mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
This PR extends our ability to fuse pointwise nodes onto triton templates with the ability to fuse pointwise nodes into triton templates - prologue fusion.
Similar to the store_output api:
`{{store_output(("idx_m", "idx_n"), "acc", "mask")}}`
And the modification api:
```
{{ modification(
subgraph_number=0,
output_name="post_mod_scores",
score="qk",
out="qk"
) | indent_except_first(1) }}
```
We have:
```{{load_input("B", "b", ("idx_m", "idx_n"), mask=None if EVEN_K else "b_mask", indent_width=8)}}```
Because we are now loading the input with explicit indices and mask, I needed to rewrite the mm kernel to no longer update the [pointers by BLOCK_K](bb03ef7aca/torch/_inductor/kernel/mm.py (L110-L111)) on every iteration and instead on each iteration compute indices from the the k_idx of each loop. This did not have any perf difference.
There are a couple main use cases for prologue fusion:
- Fusing dequants into a matmul. particularly for more bandwidth bound scenarios.
- Fusing gather into a matmul. This is useful particularly in MOE. See https://github.com/pytorch/pytorch/issues/134535 for more details.
Prologue fusion is generally much less profitable than epilogue fusion, because it must be applied to an element of an input on each loop of the matmul, compared to only once in the epilogue (gather into matmul is a potential exception). Accordingly, we are much less aggressive in attempting to fuse prologue fusion. We only attempt fusion if it does not increase the number of memory bytes read instead the triton template, multipled by a small factor to allow gathers. This restricts reliably unprofitable fusions like fp32->fp16 inside kernel. In future pr we could potentially have api of being more aggressive if we know we are in a bandwidth bound regime. See: https://github.com/pytorch/pytorch/pull/134532/files#diff-d2539c9c8dc6a3d7e457767a880612e96d3c85752a77ead49a9e4e00a3e4c3c7R3060-R3066
Other notes:
By default we will upcast to fp32 inside every kernel. This matches eager numerics. This is fine enough for epilogue because it is only done once (although it is probably unnecessary for say a relu) but tanks perf for prologue. I am currently using the `codegen_upcast_to_fp32` option to avoid it, but that will not work for libdevice calls that require fp32. We will need https://github.com/pytorch/pytorch/pull/136778/ and dtype-aware codegen to upcast fp16 ops into libdevice calls.
With prologue fusion, we now have essentially separate kernels for each input, and for the output. I had to increase the number of fields that are swapped out in `set_subgraph_body` by a large number :/ I also update the fusion logic because the inputs will have a different group than the outputs. Maybe as part of enabling multiple outputs, this could get cleaned up a bit so..
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134532
Approved by: https://github.com/jansel
2343 lines
81 KiB
Python
2343 lines
81 KiB
Python
# mypy: allow-untyped-defs
|
|
from __future__ import annotations
|
|
|
|
import contextlib
|
|
import dataclasses
|
|
import enum
|
|
import functools
|
|
import itertools
|
|
import logging
|
|
import math
|
|
import operator
|
|
import re
|
|
from enum import auto, Enum
|
|
from itertools import chain
|
|
from typing import (
|
|
Any,
|
|
Callable,
|
|
ClassVar,
|
|
Dict,
|
|
List,
|
|
NamedTuple,
|
|
Optional,
|
|
Set,
|
|
Tuple,
|
|
TYPE_CHECKING,
|
|
Union,
|
|
)
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from typing import Never
|
|
|
|
import sympy
|
|
|
|
import torch
|
|
import torch.fx
|
|
from torch._inductor.dtype_propagation import DtypePropagationOpsHandler
|
|
from torch._prims_common import ELEMENTWISE_TYPE_PROMOTION_KIND
|
|
from torch.utils import _pytree as pytree
|
|
from torch.utils._ordered_set import OrderedSet
|
|
from torch.utils._sympy.numbers import int_oo
|
|
from torch.utils._sympy.printers import PythonPrinter as _PythonPrinter
|
|
from torch.utils._sympy.symbol import free_symbol_is_type, symbol_is_type, SymT
|
|
from torch.utils._sympy.value_ranges import bound_sympy, ValueRangeAnalysis, ValueRanges
|
|
|
|
from .. import config, metrics
|
|
from ..utils import (
|
|
boolean_ops,
|
|
DeferredLineBase,
|
|
generate_assert,
|
|
IndentedBuffer,
|
|
ir_dataclass,
|
|
sympy_dot,
|
|
sympy_subs,
|
|
unique,
|
|
)
|
|
from ..virtualized import ops, OpsHandler, OpsValue, ReductionType, StoreMode, V
|
|
|
|
|
|
schedule_log = torch._logging.getArtifactLogger(__name__, "schedule")
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
def data_type_logger(msg):
|
|
if schedule_log.isEnabledFor(logging.DEBUG):
|
|
schedule_log.debug("Data type propagation: %s", msg)
|
|
|
|
|
|
class WorkspaceZeroMode(enum.Enum):
|
|
UNINITIALIZED = 0
|
|
ZERO_ON_CALL = 1 # kernel may leave workspace dirty
|
|
ZERO_PER_GRAPH = 2 # must be re-zeroed by kernel
|
|
|
|
@staticmethod
|
|
def combine(a, b):
|
|
if a == b or b == WorkspaceZeroMode.UNINITIALIZED:
|
|
return a
|
|
if a == WorkspaceZeroMode.UNINITIALIZED:
|
|
return b
|
|
raise NotImplementedError(f"WorkspaceZeroMode.combine({a!r}, {b!r})")
|
|
|
|
@staticmethod
|
|
def from_bool(zero_fill):
|
|
if zero_fill:
|
|
return WorkspaceZeroMode.ZERO_ON_CALL
|
|
return WorkspaceZeroMode.UNINITIALIZED
|
|
|
|
|
|
@ir_dataclass(frozen=True)
|
|
class WorkspaceArg:
|
|
"""A temporary buffer used for a single kernel, then discarded.
|
|
|
|
Not registered as a traditional buffer since there are no users,
|
|
so it would be dead code eliminated.
|
|
|
|
Args:
|
|
nbytes: The size of the buffer in bytes.
|
|
zero_fill: Whether the buffer should be initialized to zero.
|
|
|
|
"""
|
|
|
|
count: sympy.Expr
|
|
zero_mode: WorkspaceZeroMode
|
|
device: torch.device
|
|
outer_name: str
|
|
inner_name: str = "ws_ptr"
|
|
dtype: torch.dtype = torch.uint8
|
|
|
|
@staticmethod
|
|
def unique_name(prefix="workspace_"):
|
|
return f"{prefix}{next(V.graph.workspace_id)}"
|
|
|
|
@staticmethod
|
|
def can_join(a, b) -> bool:
|
|
return (
|
|
a.inner_name == b.inner_name and a.dtype == b.dtype and a.device == b.device
|
|
)
|
|
|
|
@staticmethod
|
|
def join(a, b):
|
|
return WorkspaceArg(
|
|
count=a.count + b.count,
|
|
zero_mode=WorkspaceZeroMode.combine(a.zero_mode, b.zero_mode),
|
|
dtype=a.dtype,
|
|
device=a.device,
|
|
inner_name=a.inner_name,
|
|
outer_name=a.outer_name,
|
|
)
|
|
|
|
@staticmethod
|
|
def maximum(a, b):
|
|
assert (
|
|
a.dtype == b.dtype and a.device == b.device and a.inner_name == b.inner_name
|
|
)
|
|
return WorkspaceArg(
|
|
count=sympy.Max(a.count, b.count),
|
|
zero_mode=WorkspaceZeroMode.combine(a.zero_mode, b.zero_mode),
|
|
dtype=a.dtype,
|
|
device=a.device,
|
|
inner_name=a.inner_name,
|
|
outer_name=a.outer_name,
|
|
)
|
|
|
|
# These methods let WorkspaceArg pretend it is a buffer to reuse allocation code
|
|
def get_device(self):
|
|
return self.device
|
|
|
|
get_device_or_error = get_device
|
|
|
|
def get_dtype(self):
|
|
return self.dtype
|
|
|
|
def get_layout(self):
|
|
from ..ir import FixedLayout
|
|
|
|
return FixedLayout(
|
|
device=self.device,
|
|
dtype=self.dtype,
|
|
size=[self.count],
|
|
stride=[1],
|
|
)
|
|
|
|
@property
|
|
def layout(self):
|
|
return self.get_layout()
|
|
|
|
get_output_spec = get_layout
|
|
maybe_get_output_spec = get_layout
|
|
maybe_get_layout = get_layout
|
|
|
|
def get_size(self):
|
|
return [self.count]
|
|
|
|
def get_stride(self):
|
|
return [1]
|
|
|
|
def get_name(self):
|
|
return self.outer_name
|
|
|
|
def get_inputs_that_alias_output(self):
|
|
return []
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class TensorArg:
|
|
name: str
|
|
buffer: str
|
|
dtype: torch.dtype
|
|
offset: sympy.Expr = sympy.S.Zero # c++ only
|
|
alias_of: Optional[str] = None # halide only
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class SizeArg:
|
|
name: str
|
|
expr: sympy.Expr
|
|
|
|
@property
|
|
def alias_of(self):
|
|
return None
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class TMADescriptorArg:
|
|
name: str
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class DeviceCodegen:
|
|
scheduling: Any
|
|
wrapper_codegen: type
|
|
cpp_wrapper_codegen: type = type(None)
|
|
|
|
|
|
KernelArgType = Union[WorkspaceArg, TensorArg, SizeArg, TMADescriptorArg]
|
|
|
|
device_codegens: Dict[str, DeviceCodegen] = {}
|
|
|
|
|
|
class DeviceOpOverrides:
|
|
def import_get_raw_stream_as(self, name):
|
|
raise NotImplementedError
|
|
|
|
def set_device(self, device_idx):
|
|
raise NotImplementedError
|
|
|
|
def synchronize(self):
|
|
raise NotImplementedError
|
|
|
|
def device_guard(self, device_idx):
|
|
raise NotImplementedError
|
|
|
|
def cpp_device_guard(self):
|
|
raise NotImplementedError
|
|
|
|
def cpp_aoti_device_guard(self):
|
|
raise NotImplementedError
|
|
|
|
def cpp_stream_guard(self):
|
|
raise NotImplementedError
|
|
|
|
def cpp_aoti_stream_guard(self):
|
|
raise NotImplementedError
|
|
|
|
def cpp_getStreamFromExternal(self):
|
|
raise NotImplementedError
|
|
|
|
def kernel_header(self):
|
|
raise NotImplementedError
|
|
|
|
def kernel_driver(self):
|
|
raise NotImplementedError
|
|
|
|
def abi_compatible_header(self):
|
|
raise NotImplementedError
|
|
|
|
def cpp_stream_type(self):
|
|
raise NotImplementedError
|
|
|
|
def aoti_get_stream(self):
|
|
raise NotImplementedError
|
|
|
|
def cpp_kernel_type(self):
|
|
raise NotImplementedError
|
|
|
|
def cpp_device_ptr(self):
|
|
raise NotImplementedError
|
|
|
|
def tma_descriptor_helpers(self):
|
|
raise NotImplementedError
|
|
|
|
|
|
device_op_overrides_dict: Dict[str, DeviceOpOverrides] = {}
|
|
|
|
|
|
# The code generated by Inductor consists of two main parts: kernel code and wrapper code.
|
|
# For any new backend looking to integrate with Inductor, customization of these two main
|
|
# parts are necessary to generate its specific code.
|
|
#
|
|
# Kernel code generation is determined by different Scheduling. Consequently, a new
|
|
# backend needs to provide a custom Scheduling for its unique kernel code generation. Currently,
|
|
# CppScheduling and TritonScheduling serve the C++/OpenMP and Triton backends, respectively.
|
|
#
|
|
# For the Wrapper, Inductor provides a PythonWrapperCodegen class to generate the Python wrapper code
|
|
# that bridges kernels. This allows out-of-tree backends to inherit from PythonWrapperCodegen,
|
|
# and override specific member functions to create backend-specific Python wrapper code.
|
|
#
|
|
# Other classes, such as CppKernel and TritonKernel, used for code generation, typically form part
|
|
# of the logic for either Scheduling or PythonWrapperCodegen. So the Scheduling and PythonWrapperCodegen interfaces
|
|
# provide flexibility to the backend. A backend can choose to implement these classes from scratch,
|
|
# or reuse them by extending and overriding as necessary. And Inductor provides the registration API,
|
|
# register_backend_for_device, to equip a new backend at runtime.
|
|
#
|
|
# Intel has developed a new backend on top of Triton to support Intel GPUs, leveraging these interfaces.
|
|
# This backend can be used as a reference:
|
|
# https://github.com/intel/intel-extension-for-pytorch/blob/5dcc9d57e5422cf295e1a1ee97896d6b6a554a85/intel_extension_for_pytorch/_inductor/__init__.py#L9
|
|
def register_backend_for_device(
|
|
device: str,
|
|
device_scheduling: Any,
|
|
device_wrapper_codegen: type,
|
|
device_cpp_wrapper_codegen: type = type(None),
|
|
):
|
|
device_codegens[device] = DeviceCodegen(
|
|
device_scheduling, device_wrapper_codegen, device_cpp_wrapper_codegen
|
|
)
|
|
|
|
|
|
class BackendFeature(Enum):
|
|
FOREACH = auto()
|
|
BUCKETIZE = auto()
|
|
INPLACE_BUFFERS = auto()
|
|
MASKED_SCATTER_WITH_INDEX = auto()
|
|
SCAN = auto()
|
|
SORT = auto()
|
|
TUPLE_REDUCTION = auto()
|
|
PREFER_STORE_LOOP_ORDER = auto()
|
|
TRITON_TEMPLATES = auto()
|
|
REDUCE_TO_SINGLE_ELEMENT = auto()
|
|
|
|
|
|
def get_backend_features(device: Union[torch.device, str, None]):
|
|
if device is None:
|
|
return {}
|
|
init_backend_registration()
|
|
if isinstance(device, torch.device):
|
|
device_type = device.type
|
|
else:
|
|
assert isinstance(device, str)
|
|
device_type = device
|
|
device = torch.device(device_type)
|
|
scheduling = get_scheduling_for_device(device_type)
|
|
return scheduling(None).get_backend_features(device)
|
|
|
|
|
|
def has_backend_feature(device, feature):
|
|
"""See also V.graph.has_feature"""
|
|
assert isinstance(feature, BackendFeature)
|
|
return feature in get_backend_features(device)
|
|
|
|
|
|
def get_scheduling_for_device(device: str):
|
|
return device_codegens[device].scheduling if device in device_codegens else None
|
|
|
|
|
|
def get_wrapper_codegen_for_device(device: str, cpp_wrapper: bool = False):
|
|
if device in device_codegens:
|
|
wrapper_codegen_obj: DeviceCodegen = device_codegens[device]
|
|
return (
|
|
wrapper_codegen_obj.cpp_wrapper_codegen
|
|
if cpp_wrapper
|
|
else wrapper_codegen_obj.wrapper_codegen
|
|
)
|
|
return None
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def init_backend_registration():
|
|
from .cpp import CppScheduling
|
|
from .cpp_wrapper_cpu import CppWrapperCpu
|
|
from .cpp_wrapper_cpu_array_ref import CppWrapperCpuArrayRef
|
|
from .cpp_wrapper_gpu import CppWrapperGpu
|
|
from .cuda_combined_scheduling import CUDACombinedScheduling
|
|
from .halide import HalideScheduling
|
|
from .triton import TritonScheduling
|
|
from .wrapper import PythonWrapperCodegen
|
|
|
|
if get_scheduling_for_device("cpu") is None:
|
|
cpu_backends = {
|
|
"cpp": CppScheduling,
|
|
"halide": HalideScheduling,
|
|
"triton": TritonScheduling,
|
|
}
|
|
register_backend_for_device(
|
|
"cpu",
|
|
lambda *args, **kwargs: cpu_backends[config.cpu_backend](*args, **kwargs),
|
|
PythonWrapperCodegen,
|
|
CppWrapperCpuArrayRef
|
|
if config.aot_inductor.allow_stack_allocation
|
|
else CppWrapperCpu,
|
|
)
|
|
|
|
if get_scheduling_for_device("cuda") is None:
|
|
# CUDACombinedScheduling combines Triton and CUDA C++ scheduling for CUDA devices via delegation
|
|
cuda_backends = {"triton": CUDACombinedScheduling, "halide": HalideScheduling}
|
|
register_backend_for_device(
|
|
"cuda",
|
|
lambda *args, **kwargs: cuda_backends[config.cuda_backend](*args, **kwargs),
|
|
PythonWrapperCodegen,
|
|
CppWrapperGpu,
|
|
)
|
|
|
|
if get_scheduling_for_device("xpu") is None:
|
|
register_backend_for_device(
|
|
"xpu",
|
|
TritonScheduling,
|
|
PythonWrapperCodegen,
|
|
CppWrapperGpu,
|
|
)
|
|
|
|
private_backend = torch._C._get_privateuse1_backend_name()
|
|
if (
|
|
private_backend != "privateuseone"
|
|
and get_scheduling_for_device(private_backend) is None
|
|
):
|
|
from torch.utils.backend_registration import _get_custom_mod_func
|
|
|
|
try:
|
|
device_scheduling = _get_custom_mod_func("Scheduling")
|
|
wrapper_codegen = _get_custom_mod_func("PythonWrapperCodegen")
|
|
cpp_wrapper_codegen = _get_custom_mod_func("CppWrapperCodegen")
|
|
if device_scheduling and wrapper_codegen and cpp_wrapper_codegen:
|
|
register_backend_for_device(
|
|
private_backend,
|
|
device_scheduling,
|
|
wrapper_codegen,
|
|
cpp_wrapper_codegen,
|
|
)
|
|
except RuntimeError:
|
|
pass
|
|
|
|
|
|
def index_prevent_reordering(index: List[sympy.Expr], index_vars, sizes):
|
|
from ..ir import FlexibleLayout
|
|
|
|
# added contiguous index prevents reordering
|
|
return [*index, sympy_dot(index_vars, FlexibleLayout.contiguous_strides(sizes))]
|
|
|
|
|
|
def register_device_op_overrides(device: str, device_op_overrides: DeviceOpOverrides):
|
|
device_op_overrides_dict[device] = device_op_overrides
|
|
|
|
|
|
def get_device_op_overrides(device: str):
|
|
assert isinstance(device, str)
|
|
|
|
if not device_op_overrides_dict.keys():
|
|
from . import cpu_device_op_overrides # noqa: F401
|
|
from .cuda import device_op_overrides # noqa: F401
|
|
from .xpu import device_op_overrides as xpu_op_overrides # noqa: F401
|
|
|
|
if device in device_op_overrides_dict.keys():
|
|
return device_op_overrides_dict[device]
|
|
|
|
|
|
DTYPE_TO_COMPUTATION_DTYPE = {
|
|
torch.bfloat16: torch.float,
|
|
torch.float16: torch.float,
|
|
**{
|
|
dtype: dtype
|
|
for dtype in [
|
|
torch.bool,
|
|
torch.float32,
|
|
torch.float64,
|
|
torch.int8,
|
|
torch.int16,
|
|
torch.int32,
|
|
torch.int64,
|
|
torch.uint8,
|
|
torch.uint16,
|
|
torch.uint32,
|
|
torch.uint64,
|
|
]
|
|
},
|
|
}
|
|
|
|
|
|
def deduce_output_dtype_by_name(
|
|
op_name: str,
|
|
*args,
|
|
**kwargs,
|
|
) -> Optional[torch.dtype]:
|
|
"""
|
|
Given op name and a list of input dtypes, deduce the output dtype
|
|
"""
|
|
if op_name in boolean_ops():
|
|
return torch.bool
|
|
elif op_name in (
|
|
"to_dtype",
|
|
"index_expr",
|
|
):
|
|
return kwargs["dtype"] if "dtype" in kwargs else args[-1]
|
|
elif op_name in (
|
|
"rand",
|
|
"randn",
|
|
):
|
|
return torch.float
|
|
elif op_name in (
|
|
"get_index",
|
|
"randint64",
|
|
"load_seed",
|
|
):
|
|
return torch.int64
|
|
elif op_name == "reduction":
|
|
return kwargs["dtype"] if "dtype" in kwargs else args[1]
|
|
elif op_name == "constant":
|
|
dtype = kwargs["dtype"] if "dtype" in kwargs else args[-1]
|
|
return DTYPE_TO_COMPUTATION_DTYPE[dtype] # type: ignore[index]
|
|
elif op_name in (
|
|
"load",
|
|
"store",
|
|
"store_reduction",
|
|
):
|
|
buf_name = args[1]
|
|
return V.graph.get_dtype(buf_name) # type: ignore[arg-type]
|
|
elif op_name == "to_dtype_bitcast":
|
|
return kwargs["dtype"] if "dtype" in kwargs else args[-2]
|
|
return None
|
|
|
|
|
|
class DataTypePropagation:
|
|
def __init__(self, body) -> None:
|
|
self.body = body
|
|
self.graphs: Dict[Union[Callable[..., Any], str], Any] = {
|
|
"root": body.root_block.graph
|
|
}
|
|
for k, v in body.subblocks.items():
|
|
self.graphs[k] = v.graph
|
|
|
|
def deduce_node_dtype_by_inputs(self, node: torch.fx.Node):
|
|
inputs = node.all_input_nodes
|
|
input_nodes = [
|
|
n for n in inputs if isinstance(n, torch.fx.Node) and n.op != "placeholder"
|
|
]
|
|
if len(input_nodes) == 0:
|
|
return None
|
|
|
|
all_input_nodes_propagated = all(
|
|
OptimizationContext.key in n.meta
|
|
and n.meta[OptimizationContext.key].dtype is not None
|
|
for n in input_nodes
|
|
)
|
|
if not all_input_nodes_propagated:
|
|
return None
|
|
|
|
return functools.reduce(
|
|
torch.promote_types,
|
|
[n.meta[OptimizationContext.key].dtype for n in input_nodes],
|
|
)
|
|
|
|
def deduce_node_dtype_by_subgraph(self, node: torch.fx.Node):
|
|
sub_graph = self.graphs[node.target]
|
|
dtype = self.propagate_graph(sub_graph)
|
|
assert dtype
|
|
return dtype
|
|
|
|
def deduce_node_dtype(self, node: torch.fx.Node):
|
|
if node.op == "placeholder":
|
|
return None
|
|
|
|
if node.target == "output" and len(node.args) != 1:
|
|
# we can infer output node if it only have 1 arg
|
|
return None
|
|
|
|
if node.target == operator.getitem:
|
|
return self.deduce_node_dtype(node.args[0]) # type: ignore[arg-type]
|
|
|
|
assert isinstance(node.target, str)
|
|
|
|
if node.target.startswith("masked_subblock"):
|
|
return self.deduce_node_dtype_by_subgraph(node)
|
|
|
|
if (
|
|
output_dtype := deduce_output_dtype_by_name(
|
|
node.target,
|
|
*node.args,
|
|
**node.kwargs,
|
|
)
|
|
) is not None:
|
|
return output_dtype
|
|
|
|
return self.deduce_node_dtype_by_inputs(node)
|
|
|
|
def propagate_graph(self, graph: torch.fx.Graph):
|
|
assert graph.nodes
|
|
graph_dtype = None
|
|
# For masked_subblock, we use output's dtype to represent
|
|
# the dtype of this subgraph. For other cases, graph_dtype
|
|
# might be None
|
|
for node in graph.nodes:
|
|
if OptimizationContext.key in node.meta:
|
|
opt_ctx = node.meta[OptimizationContext.key]
|
|
else:
|
|
opt_ctx = OptimizationContext()
|
|
|
|
opt_ctx.dtype = self.deduce_node_dtype(node)
|
|
node.meta[OptimizationContext.key] = opt_ctx
|
|
if node.target == "output":
|
|
graph_dtype = opt_ctx.dtype
|
|
return graph_dtype
|
|
|
|
def propagate(self):
|
|
self.propagate_graph(self.graphs["root"])
|
|
|
|
@classmethod
|
|
def propagate_loopbody(cls, body):
|
|
return cls(body).propagate()
|
|
|
|
@classmethod
|
|
def propagate_scheduler_node(cls, node):
|
|
from ..loop_body import LoopBody
|
|
from ..scheduler import SchedulerNode
|
|
|
|
assert isinstance(node, SchedulerNode)
|
|
assert isinstance(node._body, LoopBody)
|
|
DataTypePropagation.propagate_loopbody(node._body)
|
|
|
|
|
|
class PythonPrinter(_PythonPrinter):
|
|
def doprint(self, expr, *, simplify: bool = True, p=True):
|
|
# TODO: why are people passing strings to the printer here :think:
|
|
if simplify and isinstance(expr, sympy.Expr) and hasattr(V.graph, "sizevars"):
|
|
expr = V.graph.sizevars.simplify(expr)
|
|
return super().doprint(expr)
|
|
|
|
|
|
class OpDecompositions:
|
|
"""
|
|
Decomposes inductor ops
|
|
"""
|
|
|
|
@staticmethod
|
|
def identity(value):
|
|
# used to trigger cse
|
|
return value
|
|
|
|
@staticmethod
|
|
def reciprocal(x):
|
|
return ops.truediv(ops.constant(1, torch.int32), x)
|
|
|
|
@staticmethod
|
|
def square(x):
|
|
return ops.mul(x, x)
|
|
|
|
@staticmethod
|
|
def erfc(x):
|
|
return ops.sub(ops.constant(1, torch.float32), ops.erf(x))
|
|
|
|
@staticmethod
|
|
def erfcx(x):
|
|
return ops.mul(ops.exp(ops.square(x)), ops.erfc(x))
|
|
|
|
@staticmethod
|
|
def expm1(x):
|
|
return ops.sub(ops.exp(x), ops.constant(1, torch.float32))
|
|
|
|
@staticmethod
|
|
def log10(x):
|
|
return ops.mul(ops.log(x), ops.constant(1 / math.log(10), torch.float32))
|
|
|
|
@staticmethod
|
|
def log2(x):
|
|
return ops.mul(ops.log(x), ops.constant(1 / math.log(2), torch.float32))
|
|
|
|
@staticmethod
|
|
def exp2(x):
|
|
return ops.exp(ops.mul(x, ops.constant(math.log(2), torch.float32)))
|
|
|
|
@staticmethod
|
|
def log1p(x):
|
|
return ops.log(ops.add(x, ops.constant(1, torch.int32)))
|
|
|
|
@staticmethod
|
|
def sigmoid(x):
|
|
one = ops.constant(1, torch.int32)
|
|
return ops.truediv(one, ops.add(one, ops.exp(ops.neg(x))))
|
|
|
|
@staticmethod
|
|
def relu(x):
|
|
return ops.maximum(x, ops.constant(0, torch.int32))
|
|
|
|
@staticmethod
|
|
def fma(x, y, z):
|
|
# for backends that don't override this (halide)
|
|
return ops.add(ops.mul(x, y), z)
|
|
|
|
@staticmethod
|
|
def floor_to_int(a, dtype):
|
|
return ops.to_dtype(ops.floor(a), dtype)
|
|
|
|
@staticmethod
|
|
def ceil_to_int(a, dtype):
|
|
return ops.to_dtype(ops.ceil(a), dtype)
|
|
|
|
@staticmethod
|
|
def trunc_to_int(a, dtype):
|
|
return ops.to_dtype(ops.trunc(a), dtype)
|
|
|
|
@staticmethod
|
|
def remainder(a, b):
|
|
r = ops.mod(a, b)
|
|
cond = ops.and_(
|
|
ops.ne(r, ops.constant(0, torch.int32)),
|
|
ops.ne(ops.signbit(r), ops.signbit(b)),
|
|
)
|
|
return ops.where(cond, ops.add(r, b), r)
|
|
|
|
@staticmethod
|
|
def round_to_int(a, dtype):
|
|
return ops.to_dtype(ops.round(a), dtype)
|
|
|
|
|
|
class OpOverrides(OpDecompositions):
|
|
def __init__(self, parent):
|
|
super().__init__()
|
|
self._parent = parent
|
|
|
|
@staticmethod
|
|
def paren(string: str) -> str:
|
|
def all_in_parens(string: str) -> bool:
|
|
if string[0] != "(" or len(string) < 2:
|
|
return False
|
|
count = 1
|
|
for i, char in enumerate(string[1:]):
|
|
if char == "(":
|
|
count += 1
|
|
elif char == ")":
|
|
count -= 1
|
|
if count == 0 and i != len(string) - 2:
|
|
return False
|
|
assert count == 0
|
|
return True
|
|
|
|
if (
|
|
isinstance(string, CSEVariable)
|
|
or re.match(r"^[a-z0-9_.]+$", string, re.IGNORECASE)
|
|
or re.match(r"^\([^)]*\)$", string, re.IGNORECASE)
|
|
or string == ""
|
|
):
|
|
return string
|
|
# don't put extra parens for strings that are already wrapped in parens
|
|
if all_in_parens(string):
|
|
return string
|
|
return f"({string})"
|
|
|
|
def __getattr__(self, item):
|
|
return getattr(self._parent, item)
|
|
|
|
@staticmethod
|
|
def constant(value, dtype):
|
|
return repr(value)
|
|
|
|
@staticmethod
|
|
def libdevice_sigmoid(x):
|
|
one = ops.constant(1, torch.int32)
|
|
return ops.truediv(one, ops.add(one, ops.libdevice_exp(ops.neg(x))))
|
|
|
|
@staticmethod
|
|
def libdevice_abs(x):
|
|
return ops.abs(x)
|
|
|
|
@staticmethod
|
|
def libdevice_sqrt(x):
|
|
return ops.sqrt(x)
|
|
|
|
@staticmethod
|
|
def libdevice_cos(x):
|
|
return ops.cos(x)
|
|
|
|
@staticmethod
|
|
def libdevice_sin(x):
|
|
return ops.sin(x)
|
|
|
|
@staticmethod
|
|
def libdevice_log(x):
|
|
return ops.log(x)
|
|
|
|
@staticmethod
|
|
def libdevice_exp(x):
|
|
return ops.exp(x)
|
|
|
|
@staticmethod
|
|
def bitwise_not(x):
|
|
return f"~{OpOverrides.paren(x)}"
|
|
|
|
@staticmethod
|
|
def logical_not(a):
|
|
return f"{OpOverrides.paren(a)} == 0"
|
|
|
|
@staticmethod
|
|
def bitwise_and(x, y):
|
|
return f"{OpOverrides.paren(x)} & {OpOverrides.paren(y)}"
|
|
|
|
@staticmethod
|
|
def bitwise_or(x, y):
|
|
return f"{OpOverrides.paren(x)} | {OpOverrides.paren(y)}"
|
|
|
|
@staticmethod
|
|
def bitwise_xor(x, y):
|
|
return f"{OpOverrides.paren(x)} ^ {OpOverrides.paren(y)}"
|
|
|
|
@staticmethod
|
|
def bitwise_left_shift(x, y):
|
|
return f"{OpOverrides.paren(x)} << {OpOverrides.paren(y)}"
|
|
|
|
@staticmethod
|
|
def bitwise_right_shift(x, y):
|
|
return f"{OpOverrides.paren(x)} >> {OpOverrides.paren(y)}"
|
|
|
|
@staticmethod
|
|
def int_truediv(a, b):
|
|
# TODO: this is wrong
|
|
# TODO: an easy bandaid is to generate runtime asserts that it's
|
|
# <= 2**53, which is when this equation is correct
|
|
return ops.truediv(a, b)
|
|
|
|
@staticmethod
|
|
def load_seed(name, offset):
|
|
return ops.load(name, sympy.Integer(offset))
|
|
|
|
@classmethod
|
|
def _initialize_pointwise_overrides(cls, target):
|
|
assert target in {"triton", "cpp", "cppvec"}, target
|
|
|
|
for funcname, data in pointwise_overrides_data.items():
|
|
impl = getattr(data, target)
|
|
if impl is None:
|
|
continue
|
|
setattr(cls, funcname, staticmethod(impl))
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class OverridesData:
|
|
name: str
|
|
cpp: Callable[..., str]
|
|
# None when not impl in libdevice/triton
|
|
triton: Optional[Callable[..., str]] = None
|
|
# None when not impl in aten/.../vec
|
|
cppvec: Optional[Callable[..., str]] = None
|
|
type_promotion_kind: ELEMENTWISE_TYPE_PROMOTION_KIND = (
|
|
ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT
|
|
)
|
|
|
|
|
|
# NB: if you add a new special function, don't forget to update
|
|
# torch._inductor.ops_handler too
|
|
pointwise_overrides_data: Dict[str, OverridesData] = dict(
|
|
airy_ai=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x: f"airy_ai_forward({x})",
|
|
name="special_airy_ai",
|
|
),
|
|
bessel_j0=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x: f"bessel_j0_forward({x})",
|
|
triton=lambda x: f"libdevice.j0({x})",
|
|
name="special_bessel_j0",
|
|
),
|
|
bessel_j1=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x: f"bessel_j1_forward({x})",
|
|
triton=lambda x: f"libdevice.j1({x})",
|
|
name="special_bessel_j1",
|
|
),
|
|
bessel_y0=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x: f"bessel_y0_forward({x})",
|
|
triton=lambda x: f"libdevice.y0({x})",
|
|
name="special_bessel_y0",
|
|
),
|
|
bessel_y1=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x: f"bessel_y1_forward({x})",
|
|
triton=lambda x: f"libdevice.y1({x})",
|
|
name="special_bessel_y1",
|
|
),
|
|
digamma=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x: f"calc_digamma({x})",
|
|
cppvec=lambda x: f"{x}.digamma()",
|
|
name="digamma",
|
|
),
|
|
# no cpp nor triton implementation for entr, it is defined as decomposition
|
|
# erf, erfc
|
|
erfcx=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x: f"calc_erfcx({x})",
|
|
triton=lambda x: f"libdevice.erfcx({x})",
|
|
name="special_erfcx",
|
|
),
|
|
fma=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x, y, z: f"std::fma({x}, {y}, {z})",
|
|
cppvec=lambda x, y, z: f"fmadd({x}, {y}, {z})",
|
|
triton=lambda x, y, z: f"libdevice.fma({x}, {y}, {z})",
|
|
name="fma",
|
|
),
|
|
# erfinv, exp2, expit, gammaln
|
|
igamma=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x, y: f"calc_igamma({x}, {y})",
|
|
name="igamma",
|
|
),
|
|
igammac=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x, y: f"calc_igammac({x}, {y})",
|
|
name="igammac",
|
|
),
|
|
gammainc=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x, y: f"calc_igamma({x}, {y})",
|
|
name="special_gammainc",
|
|
),
|
|
gammaincc=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x, y: f"calc_igammac({x}, {y})",
|
|
name="special_gammaincc",
|
|
),
|
|
i0=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x: f"calc_i0({x})",
|
|
triton=lambda x: f"libdevice.cyl_bessel_i0({x})",
|
|
cppvec=lambda x: f"{x}.i0()",
|
|
name="i0",
|
|
),
|
|
i0e=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x: f"calc_i0e({x})",
|
|
cppvec=lambda x: f"{x}.i0e()",
|
|
name="special_i0e",
|
|
),
|
|
i1=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x: f"calc_i1({x})",
|
|
triton=lambda x: f"libdevice.cyl_bessel_i1({x})",
|
|
name="special_i1",
|
|
),
|
|
i1e=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x: f"calc_i1e({x})",
|
|
name="special_i1e",
|
|
),
|
|
log_ndtr=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x: f"calc_log_ndtr({x})",
|
|
name="special_log_ndtr",
|
|
),
|
|
# logit
|
|
modified_bessel_i0=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x: f"modified_bessel_i0_forward({x})",
|
|
triton=lambda x: f"libdevice.cyl_bessel_i0({x})",
|
|
name="special_modified_bessel_i0",
|
|
),
|
|
modified_bessel_i1=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x: f"modified_bessel_i1_forward({x})",
|
|
triton=lambda x: f"libdevice.cyl_bessel_i1({x})",
|
|
name="special_modified_bessel_i1",
|
|
),
|
|
modified_bessel_k0=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x: f"modified_bessel_k0_forward({x})",
|
|
name="special_modified_bessel_k0",
|
|
),
|
|
modified_bessel_k1=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x: f"modified_bessel_k1_forward({x})",
|
|
name="special_modified_bessel_k1",
|
|
),
|
|
# multigamma
|
|
ndtr=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x: f"calc_ndtr({x})",
|
|
name="special_ndtr",
|
|
),
|
|
ndtri=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x: f"calc_ndtri({x})",
|
|
name="special_ndtri",
|
|
),
|
|
polygamma=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x, y: f"calc_polygamma({y}, {x})",
|
|
name="polygamma",
|
|
),
|
|
# psi - alias to digamma
|
|
# round
|
|
scaled_modified_bessel_k0=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x: f"scaled_modified_bessel_k0_forward({x})",
|
|
name="special_scaled_modified_bessel_k0",
|
|
),
|
|
scaled_modified_bessel_k1=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x: f"scaled_modified_bessel_k1_forward({x})",
|
|
name="special_scaled_modified_bessel_k1",
|
|
),
|
|
# sinc
|
|
spherical_bessel_j0=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x: f"spherical_bessel_j0_forward({x})",
|
|
name="special_spherical_bessel_j0",
|
|
),
|
|
zeta=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x, y: f"zeta({x}, {y})",
|
|
name="special_zeta",
|
|
),
|
|
chebyshev_polynomial_t=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x, y: f"chebyshev_polynomial_t_forward({x}, {y})",
|
|
name="special_chebyshev_polynomial_t",
|
|
),
|
|
chebyshev_polynomial_u=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x, y: f"chebyshev_polynomial_u_forward({x}, {y})",
|
|
name="special_chebyshev_polynomial_u",
|
|
),
|
|
chebyshev_polynomial_v=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x, y: f"chebyshev_polynomial_v_forward({x}, {y})",
|
|
name="special_chebyshev_polynomial_v",
|
|
),
|
|
chebyshev_polynomial_w=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x, y: f"chebyshev_polynomial_w_forward({x}, {y})",
|
|
name="special_chebyshev_polynomial_w",
|
|
),
|
|
legendre_polynomial_p=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x, y: f"legendre_polynomial_p_forward({x}, {y})",
|
|
name="special_legendre_polynomial_p",
|
|
),
|
|
shifted_chebyshev_polynomial_t=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x, y: f"shifted_chebyshev_polynomial_t_forward({x}, {y})",
|
|
name="special_shifted_chebyshev_polynomial_t",
|
|
),
|
|
shifted_chebyshev_polynomial_u=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x, y: f"shifted_chebyshev_polynomial_u_forward({x}, {y})",
|
|
name="special_shifted_chebyshev_polynomial_u",
|
|
),
|
|
shifted_chebyshev_polynomial_v=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x, y: f"shifted_chebyshev_polynomial_v_forward({x}, {y})",
|
|
name="special_shifted_chebyshev_polynomial_v",
|
|
),
|
|
shifted_chebyshev_polynomial_w=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x, y: f"shifted_chebyshev_polynomial_w_forward({x}, {y})",
|
|
name="special_shifted_chebyshev_polynomial_w",
|
|
),
|
|
hermite_polynomial_h=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x, y: f"hermite_polynomial_h_forward({x}, {y})",
|
|
name="special_hermite_polynomial_h",
|
|
),
|
|
hermite_polynomial_he=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x, y: f"hermite_polynomial_he_forward({x}, {y})",
|
|
name="special_hermite_polynomial_he",
|
|
),
|
|
laguerre_polynomial_l=OverridesData(
|
|
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
|
cpp=lambda x, y: f"laguerre_polynomial_l_forward({x}, {y})",
|
|
name="special_laguerre_polynomial_l",
|
|
),
|
|
)
|
|
|
|
|
|
# Use mypy to check protocol implemented correctly
|
|
def _typecheck_OpOverrides(h: OpOverrides) -> OpsHandler[str]:
|
|
return h
|
|
|
|
|
|
class DeferredLine(DeferredLineBase):
|
|
"""A line that can be 'unwritten' by adding name to V.graph.removed_buffers"""
|
|
|
|
def __init__(self, name, line):
|
|
super().__init__(line)
|
|
self.name = name
|
|
assert not isinstance(line, DeferredLineBase)
|
|
|
|
def __call__(self):
|
|
if all(
|
|
self.name not in x
|
|
for x in (
|
|
V.graph.removed_buffers,
|
|
V.kernel.removed_buffers,
|
|
V.graph.inplaced_to_remove,
|
|
V.kernel.inplaced_to_remove,
|
|
)
|
|
):
|
|
return self.line
|
|
return None
|
|
|
|
def _new_line(self, line):
|
|
return DeferredLine(self.name, line)
|
|
|
|
|
|
class BracesBuffer(IndentedBuffer):
|
|
def indent(self, offset=1):
|
|
@contextlib.contextmanager
|
|
def ctx():
|
|
for _ in range(offset):
|
|
self.writeline("{")
|
|
self._indent += 1
|
|
for _ in range(-offset):
|
|
self._indent -= 1
|
|
self.writeline("}")
|
|
yield
|
|
for _ in range(-offset):
|
|
self.writeline("{")
|
|
self._indent += 1
|
|
for _ in range(offset):
|
|
self._indent -= 1
|
|
self.writeline("}")
|
|
|
|
return ctx()
|
|
|
|
|
|
class InplacedBuffer(NamedTuple):
|
|
inner_name: str
|
|
other_names: List[str]
|
|
|
|
|
|
class KernelArgs:
|
|
@staticmethod
|
|
def _lookup(prefix, odict, name):
|
|
assert isinstance(name, (str, sympy.Symbol))
|
|
if name not in odict:
|
|
odict[name] = f"{prefix}{len(odict)}"
|
|
return odict[name]
|
|
|
|
def __init__(self, sizevars=None):
|
|
self.input_buffers = {}
|
|
self.output_buffers = {}
|
|
self.inplace_buffers = {}
|
|
self.sizevars = sizevars or {}
|
|
self.workspace_args = []
|
|
|
|
def __repr__(self):
|
|
return "KernelArgs({})".format(
|
|
", ".join(
|
|
map(
|
|
repr,
|
|
[
|
|
self.input_buffers,
|
|
self.output_buffers,
|
|
self.inplace_buffers,
|
|
self.sizevars,
|
|
],
|
|
)
|
|
)
|
|
)
|
|
|
|
def _buffer_is_marked_removed(self, name):
|
|
return isinstance(name, str) and name.startswith("REMOVED")
|
|
|
|
def input(self, name):
|
|
if V.graph.scheduler:
|
|
name = V.graph.scheduler.mutation_real_name.get(name, name)
|
|
assert name not in V.graph.removed_buffers, name
|
|
if name in self.output_buffers:
|
|
return self.output_buffers[name]
|
|
if name in self.inplace_buffers:
|
|
return self.inplace_buffers[name].inner_name
|
|
if name.startswith("seed"):
|
|
return self._lookup("seed", self.input_buffers, name)
|
|
return self._lookup("in_ptr", self.input_buffers, name)
|
|
|
|
def output(self, name):
|
|
if V.graph.scheduler:
|
|
name = V.graph.scheduler.mutation_real_name.get(name, name)
|
|
assert name not in V.graph.removed_buffers, name
|
|
if name in self.inplace_buffers:
|
|
return self.inplace_buffers[name].inner_name
|
|
return self._lookup("out_ptr", self.output_buffers, name)
|
|
|
|
def make_inplace(self, input_name, output_name):
|
|
assert output_name not in self.inplace_buffers
|
|
if input_name in self.inplace_buffers:
|
|
buf = self.inplace_buffers[input_name]
|
|
buf.other_names.append(output_name)
|
|
self.inplace_buffers[output_name] = buf
|
|
else:
|
|
buf = InplacedBuffer(
|
|
f"in_out_ptr{len(unique(self.inplace_buffers.values()))}",
|
|
[input_name, output_name],
|
|
)
|
|
self.inplace_buffers[input_name] = buf
|
|
self.inplace_buffers[output_name] = buf
|
|
|
|
def workspace(self, nbytes: sympy.Expr, zero_fill: bool):
|
|
"""
|
|
Allocate or extend a workspace buffer of nbytes bytes.
|
|
|
|
This function manages the allocation of a workspace buffer. It either creates
|
|
a new WorkspaceArg or extends an existing one.
|
|
|
|
Note:
|
|
- Calling this function will in-place mutate the args by adding or updating
|
|
a WorkspaceArg.
|
|
- The codegen for generating the Python argdefs and call_defs will check
|
|
this field and allocate the buffer accordingly.
|
|
- A new argument "ws_ptr" will be present in the generated code.
|
|
|
|
Args:
|
|
nbytes (sympy.Expr): The number of bytes to allocate.
|
|
zero_fill (bool): Whether to initialize the buffer to zero.
|
|
|
|
Returns:
|
|
Tuple[str, int]: A tuple containing:
|
|
- "ws_ptr": A string identifier for the workspace pointer.
|
|
- offset: An integer representing the byte offset in the workspace.
|
|
"""
|
|
arg = WorkspaceArg(
|
|
count=nbytes,
|
|
zero_mode=WorkspaceZeroMode.from_bool(zero_fill),
|
|
device=V.graph.get_current_device_or_throw(),
|
|
outer_name=WorkspaceArg.unique_name(),
|
|
)
|
|
for i, existing_arg in enumerate(self.workspace_args):
|
|
if WorkspaceArg.can_join(existing_arg, arg):
|
|
offset = existing_arg.count
|
|
self.workspace_args[i] = WorkspaceArg.join(existing_arg, arg)
|
|
return existing_arg.inner_name, offset
|
|
assert (
|
|
existing_arg.inner_name != arg.inner_name
|
|
and existing_arg.outer_name != arg.outer_name
|
|
)
|
|
self.workspace_args.append(arg)
|
|
return arg.inner_name, 0
|
|
|
|
def semaphores(self, min_size: sympy.Expr):
|
|
"""
|
|
Lazily allocate a graph-wide semaphores buffer with at least min_size. This is a single buffer shared by
|
|
all kernels and zero initialized once at graph start. Each kernel must leave the buffer zeroed on exit.
|
|
|
|
Warning: multiple calls to this function will return the same buffer.
|
|
|
|
Args:
|
|
min_size: the number of int32 semaphores required
|
|
|
|
Returns:
|
|
name of the semaphores buffer
|
|
"""
|
|
current_device = V.graph.get_current_device_or_throw()
|
|
arg = WorkspaceArg(
|
|
count=min_size,
|
|
zero_mode=WorkspaceZeroMode.ZERO_PER_GRAPH,
|
|
dtype=torch.uint32,
|
|
inner_name="sem_ptr",
|
|
outer_name=f"semaphores_{current_device.type}_{current_device.index}",
|
|
device=current_device,
|
|
)
|
|
for existing_arg in self.workspace_args:
|
|
if existing_arg.inner_name == arg.inner_name:
|
|
assert arg == existing_arg
|
|
self.workspace_args.append(arg)
|
|
return arg.inner_name
|
|
|
|
def seed_offset(self, name, value):
|
|
if value in self.sizevars:
|
|
return self.sizevars[value]
|
|
if name in self.sizevars.values():
|
|
name = (
|
|
f"{name}{sum(1 for v in self.sizevars.values() if v.startswith(name))}"
|
|
)
|
|
self.sizevars[value] = name
|
|
return name
|
|
|
|
def size(self, name):
|
|
if str(name) == "seed":
|
|
self.sizevars["seed"] = "seed"
|
|
return "seed"
|
|
return self._lookup("ks", self.sizevars, name)
|
|
|
|
def call_names(self):
|
|
return chain(
|
|
self.input_buffers.keys(), self.output_buffers.keys(), self.sizevars.keys()
|
|
)
|
|
|
|
def wrap_ptr_arg(self, buf, dtype):
|
|
return buf
|
|
|
|
def wrap_size_arg(self, size):
|
|
return str(size)
|
|
|
|
def cpp_argdefs(self):
|
|
from .cpp_utils import DTYPE_TO_CPP, INDEX_TYPE
|
|
|
|
call_args = []
|
|
arg_defs = []
|
|
arg_types = []
|
|
for inplaced in unique(self.inplace_buffers.values()):
|
|
if self._buffer_is_marked_removed(inplaced):
|
|
continue
|
|
outer = inplaced.other_names[-1]
|
|
inner = inplaced.inner_name
|
|
dtype = V.graph.get_dtype(outer)
|
|
cpp_dtype = DTYPE_TO_CPP[dtype]
|
|
arg_defs.append(f"{cpp_dtype}* {inner}")
|
|
call_args.append(self.wrap_ptr_arg(outer, dtype))
|
|
arg_types.append(f"{cpp_dtype}*")
|
|
for outer, inner in self.input_buffers.items():
|
|
if outer in self.inplace_buffers:
|
|
continue
|
|
dtype = V.graph.get_dtype(outer)
|
|
cpp_dtype = DTYPE_TO_CPP[dtype]
|
|
arg_defs.append(f"const {cpp_dtype}* {inner}")
|
|
call_args.append(self.wrap_ptr_arg(outer, dtype))
|
|
arg_types.append(f"const {cpp_dtype}*")
|
|
for outer, inner in self.output_buffers.items():
|
|
if outer in self.inplace_buffers or self._buffer_is_marked_removed(inner):
|
|
continue
|
|
dtype = V.graph.get_dtype(outer)
|
|
cpp_dtype = DTYPE_TO_CPP[dtype]
|
|
arg_defs.append(f"{cpp_dtype}* {inner}")
|
|
call_args.append(self.wrap_ptr_arg(outer, dtype))
|
|
arg_types.append(f"{cpp_dtype}*")
|
|
for outer, inner in self.sizevars.items():
|
|
arg_defs.append(f"const {INDEX_TYPE} {inner}")
|
|
call_args.append(self.wrap_size_arg(outer))
|
|
arg_types.append(f"const {INDEX_TYPE}")
|
|
if V.graph.wrapper_code:
|
|
V.graph.wrapper_code.ensure_size_computed(outer)
|
|
assert not self.workspace_args, "Workspace not supported on CPU "
|
|
return arg_defs, call_args, arg_types
|
|
|
|
def python_argdefs(self):
|
|
arg_defs: List[str] = []
|
|
call_args: List[str] = []
|
|
arg_types: List[torch.dtype] = []
|
|
precompile_args: List[Union[TensorArg, SizeArg, WorkspaceArg]] = []
|
|
for inplaced in unique(self.inplace_buffers.values()):
|
|
if self._buffer_is_marked_removed(inplaced):
|
|
continue
|
|
arg_defs.append(inplaced.inner_name)
|
|
call_args.append(inplaced.other_names[-1])
|
|
arg_types.append(V.graph.get_dtype(inplaced.other_names[-1]))
|
|
precompile_args.append(
|
|
TensorArg(
|
|
name=inplaced.inner_name,
|
|
buffer=inplaced.other_names[-1],
|
|
dtype=V.graph.get_dtype(inplaced.other_names[-1]),
|
|
)
|
|
)
|
|
for outer, inner in chain(
|
|
self.input_buffers.items(), self.output_buffers.items()
|
|
):
|
|
if outer in self.inplace_buffers or self._buffer_is_marked_removed(inner):
|
|
continue
|
|
arg_defs.append(inner)
|
|
call_args.append(outer)
|
|
arg_types.append(V.graph.get_dtype(outer))
|
|
precompile_args.append(
|
|
TensorArg(
|
|
name=inner,
|
|
buffer=outer,
|
|
dtype=V.graph.get_dtype(outer),
|
|
)
|
|
)
|
|
for outer, inner in self.sizevars.items():
|
|
arg_defs.append(inner)
|
|
call_args.append(outer)
|
|
arg_types.append(type(outer)) # type: ignore[arg-type]
|
|
precompile_args.append(SizeArg(inner, outer))
|
|
if V.graph.wrapper_code:
|
|
V.graph.wrapper_code.ensure_size_computed(outer)
|
|
for arg in self.workspace_args:
|
|
arg_defs.append(arg.inner_name)
|
|
call_args.append(arg.outer_name)
|
|
precompile_args.append(arg)
|
|
arg_types.append(arg.dtype)
|
|
return arg_defs, call_args, precompile_args, arg_types
|
|
|
|
def aliases(self):
|
|
for inplaced in unique(self.inplace_buffers.values()):
|
|
if self._buffer_is_marked_removed(inplaced):
|
|
continue
|
|
for other in inplaced.other_names:
|
|
if (
|
|
other in V.graph.inplaced_to_remove
|
|
or other in V.kernel.inplaced_to_remove
|
|
):
|
|
continue
|
|
if other in self.input_buffers:
|
|
yield self.input_buffers[other], inplaced.inner_name
|
|
if other in self.output_buffers:
|
|
yield self.output_buffers[other], inplaced.inner_name
|
|
|
|
def is_removed(self, name):
|
|
def _is_removed(name, buffers):
|
|
return name not in buffers or self._buffer_is_marked_removed(buffers[name])
|
|
|
|
return _is_removed(name, self.output_buffers) and _is_removed(
|
|
name, self.inplace_buffers
|
|
)
|
|
|
|
# Includes inplace buffers, excludes removed buffers. Essentially,
|
|
# after you do a call into this kernel, which buffers actually contain
|
|
# updated data? Modeled off of python_argdefs.
|
|
def live_output_buffers(self):
|
|
live_outs = OrderedSet() # type: ignore[var-annotated]
|
|
for inplaced in unique(self.inplace_buffers.values()):
|
|
if self._buffer_is_marked_removed(inplaced):
|
|
continue
|
|
live_outs.add(inplaced.other_names[-1])
|
|
for outer, inner in self.output_buffers.items():
|
|
if outer in self.inplace_buffers or self._buffer_is_marked_removed(inner):
|
|
continue
|
|
live_outs.add(outer)
|
|
return live_outs
|
|
|
|
|
|
class CSEVariable:
|
|
"""A CSEVariable is just a name for an expression but it is useful to be able to annotate them on a backend dependent basis.
|
|
To do so, the backends can simply overload `Kernel.create_cse_var`
|
|
The "CSEVariable.update_on_args" method gives you a hook for annotations
|
|
See example of TritonCSEVariable in triton.py
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
name,
|
|
bounds: ValueRanges[Any],
|
|
dtype: Optional[torch.dtype] = None,
|
|
):
|
|
assert isinstance(bounds, ValueRanges)
|
|
self.name = name
|
|
self.bounds = bounds
|
|
self.use_count = 1 # track how many times this expression is used
|
|
self.dtype = dtype
|
|
|
|
def __str__(self):
|
|
return self.name
|
|
|
|
def __hash__(self) -> int:
|
|
return hash(self.name)
|
|
|
|
def __eq__(self, other) -> bool:
|
|
return type(other) == type(self) and other.name == self.name
|
|
|
|
def update_on_args(self, name, args, kwargs):
|
|
pass
|
|
|
|
def __repr__(self):
|
|
return f"{self.__class__.__name__}({self.name!r})"
|
|
|
|
|
|
class CppWrapperKernelArgs(KernelArgs):
|
|
def wrap_size_arg(self, size):
|
|
return f"{size}"
|
|
|
|
|
|
class CSE:
|
|
"""Common subexpression elimination"""
|
|
|
|
def __init__(
|
|
self,
|
|
prefix="",
|
|
suffix="",
|
|
name_prefix="tmp",
|
|
iter_buffers=None,
|
|
store_cache=None,
|
|
reduction_cache=None,
|
|
varname_map=None,
|
|
):
|
|
self.prefix = prefix
|
|
self.suffix = suffix
|
|
self._cache = {}
|
|
self.name_prefix = name_prefix
|
|
self.store_cache = store_cache or {}
|
|
self.reduction_cache = reduction_cache or {}
|
|
self.iter_buffer_ids = iter_buffers or itertools.count()
|
|
self.invalidated_stores = OrderedSet() # type: ignore[var-annotated]
|
|
self.varname_map = varname_map or {}
|
|
|
|
def invalidate(self, keep_vars: Union[OrderedSet[str], Set[Never]]):
|
|
for name, tmp in list(self.store_cache.items()):
|
|
if tmp not in keep_vars:
|
|
del self.store_cache[name]
|
|
self.invalidated_stores.add(name)
|
|
self._cache = {k: v for k, v in self._cache.items() if v in keep_vars}
|
|
|
|
def clone(self):
|
|
# Note(fdrocha): reduction_cache is not being cloned, not sure if this is intentional
|
|
return type(self)(
|
|
prefix=self.prefix,
|
|
suffix=self.suffix,
|
|
name_prefix=self.name_prefix,
|
|
iter_buffers=self.iter_buffer_ids,
|
|
store_cache=self.store_cache,
|
|
varname_map=self.varname_map,
|
|
)
|
|
|
|
def augment_key(self, cache_key: object) -> object:
|
|
"Override this method to augment cache key with backend specifics"
|
|
return cache_key
|
|
|
|
def put(self, cache_key: object, val: CSEVariable) -> None:
|
|
self._cache[self.augment_key(cache_key)] = val
|
|
|
|
def contains(self, cache_key) -> bool:
|
|
return self.augment_key(cache_key) in self._cache
|
|
|
|
def try_get(self, cache_key: object) -> Optional[CSEVariable]:
|
|
return self._cache.get(self.augment_key(cache_key), None)
|
|
|
|
def get(self, cache_key: object) -> CSEVariable:
|
|
return self._cache[self.augment_key(cache_key)]
|
|
|
|
def generate(
|
|
self,
|
|
buffer: IndentedBuffer,
|
|
expr: Union[str, CSEVariable, OpsValue, IndentedBuffer, DeferredLineBase],
|
|
*,
|
|
bounds: ValueRanges[Any] = ValueRanges.unknown(),
|
|
write=True,
|
|
assignment=True,
|
|
dtype: Optional[torch.dtype] = None,
|
|
) -> CSEVariable:
|
|
if isinstance(expr, OpsValue):
|
|
expr = expr.value
|
|
|
|
assert write or assignment
|
|
if isinstance(expr, CSEVariable):
|
|
# If the expressions were always created with all the information, we could
|
|
# assert expr.bounds == bounds, but sometimes the expression is created
|
|
# with the loose ValueRanges.unknown(), so we need to tighten the bounds
|
|
expr.bounds = expr.bounds.tighten(bounds)
|
|
expr.use_count += 1
|
|
return expr
|
|
elif isinstance(expr, IndentedBuffer):
|
|
cache_key = expr.getvalue()
|
|
elif isinstance(expr, DeferredLineBase):
|
|
cache_key = expr.line
|
|
else:
|
|
assert isinstance(expr, str)
|
|
cache_key = expr
|
|
var = self.try_get(cache_key)
|
|
if not var:
|
|
var = self.newvar(bounds, dtype)
|
|
self.put(cache_key, var)
|
|
if write:
|
|
if V.kernel.current_node:
|
|
V.kernel.current_node.codegen_originating_info(
|
|
buffer, only_once=True
|
|
)
|
|
if isinstance(expr, IndentedBuffer):
|
|
if assignment:
|
|
buffer.writeline(f"{self.prefix}{var} =")
|
|
buffer.splice(expr)
|
|
buffer.writeline(self.suffix)
|
|
elif isinstance(expr, DeferredLineBase):
|
|
assert assignment
|
|
buffer.writeline(
|
|
expr._new_line(f"{self.prefix}{var} = {expr.line}{self.suffix}")
|
|
)
|
|
else:
|
|
if assignment:
|
|
line = f"{self.prefix}{var} = {expr}{self.suffix}"
|
|
else:
|
|
line = f"{expr}{self.suffix}"
|
|
buffer.writeline(line)
|
|
else:
|
|
var.bounds = var.bounds.tighten(bounds)
|
|
var.use_count += 1
|
|
|
|
return var
|
|
|
|
def newvar(
|
|
self,
|
|
bounds: ValueRanges[Any] = ValueRanges.unknown(),
|
|
dtype: Optional[torch.dtype] = None,
|
|
) -> CSEVariable:
|
|
var_name = f"{self.name_prefix}{next(self.iter_buffer_ids)}"
|
|
var = V.kernel.create_cse_var(var_name, bounds, dtype)
|
|
self.varname_map[var_name] = var
|
|
return var
|
|
|
|
def namedvar(
|
|
self,
|
|
name: str,
|
|
bounds: ValueRanges[Any] = ValueRanges.unknown(),
|
|
dtype: Optional[torch.dtype] = None,
|
|
) -> CSEVariable:
|
|
torch._check_value(
|
|
name not in self.varname_map, lambda: f"duplicate name: {name}"
|
|
)
|
|
var = V.kernel.create_cse_var(name, bounds, dtype)
|
|
self.varname_map[name] = var
|
|
return var
|
|
|
|
|
|
class CodeGen:
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.exit_stack = contextlib.ExitStack()
|
|
|
|
def __enter__(self):
|
|
self.exit_stack.__enter__()
|
|
return self
|
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
|
self.exit_stack.__exit__(exc_type, exc_val, exc_tb)
|
|
|
|
|
|
class ScopedDict:
|
|
def __init__(self, original_dict):
|
|
self.original_dict = original_dict
|
|
self.new_items = {}
|
|
|
|
def __getitem__(self, key):
|
|
if key in self.new_items:
|
|
return self.new_items[key]
|
|
return self.original_dict[key]
|
|
|
|
def __setitem__(self, key, value):
|
|
self.new_items[key] = value
|
|
|
|
def __contains__(self, key):
|
|
return key in self.new_items or key in self.original_dict
|
|
|
|
def get(self, key, default=None):
|
|
if key in self.new_items:
|
|
return self.new_items[key]
|
|
return self.original_dict.get(key, default)
|
|
|
|
|
|
class Kernel(CodeGen):
|
|
newvar_prefix = ""
|
|
suffix = ""
|
|
overrides: Optional[Callable[[OpsHandler[Any]], OpsHandler[Any]]] = None
|
|
# TODO: these look dead, but with all the getattr it's hard to tell...
|
|
load_format: None = None
|
|
store_format: None = None
|
|
|
|
def __init__(self, args=None, increase_kernel_count=True):
|
|
super().__init__()
|
|
if increase_kernel_count:
|
|
metrics.generated_kernel_count += 1
|
|
self.args = args or KernelArgs()
|
|
self.loads = IndentedBuffer()
|
|
self.compute = IndentedBuffer()
|
|
self.stores = IndentedBuffer()
|
|
|
|
self.num_load = 0
|
|
self.num_reduction = 0
|
|
|
|
self.cse: CSE = CSE(self.newvar_prefix, self.suffix)
|
|
self.must_keep_buffers = OrderedSet() # type: ignore[var-annotated]
|
|
self.store_buffer_names = OrderedSet() # type: ignore[var-annotated]
|
|
self._load_mask = None
|
|
self._load_other = None
|
|
# OrderedSet in set_current_node
|
|
self.current_node = None
|
|
self.node_to_bounds: Optional[Dict[torch.fx.Node, ValueRanges[Any]]] = None
|
|
|
|
self.removed_buffers = OrderedSet() # type: ignore[var-annotated]
|
|
self.inplaced_to_remove = OrderedSet() # type: ignore[var-annotated]
|
|
|
|
# key: the buffer to write
|
|
# value: the buffer to read and whose memory can be reused for
|
|
# the buffer specified by key
|
|
self.inplace_update_buffers = {}
|
|
# Set minimum number of elements processed per thread.
|
|
self.min_elem_per_thread = 1
|
|
self.kernel_name = None
|
|
|
|
@contextlib.contextmanager
|
|
def set_current_node(self, node):
|
|
prior = self.current_node
|
|
self.current_node = node
|
|
self.node_to_bounds = node._body.bounds().get_bounds()
|
|
try:
|
|
yield
|
|
finally:
|
|
self.current_node = prior
|
|
|
|
@contextlib.contextmanager
|
|
def swap_buffers(self, lb, cb=None, sb=None):
|
|
def scope_cse(cse):
|
|
new_cse = cse.clone()
|
|
new_cse._cache = ScopedDict(cse._cache)
|
|
new_cse.reduction_cache = ScopedDict(cse.reduction_cache)
|
|
new_cse.store_cache = ScopedDict(cse.store_cache)
|
|
return new_cse
|
|
|
|
if cb is None:
|
|
cb = lb
|
|
loads = self.loads
|
|
compute = self.compute
|
|
stores = self.stores
|
|
cse = self.cse
|
|
self.loads = lb
|
|
self.compute = cb
|
|
self.stores = sb
|
|
self.cse = scope_cse(cse)
|
|
try:
|
|
yield
|
|
finally:
|
|
self.loads = loads
|
|
self.compute = compute
|
|
self.stores = stores
|
|
self.cse = cse
|
|
|
|
def load(self, name: str, index: sympy.Expr) -> CSEVariable:
|
|
raise NotImplementedError
|
|
|
|
def indirect_load(self, name: str, index: sympy.Expr):
|
|
"""A load the depends on an index we have read"""
|
|
prior = self.loads
|
|
try:
|
|
# put the load in the compute section as it might have deps
|
|
self.loads = self.compute
|
|
return self.load(name, index)
|
|
finally:
|
|
self.loads = prior
|
|
|
|
def store_reduction(self, name: str, index: sympy.Expr, value: CSEVariable):
|
|
raise NotImplementedError
|
|
|
|
def store(
|
|
self, name: str, index: sympy.Expr, value: CSEVariable, mode: StoreMode = None
|
|
) -> None:
|
|
raise NotImplementedError
|
|
|
|
def reduction(
|
|
self,
|
|
dtype: torch.dtype,
|
|
src_dtype: torch.dtype,
|
|
reduction_type: ReductionType,
|
|
value: Union[CSEVariable, Tuple[CSEVariable, ...]],
|
|
) -> Union[CSEVariable, Tuple[CSEVariable, ...]]:
|
|
raise NotImplementedError
|
|
|
|
def scan(
|
|
self,
|
|
dtypes: Tuple[torch.dtype, ...],
|
|
combine_fn: Callable[
|
|
[Tuple[CSEVariable, ...], Tuple[CSEVariable, ...]], Tuple[CSEVariable, ...]
|
|
],
|
|
values: Tuple[CSEVariable, ...],
|
|
) -> Tuple[CSEVariable, ...]:
|
|
raise NotImplementedError
|
|
|
|
def sort(
|
|
self,
|
|
dtypes: Tuple[torch.dtype, ...],
|
|
values: Tuple[CSEVariable, ...],
|
|
stable: bool,
|
|
descending: bool,
|
|
) -> Tuple[CSEVariable, ...]:
|
|
raise NotImplementedError
|
|
|
|
def var_ranges(self):
|
|
raise NotImplementedError
|
|
|
|
def bucketize(
|
|
self,
|
|
values: CSEVariable,
|
|
boundaries: Tuple[str, sympy.Expr, sympy.Expr, sympy.Expr],
|
|
boundary_indices: CSEVariable,
|
|
indexing_dtype: torch.dtype,
|
|
right: bool,
|
|
sorter: Optional[Tuple[str, sympy.Expr]] = None,
|
|
sorter_indices: Optional[CSEVariable] = None,
|
|
) -> CSEVariable:
|
|
"""
|
|
See [Note: Inductor bucketize op]
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@property
|
|
def assert_function(self) -> str:
|
|
raise NotImplementedError
|
|
|
|
def indirect_assert(
|
|
self,
|
|
var: Union[CSEVariable, str],
|
|
lower: Optional[str],
|
|
upper: Optional[str],
|
|
mask: Optional[Union[CSEVariable, str]] = None,
|
|
) -> str:
|
|
if isinstance(var, CSEVariable):
|
|
var = str(var)
|
|
assert isinstance(var, str)
|
|
assert lower is None or isinstance(lower, str)
|
|
assert upper is None or isinstance(upper, str)
|
|
if lower and upper:
|
|
# The conditions need to be in parens because of Python's operator precedence.
|
|
# It'd be less error-prone to use and/or/not, which is suported by triton
|
|
cond = f"({lower} <= {var}) & ({var} < {upper})"
|
|
cond_print = f"{lower} <= {var} < {upper}"
|
|
elif lower:
|
|
cond = f"{lower} <= {var}"
|
|
cond_print = cond
|
|
else:
|
|
assert upper
|
|
cond = f"{var} < {upper}"
|
|
cond_print = cond
|
|
|
|
if mask:
|
|
cond = f"({cond}) | ~({mask})"
|
|
|
|
return f'{self.assert_function}({cond}, "index out of bounds: {cond_print}")'
|
|
|
|
def check_bounds(
|
|
self, expr: sympy.Expr, size: sympy.Expr, lower: bool, upper: bool
|
|
):
|
|
raise NotImplementedError
|
|
|
|
def index_to_str(self, index: sympy.Expr) -> str:
|
|
raise NotImplementedError
|
|
|
|
def __enter__(self):
|
|
# TODO: hoist this to top level
|
|
class CSEProxy:
|
|
self.name = "CSEProxy"
|
|
vr_analysis = ValueRangeAnalysis()
|
|
|
|
@staticmethod
|
|
def __getattr__(name: str) -> Callable[..., CSEVariable]: # type: ignore[misc]
|
|
def inner(*args, **kwargs):
|
|
bounds = CSEProxy._bound_variable(name, *args, **kwargs)
|
|
|
|
value = getattr(parent_handler, name)(*args, **kwargs) # type: ignore[has-type]
|
|
dtype_handler = DtypePropagationOpsHandler()
|
|
|
|
output_idx = 0
|
|
|
|
def do_cse(v):
|
|
# cpp backend doesnt set current device - TODO: fix
|
|
if V.graph.current_device is not None:
|
|
device_str = V.graph.get_current_device_or_throw().type
|
|
triton_backend = (
|
|
config.cpu_backend == "triton"
|
|
if device_str == "cpu"
|
|
else config.cuda_backend == "triton"
|
|
)
|
|
else:
|
|
triton_backend = False
|
|
|
|
# only triton backend tracks dtype currently
|
|
if triton_backend:
|
|
if name == "masked":
|
|
output_dtype = value.dtype
|
|
else:
|
|
output_dtype = getattr(
|
|
dtype_handler,
|
|
name,
|
|
)(*args, **kwargs)
|
|
else:
|
|
# cpp backend doesnt track dtype yet
|
|
output_dtype = None
|
|
|
|
csevar = V.kernel.cse.generate(
|
|
V.kernel.compute,
|
|
v,
|
|
bounds=bounds,
|
|
dtype=output_dtype,
|
|
)
|
|
|
|
nonlocal output_idx
|
|
if (
|
|
config.test_configs.runtime_triton_dtype_assert
|
|
and triton_backend
|
|
):
|
|
from torch._inductor.codegen.triton import triton_type
|
|
|
|
# we tree_map over the output, so we need to fetch corresponding dtype
|
|
if isinstance(output_dtype, (list, tuple)):
|
|
output_dtype = output_dtype[output_idx]
|
|
|
|
V.kernel.compute.writeline(
|
|
f"tl.static_assert({csevar}.dtype == {triton_type(output_dtype)})"
|
|
)
|
|
output_idx += 1
|
|
|
|
csevar.update_on_args(name, args, kwargs)
|
|
|
|
return csevar
|
|
|
|
return pytree.tree_map(do_cse, value)
|
|
|
|
return inner
|
|
|
|
@staticmethod
|
|
def _bound_variable(name, *args, **kwargs):
|
|
"""
|
|
If the variable comes from an FX node, we forward the bound we have already computed
|
|
Else, if the variable when codegen'ing another op, we try to compute its bounds
|
|
"""
|
|
from ..select_algorithm import TritonTemplateKernel
|
|
|
|
if isinstance(V.kernel, TritonTemplateKernel):
|
|
return ValueRanges.unknown()
|
|
|
|
fx_node = V.interpreter.current_node
|
|
if fx_node.target == name and self.node_to_bounds is not None:
|
|
assert isinstance(self.node_to_bounds, dict)
|
|
return self.node_to_bounds.get(fx_node, ValueRanges.unknown())
|
|
elif config.compute_all_bounds and hasattr(ValueRangeAnalysis, name):
|
|
# These create lots of inner strings. We would need to compute the bounds at the ops
|
|
# We will also likely not get much from computing VRs on these nodes
|
|
if any(
|
|
s in fx_node.target
|
|
for s in ("set_indirect", "reduction", "scan")
|
|
):
|
|
return ValueRanges.unknown()
|
|
|
|
# We assume that the inputs come from `ops.` and are not strings. If you want to generate
|
|
# intermediary strings, wrap them in CSE variables with properly initialised bounds.
|
|
|
|
# If there is no FX bound but we know how to compute one we do so
|
|
assert not kwargs
|
|
|
|
def arg_to_bound(x):
|
|
if isinstance(x, CSEVariable):
|
|
return x.bounds
|
|
elif isinstance(x, sympy.Expr):
|
|
return bound_sympy(x)
|
|
else:
|
|
return x
|
|
|
|
arg_bounds = list(map(arg_to_bound, args))
|
|
return getattr(CSEProxy.vr_analysis, name)(*arg_bounds)
|
|
return ValueRanges.unknown()
|
|
|
|
@staticmethod
|
|
def indirect_indexing(
|
|
var: CSEVariable,
|
|
size: Union[sympy.Expr, int],
|
|
check: bool = True,
|
|
wrap_neg=True,
|
|
):
|
|
if isinstance(size, int):
|
|
size = sympy.Integer(size)
|
|
assert isinstance(size, sympy.Expr), size
|
|
# Skip CSE since this doesn't return an expression
|
|
|
|
if var.bounds.lower < 0: # type: ignore[operator]
|
|
if wrap_neg:
|
|
stm = ops.add(var, ops.index_expr(size, torch.long))
|
|
# Mixed negative and non-negative
|
|
if var.bounds.upper >= 0: # type: ignore[operator]
|
|
lt = ops.lt(var, 0)
|
|
stm = ops.where(lt, stm, var)
|
|
else:
|
|
stm = var
|
|
|
|
# Propagate bounds as we know how to compute them properly
|
|
new_bounds = ValueRanges.unknown()
|
|
if var.bounds != ValueRanges.unknown() and isinstance(
|
|
size, sympy.Number
|
|
):
|
|
# Take the negative part of the bound and add size to it
|
|
# Then take union of that and the positive part
|
|
# This is a tighter bound than that of a generic ops.where, as we have info on the cond
|
|
neg_bounds = var.bounds & ValueRanges(-int_oo, -1)
|
|
new_bounds = ValueRanges(
|
|
neg_bounds.lower + size, neg_bounds.upper + size
|
|
)
|
|
# We don't have a good way of representing the empty range
|
|
if var.bounds.upper >= 0: # type: ignore[operator]
|
|
pos = var.bounds & ValueRanges(0, int_oo)
|
|
new_bounds = new_bounds | pos
|
|
|
|
var = self.cse.generate(self.compute, stm, bounds=new_bounds)
|
|
|
|
sympy_var = parent_handler.indirect_indexing(var, size, check)
|
|
if generate_assert(check):
|
|
assert_lower = not (var.bounds.lower >= 0)
|
|
# value ranges cannot x < s when x and s are symbols
|
|
assert_upper = not isinstance(size, sympy.Number) or not (
|
|
var.bounds.upper < size
|
|
)
|
|
self.check_bounds(sympy_var, size, assert_lower, assert_upper)
|
|
return sympy_var
|
|
|
|
@staticmethod
|
|
def check_bounds(
|
|
expr: sympy.Expr, size: sympy.Expr, lower: bool, upper: bool
|
|
):
|
|
return self.check_bounds(expr, size, lower, upper)
|
|
|
|
@staticmethod
|
|
def load(name: str, index: sympy.Expr) -> CSEVariable:
|
|
if name in self.cse.invalidated_stores:
|
|
# A load from an invalidated store requires us to
|
|
# keep the actual buffer around
|
|
V.kernel.must_keep_buffers.add(name)
|
|
if free_symbol_is_type(index, SymT.TMP):
|
|
return self.indirect_load(name, index)
|
|
store_cache = self.cse.store_cache
|
|
if name in store_cache:
|
|
return store_cache[name]
|
|
out = self.load(name, index)
|
|
# count load that is not in the store_cache, and also not in the
|
|
# cse cache.
|
|
if out.use_count == 1:
|
|
self.num_load += 1
|
|
return out
|
|
|
|
@staticmethod
|
|
def _update_store_cache(name: str, value: CSEVariable):
|
|
self.cse.store_cache[name] = value
|
|
if self.current_node and name in V.graph.name_to_buffer:
|
|
buf = self.current_node.get_output(name)
|
|
for other_name in buf.get_mutations():
|
|
self.cse.store_cache[other_name] = value
|
|
|
|
@staticmethod
|
|
def store(
|
|
name: str, index: sympy.Expr, value: CSEVariable, mode: StoreMode = None
|
|
) -> None:
|
|
self.store_buffer_names.add(name)
|
|
if mode is None:
|
|
CSEProxy._update_store_cache(name, value)
|
|
if name not in V.graph.removed_buffers:
|
|
return self.store(name, index, value, mode=mode)
|
|
return None # type: ignore[return-value]
|
|
|
|
@staticmethod
|
|
def store_reduction(name: str, index: sympy.Expr, value: CSEVariable):
|
|
self.store_buffer_names.add(name)
|
|
CSEProxy._update_store_cache(name, value)
|
|
|
|
if name not in V.graph.removed_buffers:
|
|
return self.store_reduction(name, index, value)
|
|
|
|
@staticmethod
|
|
def reduction(
|
|
dtype: torch.dtype,
|
|
src_dtype: torch.dtype,
|
|
reduction_type: ReductionType,
|
|
value: Union[CSEVariable, Tuple[CSEVariable, ...]],
|
|
) -> Union[CSEVariable, Tuple[CSEVariable, ...]]:
|
|
self.num_reduction += 1
|
|
return self.reduction(dtype, src_dtype, reduction_type, value)
|
|
|
|
@staticmethod
|
|
def scan(
|
|
dtypes: Tuple[torch.dtype, ...],
|
|
combine_fn: Callable[
|
|
[Tuple[CSEVariable, ...], Tuple[CSEVariable, ...]],
|
|
Tuple[CSEVariable, ...],
|
|
],
|
|
values: Tuple[CSEVariable, ...],
|
|
) -> Tuple[CSEVariable, ...]:
|
|
return self.scan(dtypes, combine_fn, values)
|
|
|
|
@staticmethod
|
|
def sort(
|
|
dtypes: Tuple[torch.dtype, ...],
|
|
values: Tuple[CSEVariable, ...],
|
|
stable: bool,
|
|
descending: bool,
|
|
) -> Tuple[CSEVariable, ...]:
|
|
return self.sort(dtypes, values, stable, descending)
|
|
|
|
@staticmethod
|
|
def bucketize(
|
|
values: CSEVariable,
|
|
boundaries: Tuple[str, sympy.Expr, sympy.Expr, sympy.Expr],
|
|
boundary_indices: CSEVariable,
|
|
indexing_dtype: torch.dtype,
|
|
right: bool,
|
|
sorter: Optional[Tuple[str, sympy.Expr]] = None,
|
|
sorter_indices: Optional[CSEVariable] = None,
|
|
) -> CSEVariable:
|
|
"""
|
|
[Note: Inductor bucketize op]
|
|
|
|
Inputs:
|
|
-------
|
|
values: the values to be bucketized.
|
|
boundaries: a tuple containing
|
|
(a) the name of the boundaries tensor (which must be sorted, unless
|
|
the sorting tensor is present),
|
|
(b) the length of the tensor in the last dimension (i.e. the length of
|
|
one set of boundaries),
|
|
(c) the number of elements in the underlying storage (i.e. the length
|
|
of the flattened tensor, ignoring striding), and
|
|
(d) the stride of the tensor in the last dimension.
|
|
boundary_indices: indices into a flattened version of the boundaries
|
|
tensor, of the same size and shape as "values". Each index points to
|
|
the first element in the set of boundaries to be used for the
|
|
corresponding value.
|
|
indexing_dtype: the dtype to use when indexing into the boundaries
|
|
tensor. This must be int64 or int32. This additionally specifies the
|
|
dtype of the return value.
|
|
right: see "Details" below.
|
|
sorter: an optional tuple containing
|
|
(a) the name of an optional sorting tensor, used to access unsorted
|
|
boundaries without reordering the boundaries tensor, and
|
|
(b) the stride of the tensor in the last dimension.
|
|
The values in the sorting tensor are used as indices into the *last*
|
|
dimension of the boundaries tensor, with all other indices matching.
|
|
The size of the sorting and boundaries tensors must be equivalent.
|
|
sorter_indices: must be present if the sorting array is present; see
|
|
"boundary_indices" for the equivalent definition for the boundaries
|
|
tensor.
|
|
|
|
Output:
|
|
-------
|
|
The buckets each value belongs in, within a given set of boundaries. 0
|
|
indicates a position before the first boundary, and len(boundaries_set)
|
|
represents a position after the last boundary.
|
|
|
|
Details:
|
|
--------
|
|
Given a value and a set of boundaries, calculate the bucket that each
|
|
value belongs to. This works differently in 1-D and N-D cases.
|
|
|
|
for values [[-1, 0, 1, 2], [3, 4, 5, 9]], boundaries [0, 4, 4, 8], right=True
|
|
return = [[ 0, 1, 1, 1], [1, 3, 3, 4]].
|
|
|
|
for values [[-1, 0, 1, 2], [3, 4, 5, 9]], boundaries [[0, 4], [4, 8]], right=True
|
|
return = [[ 0, 1, 1, 1], [0, 1, 1, 2]]
|
|
|
|
Note that in the N-D boundaries case, the shape of "values" and
|
|
"boundaries" must match in every dimension _except_ the last.
|
|
|
|
When right == False, bucket i refers to range (boundaries[i], boundaries[i+1]].
|
|
When right == True, bucket i refers to range [boundaries[i], boundaries[i+1]).
|
|
|
|
Boundaries must be non-decreasing, or a sorter must be provided which
|
|
would re-index offsets in a non-decreasing order (e.g. the second output
|
|
of torch.sort(offsets)). Otherwise, the result is undefined.
|
|
"""
|
|
return self.bucketize(
|
|
values,
|
|
boundaries,
|
|
boundary_indices,
|
|
indexing_dtype,
|
|
right,
|
|
sorter,
|
|
sorter_indices,
|
|
)
|
|
|
|
# Use mypy to check protocol implemented correctly
|
|
def _typecheck_CSEProxy(h: CSEProxy) -> OpsHandler[CSEVariable]:
|
|
return h
|
|
|
|
super().__enter__()
|
|
assert self.overrides
|
|
parent_handler = self.overrides(V.get_ops_handler())
|
|
self.exit_stack.enter_context(V.set_ops_handler(CSEProxy()))
|
|
self.exit_stack.enter_context(V.set_kernel_handler(self))
|
|
return self
|
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
|
self.remove_kernel_local_buffers()
|
|
super().__exit__(exc_type, exc_val, exc_tb)
|
|
|
|
def remove_kernel_local_buffers(self) -> None:
|
|
"""
|
|
Any buffers that are both created and have a last use in the
|
|
same kernel can be removed.
|
|
|
|
Note that V.graph.scheduler can be None when codegening triton template
|
|
kernels.
|
|
"""
|
|
scheduler = V.graph.scheduler
|
|
if not scheduler:
|
|
return
|
|
fused_node_names = OrderedSet(
|
|
scheduler.name_to_buf[buf].defining_op.get_name()
|
|
for buf in self.store_buffer_names
|
|
if buf in scheduler.name_to_buf
|
|
)
|
|
names_to_remove: OrderedSet[str] = OrderedSet()
|
|
for name in self.store_buffer_names:
|
|
if (
|
|
name not in self.must_keep_buffers
|
|
and name not in self.args.input_buffers
|
|
and scheduler.can_buffer_be_removed_through_fusion(
|
|
name, fused_node_names
|
|
)
|
|
):
|
|
names_to_remove.add(name)
|
|
|
|
for name in names_to_remove:
|
|
if name in self.args.inplace_buffers:
|
|
buf = self.args.inplace_buffers[name]
|
|
if isinstance(buf, str) and buf.startswith("REMOVED"):
|
|
continue
|
|
remove = all(n in names_to_remove for n in buf.other_names)
|
|
if remove:
|
|
self.remove_inplace_buffer(name)
|
|
self.inplaced_to_remove.add(name)
|
|
else:
|
|
self.remove_buffer(name)
|
|
|
|
def remove_buffer(self, name: str) -> None:
|
|
# Assign a special value instead of deleting the entry
|
|
# because we still rely on output_buffers's length to
|
|
# generate unique arg name.
|
|
log.debug("remove_buffer(%r)", name)
|
|
self.args.output_buffers[name] = "REMOVED"
|
|
self.removed_buffers.add(name)
|
|
|
|
def remove_inplace_buffer(self, name: str) -> None:
|
|
log.debug("removing_inplace_buffer(%r)", name)
|
|
inner_name = self.args.inplace_buffers[name].inner_name
|
|
self.args.inplace_buffers[name] = inner_name.replace("in_out_ptr", "REMOVED")
|
|
self.removed_buffers.add(name)
|
|
|
|
def rename_indexing(self, index) -> sympy.Expr:
|
|
# adds the necessary kernel args for index expressions
|
|
# and renames variables in index expressions to kernel arg names
|
|
if isinstance(index, (list, tuple)):
|
|
return [self.rename_indexing(x) for x in index] # type: ignore[return-value]
|
|
index = V.graph.sizevars.simplify(index)
|
|
sorted_symbols = sorted(index.free_symbols, key=lambda s: s.name)
|
|
replacements = {
|
|
x: self.args.size(x)
|
|
for x in sorted_symbols
|
|
if symbol_is_type(
|
|
x,
|
|
(
|
|
SymT.UNBACKED_INT,
|
|
SymT.SIZE,
|
|
SymT.PRECOMPUTED_SIZE,
|
|
),
|
|
)
|
|
}
|
|
return sympy_subs(index, replacements)
|
|
|
|
def create_cse_var(self, *args, **kwargs):
|
|
return CSEVariable(*args, **kwargs)
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class OptimizationContext:
|
|
key: ClassVar[str] = "opt_ctx"
|
|
|
|
dtype: Optional[torch.dtype] = None
|
|
ops_name: str = ""
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def jinja2_env():
|
|
try:
|
|
import jinja2
|
|
|
|
return jinja2.Environment(
|
|
undefined=jinja2.StrictUndefined,
|
|
)
|
|
except ImportError:
|
|
return None
|
|
|
|
|
|
class KernelTemplate:
|
|
"""
|
|
Base class for defining kernel templates.
|
|
|
|
Children classes: TritonTemplate, CUDATemplate
|
|
"""
|
|
|
|
@staticmethod
|
|
def indent_except_first(source: str, num_indents: int, indents_spacing=4):
|
|
lines = source.splitlines(True)
|
|
if len(lines) > 1:
|
|
lines[1:] = [
|
|
(" " * indents_spacing * num_indents) + line for line in lines[1:]
|
|
]
|
|
return "".join(lines)
|
|
|
|
@staticmethod
|
|
def _template_from_string(source):
|
|
env = jinja2_env()
|
|
if env is None:
|
|
return None
|
|
env.filters["indent_except_first"] = KernelTemplate.indent_except_first
|
|
from jinja2 import TemplateSyntaxError
|
|
|
|
class DetailedTemplateSyntaxError(TemplateSyntaxError):
|
|
def __init__(self, original_error):
|
|
super().__init__(
|
|
original_error.message,
|
|
original_error.lineno,
|
|
original_error.name,
|
|
original_error.filename,
|
|
)
|
|
self.original_error = original_error
|
|
|
|
def __str__(self):
|
|
error_info = f"Error in template at line {self.lineno}\n"
|
|
error_info += f"Error message: {self.message}\n"
|
|
if hasattr(self.original_error, "source"):
|
|
lines = self.original_error.source.split("\n")
|
|
error_info += "Context:\n"
|
|
start = max(0, self.lineno - 2)
|
|
end = min(len(lines), self.lineno + 2)
|
|
for i in range(start, end):
|
|
if i == self.lineno - 1:
|
|
error_info += f"{i + 1}: --> {lines[i]}\n"
|
|
if hasattr(self.original_error, "column"):
|
|
error_info += (
|
|
" "
|
|
+ " " * (self.original_error.column - 1)
|
|
+ "^\n"
|
|
)
|
|
else:
|
|
error_info += f"{i + 1}: {lines[i]}\n"
|
|
return error_info
|
|
|
|
try:
|
|
return env.from_string(source)
|
|
except TemplateSyntaxError as e:
|
|
raise DetailedTemplateSyntaxError(e) from e
|
|
|
|
@staticmethod
|
|
def _fake_get_dtype(fake_out):
|
|
_get_dtype_real = V.graph.get_dtype
|
|
|
|
def get_dtype(name):
|
|
if name == fake_out.get_name():
|
|
return fake_out.get_dtype()
|
|
return _get_dtype_real(name)
|
|
|
|
return get_dtype
|
|
|
|
def __init__(self, name: str):
|
|
self.name = name
|
|
|
|
def maybe_append_choice(self, choices, **kwargs):
|
|
"""
|
|
Maybe generates a new ChoiceCaller and appends it into existing choices.
|
|
Returns None if success, otherwise returns the error.
|
|
|
|
choices: A list of ChoiceCallers.
|
|
kwargs: Additional kwargs to be passed to self.generate() to generate a new ChoiceCaller.
|
|
"""
|
|
|
|
try:
|
|
choices.append(self.generate(**kwargs))
|
|
return None
|
|
except NotImplementedError as e:
|
|
return e
|
|
|
|
def generate(self, **kwargs) -> torch._inductor.ir.ChoiceCaller:
|
|
"""
|
|
Generates a ChoiceCaller instance from the given arguments.
|
|
"""
|
|
|
|
raise NotImplementedError
|