "torch._C._return_types", nullptr, -1, {}};
  PyObject* return_types_module = PyModule_Create(&def);
  if (!return_types_module) {
    throw python_error();
  }

  for (const auto& return_type_pair : get_namedtuple_types_map()) {
    // hold onto the TypeObject for the unlikely case of user
    // deleting or overriding it.
    Py_INCREF(return_type_pair.second);
    if (PyModule_AddObject(
            return_types_module,
            return_type_pair.first.c_str(),
            (PyObject*)return_type_pair.second) != 0) {
      Py_DECREF((PyObject*)return_type_pair.second);
      throw python_error();
    }
  }

  // steals a reference to return_types on success
  if (PyModule_AddObject(module, "_return_types", return_types_module) != 0) {
    Py_DECREF(return_types_module);
    throw python_error();
  }
}

} // namespace autograd
} // namespace torch

```

</details>

<details>

<summary>Eg. updated call in other python_*_functions</summary>

```cpp
// linalg_cholesky_ex
static PyObject * THPVariable_linalg_cholesky_ex(PyObject* self_, PyObject* args, PyObject* kwargs)
{
  HANDLE_TH_ERRORS
  static PyTypeObject* NamedTuple = get_namedtuple("linalg_cholesky_ex");
  static PyTypeObject* NamedTuple1 = get_namedtuple("linalg_cholesky_ex_out");
  static PythonArgParser parser({
    "linalg_cholesky_ex(Tensor input, *, bool upper=False, bool check_errors=False, TensorList[2] out=None)",
  }, /*traceable=*/true);

  ParsedArgs<4> parsed_args;
  auto _r = parser.parse(nullptr, args, kwargs, parsed_args);
  if(_r.has_torch_function()) {
    return handle_torch_function(_r, nullptr, args, kwargs, THPLinalgVariableFunctionsModule, "torch.linalg");
  }
  if (_r.isNone(3)) {
    // aten::linalg_cholesky_ex(Tensor self, *, bool upper=False, bool check_errors=False) -> (Tensor L, Tensor info)

    auto dispatch_linalg_cholesky_ex = [](const at::Tensor & self, bool upper, bool check_errors) -> ::std::tuple<at::Tensor,at::Tensor> {
      pybind11::gil_scoped_release no_gil;
      return at::linalg_cholesky_ex(self, upper, check_errors);
    };
    return wrap(NamedTuple, dispatch_linalg_cholesky_ex(_r.tensor(0), _r.toBool(1), _r.toBool(2)));
  } else {
    // aten::linalg_cholesky_ex.L(Tensor self, *, bool upper=False, bool check_errors=False, Tensor(a!) L, Tensor(b!) info) -> (Tensor(a!) L, Tensor(b!) info)
    auto out = _r.tensorlist_n<2>(3);
    auto dispatch_linalg_cholesky_ex_out = [](at::Tensor & L, at::Tensor & info, const at::Tensor & self, bool upper, bool check_errors) -> ::std::tuple<at::Tensor,at::Tensor> {
      pybind11::gil_scoped_release no_gil;
      return at::linalg_cholesky_ex_out(L, info, self, upper, check_errors);
    };
    return wrap(NamedTuple1, dispatch_linalg_cholesky_ex_out(out[0], out[1], _r.tensor(0), _r.toBool(1), _r.toBool(2)));
  }
  Py_RETURN_NONE;
  END_HANDLE_TH_ERRORS
}

```

</details>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/66614

Reviewed By: H-Huang

Differential Revision: D32741134

Pulled By: zou3519

fbshipit-source-id: 27bada30d20e66333ca1be1775608d9f0cbf9f59
2021-12-06 09:05:29 -08:00

1002 lines
39 KiB
Python

# Generates Python bindings for ATen functions
#
# The bindings are generated as methods on python_variable or functions on the
# torch._C._nn. torch._C._fft, torch._C._linalg, torch._C._sparse or torch._C._special objects.
#
# Code tries to stick to the following rules:
#
# - templates should be colocated with the functions that use them.
# no templates are currently shared between functions, but if that
# happens, maybe put the template with the first one
#
# - don't use environment dictionaries when calling template.substitute().
# pass named arguments directly for everything, otherwise it's much too
# hard to track what's actually being used and by who
#
# - colocate any new hacks/adjustments with existing ones of the same kind.
# ideally in a data structure rather than code if possible. See e.g.
# SCHEMA_DEFAULT_CONVERSION_HACKS, etc.
#
# - similarly, conversions from one format to another should ideally happen
# all at once in a single place.
#
# - no nontrivial nested functions. couple-liners are ok but please no more.
# especially avoid functions that read/write outer variables defined far away.
#
# - raise RuntimeError instead of asserting, and put as much
# information as is available into the message. I.e. no need to
# plumb in new params whose only purpose is to fill out an error
# message, but use what's there
#
from collections import defaultdict
import itertools
import re
import yaml
from .gen_trace_type import should_trace
from tools.codegen.code_template import CodeTemplate
from tools.codegen.api import cpp
from tools.codegen.api.types import CppSignatureGroup
from tools.codegen.api.python import (PythonArgument, PythonSignature,
PythonSignatureDeprecated,
PythonSignatureGroup,
PythonSignatureNativeFunctionPair,
arg_parser_output_exprs,
argument_type_str, cpp_dispatch_exprs,
cpp_dispatch_target,
dispatch_lambda_args,
dispatch_lambda_exprs,
dispatch_lambda_return_str,
has_tensor_options,
namedtuple_fieldnames, signature)
from tools.codegen.gen import cpp_string, parse_native_yaml
from tools.codegen.context import with_native_function
from tools.codegen.model import (Argument, BaseOperatorName, NativeFunction,
Type, Variant)
from tools.codegen.utils import split_name_params, YamlLoader, FileManager
from typing import Dict, Optional, List, Tuple, Set, Sequence, Callable
#
# declarations blocklist
# We skip codegen for these functions, for various reasons.
# Future PRs will categorize this list and eliminate or hoist
# them out of eager-only codegen.
# See https://github.com/pytorch/pytorch/issues/30788
#
# These functions require manual Python bindings or are not exposed to Python
_SKIP_PYTHON_BINDINGS = [
'alias', 'contiguous', 'is_cuda', 'is_sparse', 'is_sparse_csr', 'size', 'stride',
'.*_backward', '.*_backward_(out|input|weight|bias)', '.*_forward',
'.*_forward_out', '_unsafe_view', 'tensor', '_?sparse_coo_tensor.*',
'_?sparse_csr_tensor.*',
'_arange.*', '_range.*', 'linspace.*', 'logspace.*',
'_sparse_add_out', '_sparse_div.*', '_sparse_mul.*', '_sparse_sub.*', '_sparse_dense_add_out',
'index', 'unique_dim_consecutive',
'_cumsum.*', '_cumprod.*', '_sum.*', '_prod.*',
'_th_.*', '_thnn_.*',
'arange.*', 'range.*', '_solve.*', '_inverse.*',
'full(_out)?',
'_cholesky.*', '_triangular_solve.*', '_qr.*', '_symeig.*', '_svd.*',
'slice', 'randint(_out)?',
'item', '_local_scalar_dense', 'to',
'_to_copy',
'copy_sparse_to_sparse_', 'copy_',
'numpy_T', 'matrix_H', 'mT', 'mH', # these need to be an attributes in Python, not functions
'nonzero(_(out|numpy))?',
'set_data',
'.*_overrideable', # overrideable functions for backend extension
'data', 'is_leaf', 'output_nr', '_version', 'requires_grad_', 'retains_grad', 'set_',
'_fw_primal', 'fake_quantize_per_tensor_affine_cachemask',
'fake_quantize_per_channel_affine_cachemask',
'_new_zeros_with_same_feature_meta', # used for forward AD internals
'_reshape_alias',
'replace_', # only used by the functionalization pass, doesn't need to be exposed to python
]
SKIP_PYTHON_BINDINGS = list(map(lambda pattern: re.compile(rf'^{pattern}$'), _SKIP_PYTHON_BINDINGS))
# These function signatures are not exposed to Python. Note that this signature
# list does not support regex.
SKIP_PYTHON_BINDINGS_SIGNATURES = [
'add.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor',
'add_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)',
'sub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor',
'sub_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)',
'mul.Scalar(Tensor self, Scalar other) -> Tensor',
'mul_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)',
'div.Scalar(Tensor self, Scalar other) -> Tensor',
'div_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)',
]
@with_native_function
def should_generate_py_binding(f: NativeFunction) -> bool:
name = cpp.name(f.func)
for skip_regex in SKIP_PYTHON_BINDINGS:
if skip_regex.match(name):
return False
signature = str(f.func)
for pattern in SKIP_PYTHON_BINDINGS_SIGNATURES:
if pattern == signature:
return False
return True
def get_pycname(name: BaseOperatorName) -> str:
return f'THPVariable_{name}'
def is_noarg(overloads: Sequence[PythonSignatureNativeFunctionPair]) -> bool:
return len(overloads) == 1 and overloads[0].signature.arguments_count() == 0
def is_py_variable_method(f: NativeFunction) -> bool:
return f.python_module is None and Variant.method in f.variants
def is_py_torch_function(f: NativeFunction) -> bool:
return f.python_module is None and Variant.function in f.variants
def is_py_nn_function(f: NativeFunction) -> bool:
return f.python_module == 'nn'
def is_py_fft_function(f: NativeFunction) -> bool:
return f.python_module == 'fft'
def is_py_linalg_function(f: NativeFunction) -> bool:
return f.python_module == 'linalg'
def is_py_sparse_function(f: NativeFunction) -> bool:
return f.python_module == 'sparse'
def is_py_special_function(f: NativeFunction) -> bool:
return f.python_module == 'special'
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Main Function
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def gen(out: str, native_yaml_path: str, deprecated_yaml_path: str, template_path: str) -> None:
fm = FileManager(install_dir=out, template_dir=template_path, dry_run=False)
native_functions = parse_native_yaml(native_yaml_path).native_functions
native_functions = list(filter(should_generate_py_binding, native_functions))
methods = load_signatures(native_functions, deprecated_yaml_path, method=True)
create_python_bindings(
fm, methods, is_py_variable_method, None, 'python_variable_methods.cpp', method=True)
# NOTE: num_shards here must be synced with gatherTorchFunctions in
# torch/csrc/autograd/python_torch_functions_manual.cpp
functions = load_signatures(native_functions, deprecated_yaml_path, method=False)
create_python_bindings_sharded(
fm, functions, is_py_torch_function, 'torch', 'python_torch_functions.cpp',
method=False, num_shards=3)
create_python_bindings(
fm, functions, is_py_nn_function, 'torch.nn', 'python_nn_functions.cpp', method=False)
create_python_bindings(
fm, functions, is_py_fft_function, 'torch.fft', 'python_fft_functions.cpp', method=False)
create_python_bindings(
fm, functions, is_py_linalg_function, 'torch.linalg', 'python_linalg_functions.cpp', method=False)
create_python_bindings(
fm, functions, is_py_sparse_function, 'torch.sparse', 'python_sparse_functions.cpp', method=False)
create_python_bindings(
fm, functions, is_py_special_function, 'torch.special', 'python_special_functions.cpp', method=False)
# Currently, we only use `functions` to generate `return_types` bindings.
# All methods which return namedtuple have function variant at this point.
# If any method only operator with namedtuple is added in the future,
# we will have to address that.
create_python_return_type_bindings(
fm, functions, lambda fn: True, 'python_return_types.cpp')
def group_filter_overloads(
pairs: Sequence[PythonSignatureNativeFunctionPair],
pred: Callable[[NativeFunction], bool]
) -> Dict[BaseOperatorName, List[PythonSignatureNativeFunctionPair]]:
grouped: Dict[BaseOperatorName, List[PythonSignatureNativeFunctionPair]] = defaultdict(list)
for pair in pairs:
if pred(pair.function):
grouped[pair.function.func.name.name].append(pair)
return grouped
def create_python_bindings(
fm: FileManager,
pairs: Sequence[PythonSignatureNativeFunctionPair],
pred: Callable[[NativeFunction], bool],
module: Optional[str],
filename: str,
*,
method: bool,
) -> None:
"""Generates Python bindings to ATen functions"""
py_methods: List[str] = []
py_method_defs: List[str] = []
py_forwards: List[str] = []
grouped = group_filter_overloads(pairs, pred)
for name in sorted(grouped.keys(), key=lambda x: str(x)):
overloads = grouped[name]
py_methods.append(method_impl(name, module, overloads, method=method))
py_method_defs.append(method_def(name, module, overloads, method=method))
py_forwards.extend(forward_decls(name, overloads, method=method))
fm.write_with_template(filename, filename, lambda: {
'generated_comment': '@' + f'generated from {fm.template_dir}/{filename}',
'py_forwards': py_forwards,
'py_methods': py_methods,
'py_method_defs': py_method_defs,
})
def create_python_return_type_bindings(
fm: FileManager,
pairs: Sequence[PythonSignatureNativeFunctionPair],
pred: Callable[[NativeFunction], bool],
filename: str,
) -> None:
"""
Generate function to initialize and return named tuple for native functions
which returns named tuple and relevant entry for the map in `python_return_types.cpp`.
"""
py_return_types_definition: List[str] = []
py_return_types_map: List[str] = []
grouped = group_filter_overloads(pairs, pred)
for name in sorted(grouped.keys(), key=lambda x: str(x)):
overloads = grouped[name]
definitions, map_entries = generate_return_type_definition_and_map_entry(overloads)
py_return_types_definition.append("" if not definitions else "\n".join(definitions))
py_return_types_map.append("" if not map_entries else "\n".join(map_entries))
fm.write_with_template(filename, filename, lambda: {
'generated_comment': '@' + f'generated from {fm.template_dir}/{filename}',
'py_return_types': py_return_types_definition,
'py_return_types_map' : py_return_types_map,
})
def create_python_bindings_sharded(
fm: FileManager,
pairs: Sequence[PythonSignatureNativeFunctionPair],
pred: Callable[[NativeFunction], bool],
module: Optional[str],
filename: str,
*,
method: bool,
num_shards: int
) -> None:
"""Generates Python bindings to ATen functions"""
grouped = group_filter_overloads(pairs, pred)
def key_func(kv: Tuple[BaseOperatorName, List[PythonSignatureNativeFunctionPair]]) -> str:
return str(kv[0])
def env_func(
kv: Tuple[BaseOperatorName, List[PythonSignatureNativeFunctionPair]]
) -> Dict[str, List[str]]:
return {
'py_forwards': list(forward_decls(kv[0], kv[1], method=method)),
'py_methods': [method_impl(kv[0], module, kv[1], method=method)],
'py_method_defs': [method_def(kv[0], module, kv[1], method=method)],
}
fm.write_sharded(
filename,
grouped.items(),
base_env={
'generated_comment':
'@' + f'generated from {fm.template_dir}/{filename}',
},
key_fn=key_func,
env_callable=env_func,
num_shards=num_shards,
sharded_keys={'py_forwards', 'py_methods', 'py_method_defs'}
)
def load_signatures(
native_functions: List[NativeFunction],
deprecated_yaml_path: str,
*,
method: bool,
skip_deprecated: bool = False,
pyi: bool = False,
) -> Sequence[PythonSignatureNativeFunctionPair]:
@with_native_function
def gen_signature_pairs(f: NativeFunction) -> PythonSignatureNativeFunctionPair:
return PythonSignatureNativeFunctionPair(
signature=signature(f, method=method, pyi=pyi),
function=f,
)
pairs = list(map(gen_signature_pairs, native_functions))
deprecated = load_deprecated_signatures(pairs, deprecated_yaml_path, method=method, pyi=pyi)
return pairs if skip_deprecated else pairs + deprecated
def load_deprecated_signatures(
pairs: Sequence[PythonSignatureNativeFunctionPair],
deprecated_yaml_path: str,
*,
method: bool,
pyi: bool,
) -> List[PythonSignatureNativeFunctionPair]:
# The deprecated.yaml doesn't have complete type information, we need
# find and leverage the original ATen signature (to which it delegates
# the call) to generate the full python signature.
# We join the deprecated and the original signatures using type-only form.
# native function -> type-only signature
@with_native_function
def signature_original(f: NativeFunction) -> str:
# remove inplace suffix but keep outplace suffix
opname = str(f.func.name.name.base)
if f.func.is_out_fn():
opname += '_out'
if f.func.name.name.inplace and pyi:
opname += '_'
args = CppSignatureGroup.from_native_function(f, method=False).signature.arguments()
# Simply ignore TensorOptionsArguments as it does not exist in deprecated.yaml.
types = ', '.join(argument_type_str(a.argument.type)
for a in args if isinstance(a.argument, Argument))
return f'{opname}({types})'
# deprecated -> type-only native signature (according to the call order)
def signature_deprecated(opname: str, params: List[str], call_args: List[str]) -> str:
# create a mapping of parameter name to parameter type
types: Dict[str, str] = {}
for param in params:
if param == '*':
continue
type, name = param.split(' ')
types[name] = type
# if the name in the call is not in the parameter list, assume it's
# a literal Scalar
rearranged_types = ', '.join(types.get(arg, 'Scalar') for arg in call_args)
return f'{opname}({rearranged_types})'
# group the original ATen signatures by type-only signature
grouped: Dict[str, List[PythonSignatureNativeFunctionPair]] = defaultdict(list)
for pair in pairs:
grouped[signature_original(pair.function)].append(pair)
# find matching original signatures for each deprecated signature
results: List[PythonSignatureNativeFunctionPair] = []
with open(deprecated_yaml_path, 'r') as f:
deprecated_defs = yaml.load(f, Loader=YamlLoader)
for deprecated in deprecated_defs:
_, params = split_name_params(deprecated['name'])
aten_name, call_args = split_name_params(deprecated['aten'])
for pair in grouped[signature_deprecated(aten_name, params, call_args)]:
# It uses the types from the original ATen declaration, but the
# ordering and parameter names from the deprecated overload. Any
# default parameter values from the original ATen declaration are
# ignored.
# Deprecated signature might reorder input_args and input_kwargs,
# but never changes output_args nor TensorOptions (if any?),
# so here we only look into these two types of args.
python_sig = pair.signature
src_args: Dict[str, PythonArgument] = {a.name: PythonArgument(
name=a.name,
type=a.type,
default=None,
default_init=None,
) for a in itertools.chain(python_sig.input_args, python_sig.input_kwargs)}
args: List[str] = []
input_args: List[PythonArgument] = []
input_kwargs: List[PythonArgument] = []
kwarg_only = False
for param in params:
if param == '*':
kwarg_only = True
continue
_, param_name = param.split(' ')
args.append(param_name)
if param_name not in src_args:
# output argument
continue
if not kwarg_only:
if not method or param_name != 'self':
input_args.append(src_args[param_name])
else:
input_kwargs.append(src_args[param_name])
results.append(PythonSignatureNativeFunctionPair(
signature=PythonSignatureDeprecated(
name=python_sig.name,
input_args=tuple(input_args),
input_kwargs=tuple(input_kwargs),
output_args=python_sig.output_args,
tensor_options_args=python_sig.tensor_options_args,
method=python_sig.method,
deprecated_args_names=tuple(args),
deprecated_args_exprs=tuple(call_args),
returns=python_sig.returns,
),
function=pair.function,
))
return results
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Named Tuple Codegen
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
@with_native_function
def gen_namedtuple_typename_key(f: NativeFunction) -> str:
name = cpp.name(f.func)
fieldnames = namedtuple_fieldnames(f.func.returns)
return '_'.join([name] + fieldnames)
def emit_namedtuple_call(
overloads: Sequence[PythonSignatureNativeFunctionPair]
) -> Tuple[List[str], Dict[str, str]]:
"""
Generate block of named tuple type def inits, and add typeref snippets
to declarations that use them
"""
typenames: Dict[str, str] = {} # map from unique name + field name lists to typedef name
typedefs: List[str] = [] # typedef declarations and init code
for overload in overloads:
fieldnames = namedtuple_fieldnames(overload.function.func.returns)
if not fieldnames:
continue
name = cpp.name(overload.function.func) # use @with_native_function?
tn_key = gen_namedtuple_typename_key(overload.function)
typename = typenames.get(tn_key)
if typename is None:
typename = f'NamedTuple{"" if not typedefs else len(typedefs)}'
typenames[tn_key] = typename
typedefs.append(f"""\
static PyTypeObject* {typename} = get_namedtuple("{name}");""")
return typedefs, typenames
def generate_return_type_definition_and_map_entry(
overloads: Sequence[PythonSignatureNativeFunctionPair],
) -> Tuple[List[str], List[str]]:
"""
Generate block of function in `python_return_types.cpp` to initialize
and return named tuple for a native function which returns named tuple
and relevant entry for the map in same file.
"""
typenames: Dict[str, str] = {} # map from unique name + field name lists to typedef name
definitions: List[str] = [] # function defintion to register the typedef
map_entries: List[str] = [] # C++ map entry of <function_name, function creates it namedtuple>
for overload in overloads:
fieldnames = namedtuple_fieldnames(overload.function.func.returns)
if not fieldnames:
continue
fields = ', '.join(f'{{"{fn}", ""}}' for fn in fieldnames)
name = cpp.name(overload.function.func) # use @with_native_function?
tn_key = gen_namedtuple_typename_key(overload.function)
typename = typenames.get(tn_key)
if typename is None:
typename = f'{name}NamedTuple{"" if not definitions else len(definitions)}'
typenames[tn_key] = typename
definitions.append(f"""\
PyTypeObject* get_{name}_namedtuple() {{
static PyStructSequence_Field NamedTuple_fields[] = {{ {fields}, {{nullptr}} }};
static PyTypeObject {typename};
static bool is_initialized = false;
static PyStructSequence_Desc desc = {{ "torch.return_types.{name}", nullptr, NamedTuple_fields, {len(fieldnames)} }};
if (!is_initialized) {{
PyStructSequence_InitType(&{typename}, &desc);
{typename}.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
is_initialized = true;
}}
return &{typename};
}}
""")
map_entries.append(f'{{"{name}", get_{name}_namedtuple()}}, ')
return definitions, map_entries
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Method Impl Codegen
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# python binding for all overloads of a particular function/method
PY_VARIABLE_METHOD_VARARGS = CodeTemplate(r"""\
// ${name}
static PyObject * ${pycname}(PyObject* self_, PyObject* args, PyObject* kwargs)
{
${method_header}
static PythonArgParser parser({
${signatures}
}, /*traceable=*/${traceable});
ParsedArgs<${max_args}> parsed_args;
auto _r = parser.parse(${self_}, args, kwargs, parsed_args);
${check_has_torch_function}
switch (_r.idx) {
${dispatch}
}
${method_footer}
}
""")
# handler for a single parsed signature - may be a single overload or
# a pair of overloads that whose signatures only differ in output params
# (plugged into PY_VARIABLE_METHOD_VARARGS as an item in ${dispatch})
PY_VARIABLE_CASE = CodeTemplate("""\
case ${overload_index}: {
${body}
}
""")
# python binding for single-overload function/method
PY_VARIABLE_METHOD_VARARGS_SINGLETON = CodeTemplate("""\
// ${name}
static PyObject * ${pycname}(PyObject* self_, PyObject* args, PyObject* kwargs)
{
${method_header}
static PythonArgParser parser({
${signatures}
}, /*traceable=*/${traceable});
ParsedArgs<${max_args}> parsed_args;
auto _r = parser.parse(${self_}, args, kwargs, parsed_args);
${check_has_torch_function}
${dispatch}
${method_footer}
}
""")
# python binding for a method with no args, shortcuts parsing
PY_VARIABLE_METHOD_NOARGS = CodeTemplate("""\
// ${name}
static PyObject * ${pycname}(PyObject* self_, PyObject* args)
{
${method_header}
${check_has_torch_function}
${dispatch}
${method_footer}
}
""")
def method_impl(
name: BaseOperatorName,
module: Optional[str],
overloads: Sequence[PythonSignatureNativeFunctionPair],
*,
method: bool
) -> str:
"""
Generate a python binding for all overloads of an op.
"""
pycname = get_pycname(name)
noarg = is_noarg(overloads)
namedtuple_inits, namedtuple_typenames = emit_namedtuple_call(overloads)
method_header = ['HANDLE_TH_ERRORS']
method_header += namedtuple_inits
method_header += [
"const Tensor& self = THPVariable_Unpack(self_);"
] if method else []
method_footer = ([] if noarg else ['Py_RETURN_NONE;']) + ['END_HANDLE_TH_ERRORS']
traceable = 'true' if all(should_trace(o.function) for o in overloads) else 'false'
grouped_overloads: Sequence[PythonSignatureGroup] = group_overloads(overloads)
is_singleton = len(grouped_overloads) == 1
signatures: List[str] = []
dispatch: List[str] = []
for overload_index, overload in enumerate(grouped_overloads):
signature = overload.signature.signature_str()
signatures.append(f'{cpp_string(str(signature))},')
dispatch_body = emit_dispatch_case(overload, namedtuple_typenames)
dispatch.append(
PY_VARIABLE_CASE.substitute(overload_index=overload_index, body=dispatch_body)
if not is_singleton else dispatch_body)
if noarg:
template = PY_VARIABLE_METHOD_NOARGS
elif is_singleton:
template = PY_VARIABLE_METHOD_VARARGS_SINGLETON
else:
template = PY_VARIABLE_METHOD_VARARGS
return template.substitute(
name=name,
pycname=pycname,
method_header=method_header,
max_args=max(map(lambda o: o.signature.arguments_count(), overloads)),
signatures=signatures,
traceable=traceable,
check_has_torch_function=gen_has_torch_function_check(
name=name,
module=module,
noarg=noarg,
method=method,
),
dispatch=dispatch,
method_footer=method_footer,
self_="self_" if method else "nullptr",
)
def gen_has_torch_function_check(
name: BaseOperatorName, module: Optional[str], *, noarg: bool, method: bool
) -> str:
if noarg:
if method:
return f"""\
if(check_has_torch_function(self_)) {{
return handle_torch_function(self_, "{name}");
}}
"""
else:
return ''
self_ = "self_" if method else "nullptr"
namespace = {
"torch": "THPVariableFunctionsModule",
"torch.nn": "THPNNVariableFunctionsModule",
"torch.fft": "THPFFTVariableFunctionsModule",
"torch.linalg": "THPLinalgVariableFunctionsModule",
"torch.sparse": "THPSparseVariableFunctionsModule",
"torch.special": "THPSpecialVariableFunctionsModule",
}[module] if module else "THPVariableClass"
return f"""\
if(_r.has_torch_function()) {{
return handle_torch_function(_r, {self_}, args, kwargs, {namespace}, "{module or "torch.Tensor"}");
}}
"""
# handler for output/no-output overload pair
PY_VARIABLE_OUT = CodeTemplate("""\
if (_r.isNone(${out_idx})) {
${call_dispatch}
} else {
${call_dispatch_out}
}
""")
def emit_dispatch_case(
overload: PythonSignatureGroup,
namedtuple_typenames: Dict[str, str],
) -> str:
"""
Emit dispatch code for a single parsed signature. This corresponds to either
a single native function, or a pair that differ only in output params. In the
latter case, a single python signature is used for both and dispatching
switches on the presence/absence of passed output args.
"""
if overload.outplace is not None:
# dispatch output and no-output variants, branch on _r.isNone(<out_idx>)
return PY_VARIABLE_OUT.substitute(
out_idx=overload.signature.output_idx(),
call_dispatch=emit_single_dispatch(
overload.signature, overload.base, namedtuple_typenames),
call_dispatch_out=emit_single_dispatch(
overload.signature, overload.outplace, namedtuple_typenames),
)
else:
# no-output version only
return emit_single_dispatch(
overload.signature, overload.base, namedtuple_typenames)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Forward Declarations Codegen
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def forward_decls(
name: BaseOperatorName,
overloads: Sequence[PythonSignatureNativeFunctionPair],
*,
method: bool
) -> Tuple[str, ...]:
if method:
return ()
pycname = get_pycname(name)
if is_noarg(overloads):
return (f"""\
static PyObject * {pycname}(PyObject* self_, PyObject* args);
""",)
else:
return (f"""\
static PyObject * {pycname}(PyObject* self_, PyObject* args, PyObject* kwargs);
""",)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Method Def (Binding Table Entry) Codegen
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def method_def(
name: BaseOperatorName,
module: Optional[str],
overloads: Sequence[PythonSignatureNativeFunctionPair],
*,
method: bool
) -> str:
"""
Generate method def entry.
"""
pycname = get_pycname(name)
if is_noarg(overloads):
pyfunc_cast = ''
flags = 'METH_NOARGS' if method else 'METH_VARARGS | METH_KEYWORDS'
else:
pyfunc_cast = 'castPyCFunctionWithKeywords'
flags = 'METH_VARARGS | METH_KEYWORDS'
if module == "torch":
flags += ' | METH_STATIC'
if name.dunder_method:
# PyMethodDef entry for binary op, throws not implemented error
return f"""\
{{"{name}", {pyfunc_cast}(TypeError_to_NotImplemented_<{pycname}>), {flags}, NULL}},"""
else:
# PyMethodDef entry
return f"""\
{{"{name}", {pyfunc_cast}({pycname}), {flags}, NULL}},"""
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Overload Sorting and Grouping
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def group_overloads(
overloads: Sequence[PythonSignatureNativeFunctionPair],
) -> Sequence[PythonSignatureGroup]:
bases: Dict[str, PythonSignatureNativeFunctionPair] = {}
outplaces: Dict[str, PythonSignatureNativeFunctionPair] = {}
# first group by signature ignoring out arguments
for overload in overloads:
sig = overload.signature.signature_str(skip_outputs=True)
if overload.function.func.is_out_fn():
if sig in outplaces:
raise RuntimeError(
f'Found duplicated function definition:\n- {overload.function.func}.\n'
f'Existing definition:\n- {outplaces[sig].function.func}.'
)
outplaces[sig] = overload
else:
if sig in bases:
raise RuntimeError(
f'Found duplicated function definition:\n- {overload.function.func}.\n'
f'Existing definition:\n- {bases[sig].function.func}.'
)
bases[sig] = overload
for sig, out in outplaces.items():
if sig not in bases:
candidates: List[str] = []
for overload in overloads:
if str(overload.function.func.name.name) == str(out.function.func.name.name) \
and not overload.function.func.is_out_fn() \
and not overload.signature.deprecated:
candidates.append(overload.signature.signature_str(skip_outputs=True))
out_sig = out.signature.signature_str()
raise RuntimeError(
f'While identifying overloads, we found an out schema {out_sig} without a corresponding non-out variant. '
f'We expected the non-out variant to have schema: \n- {sig}\nPlease check that you spelled the schema '
'correctly in native_functions.yaml. We discovered the following candidate(s): \n'
+ '\n'.join(f'- {candidate}' for candidate in candidates))
grouped: List[PythonSignatureGroup] = []
for sig, base in bases.items():
outplace = outplaces.get(sig)
grouped.append(PythonSignatureGroup(
# prefer the signature with optional out=... arguments because it's the
# superset that can be used to parse input for both base and outplace.
signature=outplace.signature if outplace is not None else base.signature,
base=base.function,
outplace=outplace.function if outplace is not None else None,
))
return sort_overloads(grouped)
# This function declares a partial order on declarations, and sorts them according
# to its linear extension. This is necessary, because there's some ambiguity in the
# choice of overload, and we want a different order.
#
# See Note[Order of overloads matters]
#
# A few examples of ambiguous python signature pairs.
#
# All parameters have the same type, except one taking Tensor the other taking
# Scalar. A numeric PyObject can be casted into Tensor, and a zero-dim Tensor
# object can be accepted as Scalar type parameter (see python_arg_parser.cpp).
# Therefore, same input arguments might be accepted by either python signature.
# We want to always parse the one taking Tensor first.
#
# bitwise_and(Tensor input, Tensor other, *, Tensor out=None)
# bitwise_and(Tensor input, Scalar other, *, Tensor out=None)
#
# If they have different number of parameters then they are not ambiguous - but
# the difference on output param can be ignored as it's optional.
#
# multiply(Tensor input, Tensor other, *, Tensor out=None)
# multiply(Tensor input, Scalar other)
#
# Both positional args and keyword-only args are considered together.
#
# subtract(Tensor other, *, Scalar alpha=1)
# subtract(Scalar other, Scalar alpha=1)
#
# A few ambiguous cases which it does NOT handle yet.
#
# If there is any difference in other parameters besides the Tensor/Scalar
# difference, then they are not considered ambiguous by this method anymore.
# However, the difference could be too trivial to disambiguate.
#
# foo(Tensor input, Scalar other, Scalar bar)
# foo(Tensor input, Tensor other, double bar)
#
# If they are taking different number of parameters then they are not considered
# ambiguous anymore, even if the difference is only on optional kwargs.
#
# foo(Scalar other, Scalar alpha=1)
# foo(Tensor other, *, Scalar alpha=1, Scalar beta=1)
#
def sort_overloads(
grouped_overloads: Sequence[PythonSignatureGroup]
) -> Sequence[PythonSignatureGroup]:
def is_arg_smaller(t1: Type, t2: Type) -> bool:
return (str(t1) == 'Scalar' and str(t2) == 'Tensor' or
'Dimname' in str(t1) and 'Dimname' not in str(t2) or
# In the discussion https://github.com/pytorch/pytorch/issues/54555 it has been
# discussed why it is important to prioritize int/int? over int[]
str(t1) == 'int[]' and (str(t2) == 'int' or str(t2) == 'int?') or
# TensorList currently throws an error during argument parsing, that's why it needs to be
# last in signature ordering. See discussion: https://github.com/pytorch/pytorch/issues/58087
str(t1) == 'Tensor[]' and str(t2).find("[]") != -1)
def is_smaller(s1: PythonSignature, s2: PythonSignature) -> bool:
"""Returns True if s1 < s2 in the partial order."""
args1, args2 = s1.arguments(skip_outputs=True), s2.arguments(skip_outputs=True)
if len(args1) != len(args2):
return False
# TODO: should use some canonical form instead of 'str(arg.type)' - see comments
# above. The old codegen used the deprecated 'dynamic_type(arg.type)', which
# ignores the optional annotation, i.e. 'Scalar' and 'Scalar?'.
equal = all(arg1.type == arg2.type for arg1, arg2 in zip(args1, args2))
smaller_or_equal = all(str(arg1.type) == str(arg2.type)
or is_arg_smaller(arg1.type, arg2.type)
for arg1, arg2 in zip(args1, args2))
return smaller_or_equal and not equal
# First sort by signature
grouped_overloads = sorted(grouped_overloads, key=lambda x: x.signature.signature_str())
# Construct the relation graph
larger_than: Dict[int, Set[int]] = defaultdict(set)
for i1, overload1 in enumerate(grouped_overloads):
for i2, overload2 in enumerate(grouped_overloads):
if is_smaller(overload1.signature, overload2.signature):
larger_than[i1].add(i2)
if not larger_than:
return list(grouped_overloads)
# Use a topological sort to sort overloads according to the partial order.
N = len(grouped_overloads)
sorted_ids: List[int] = list(filter(lambda x: x not in larger_than, range(N)))
for idx in range(N):
# The size of sorted_ids will grow to N eventually.
i = sorted_ids[idx]
for j in sorted(larger_than.keys()):
larger = larger_than[j]
larger.discard(i)
if not larger:
del larger_than[j]
sorted_ids.append(j)
return list(map(lambda x: grouped_overloads[x], sorted_ids))
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Codegen API Integration
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def emit_single_dispatch(
ps: PythonSignature, f: NativeFunction, namedtuple_typenames: Dict[str, str]
) -> str:
"""
Emit dispatch code for a single native function.
"""
@with_native_function
def go(f: NativeFunction) -> str:
# header comments
deprecated = '[deprecated] ' if ps.deprecated else ''
schema_comment = f'// {deprecated}aten::{f.func}'
# dispatch lambda signature
name = cpp.name(f.func)
lambda_formals = ', '.join(map(lambda a: f"{a.type_str} {a.name}",
dispatch_lambda_args(ps, f)))
lambda_return = dispatch_lambda_return_str(f)
# dispatch lambda body
dispatch_callee = cpp_dispatch_target(f)
dispatch_args = ', '.join(cpp_dispatch_exprs(f, python_signature=ps))
# from arg parser outputs to dispatch lambda arguments
parser_outputs = arg_parser_output_exprs(ps, f)
lambda_arg_exprs = dispatch_lambda_exprs(ps, f)
inits = '\n'.join(lambda_arg_exprs.inits)
lambda_args = ', '.join(lambda_arg_exprs.exprs)
# scatter fields
# TODO: Checking `ps.method and ('requires_grad' in parser_outputs)` is a hacky
# solution for enabling the 'requires_grad' argument for tensor methods
# new_full, new_empty, and new_zeros. A much better but more difficult to
# implement solution involves refactoring according to Ed's description here:
# https://github.com/pytorch/pytorch/issues/36455#issuecomment-614767589
need_set_requires_grad = ps.tensor_options_args and (not has_tensor_options(f) or (
ps.method and ('requires_grad' in parser_outputs)))
set_requires_grad = f'.set_requires_grad({parser_outputs["requires_grad"].expr})' \
if need_set_requires_grad else ''
if lambda_return == 'void':
return f"""\
{schema_comment}
{inits}
auto dispatch_{name} = []({lambda_formals}) -> {lambda_return} {{
pybind11::gil_scoped_release no_gil;
{dispatch_callee}({dispatch_args});
}};
dispatch_{name}({lambda_args}){set_requires_grad};
Py_RETURN_NONE;
"""
else:
typename = namedtuple_typenames.get(gen_namedtuple_typename_key(f))
namedtuple_typeref = f'{typename}, ' if typename is not None else ''
return f"""\
{schema_comment}
{inits}
auto dispatch_{name} = []({lambda_formals}) -> {lambda_return} {{
pybind11::gil_scoped_release no_gil;
return {dispatch_callee}({dispatch_args});
}};
return wrap({namedtuple_typeref}dispatch_{name}({lambda_args}){set_requires_grad});
"""
return go(f)