mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: In order to support Ubuntu18.04, some changes to the scripts are required. * install dependencies with -y flag * mark install noninteractive * install some required dependencies (gpg-agent, python3-distutils, libidn11) Pull Request resolved: https://github.com/pytorch/pytorch/pull/31886 Differential Revision: D19300586 Pulled By: bddppq fbshipit-source-id: d7fb815a3845697ce63af191a5bc449d661ff1de |
||
|---|---|---|
| .. | ||
| jenkins | ||
| ubuntu-14.04-cpu-all-options | ||
| ubuntu-14.04-cpu-minimal | ||
| ubuntu-16.04-cpu-all-options | ||
| ubuntu-16.04-cpu-minimal | ||
| ubuntu-16.04-cuda8-cudnn6-all-options | ||
| ubuntu-16.04-cuda8-cudnn7-all-options | ||
| ubuntu-16.04-gpu-tutorial | ||
| readme.md | ||
Docker & Caffe2
Note: use nvidia-docker to run all GPU builds.
To get the latest source, rerun the docker builds using the Dockerfiles.
Docker images at https://hub.docker.com/r/caffe2ai/caffe2/ are a few months old, but will be refreshed soon.
Build like: docker build -t caffe2:cuda8-cudnn6-all-options .
Run like: nvidia-docker run --rm -it caffe2:cuda8-cudnn6-all-options python -m caffe2.python.operator_test.relu_op_test
For Docker on USB related instructions you can find some help on the gh-pages branch here