pytorch/torch/csrc/Module.cpp
gchanan b6af5d40bf
Some 0-sized dimension support, port catArray away from resizeLegacy. (#8666)
* Some 0-sized dimension support, port catArray away from resizeLegacy.

The goal of this PR is to port catArray away from resizeLegacy (so we can delete the legacy resize calls), but since catArray has some weird behavior because
we don't have arbitrary 0-sized dimension support, I made some effort to fix these both in one pass.

The major changes here are:
1) catArray uses the new resize API, no longer the old resizeLegacy API.
2) As 1) is the last usage of resizeLegacy, it is deleted.
3) If compiled with USE_TH_SIZE_ZERO_DIM, catArray will work and properly check shapes for n-dimensional empty tensors.
4) However, we retain the old behavior of "ignoring" size [0] tensors in catArray.  We previously allowed this because we didn't have n-dimensional empty tensors.
5) To get the above to work, we also add support for n-dimensional empty tensors for narrow and slice (ifdef USE_TH_SIZE_ZERO_DIM).
6) We change the stride formula for empty tensors to match NumPy; basically, we never multiply by 0 as the size, always at least 1, so the
   strides are monotonically increasing in the empty tensor case.
7) We print the size of empty tensors if size != [0]; this matches NumPy behavior (even in cases where the size could be inferred from the brackets.
8) For test purposes, we add torch._C._use_zero_size_dim() to add tests for the above.

* Fix flake8.

* Address review comments.
2018-06-20 13:26:08 -04:00

641 lines
21 KiB
C++

#include "torch/csrc/python_headers.h"
#include <sys/types.h>
#ifndef _MSC_VER
#include <sys/socket.h>
#endif
#include <stdbool.h>
#include <unordered_map>
#include <cstdlib>
#include <libshm.h>
#include <TH/TH.h>
#include <ATen/ATen.h>
#include <ATen/ExpandUtils.h>
#include <ATen/dlpack.h>
#include <ATen/DLConvertor.h>
#include <ATen/Utils.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include "THP.h"
#include "torch/csrc/DynamicTypes.h"
#include "torch/csrc/Device.h"
#include "torch/csrc/Dtype.h"
#include "torch/csrc/DataLoader.h"
#include "torch/csrc/Generator.h"
#include "torch/csrc/Layout.h"
#include "torch/csrc/autograd/generated/python_nn_functions.h"
#include "torch/csrc/autograd/python_legacy_variable.h"
#include "torch/csrc/autograd/python_variable.h"
#include "torch/csrc/tensor/python_tensor.h"
#include "torch/csrc/utils/tensor_dtypes.h"
#include "torch/csrc/utils/python_strings.h"
#include "torch/csrc/utils/tensor_layouts.h"
#include "torch/csrc/utils/tensor_numpy.h"
#include "torch/csrc/jit/python_tracer.h"
#include "torch/csrc/jit/init.h"
#include "torch/csrc/jit/python_ir.h"
#include "torch/csrc/onnx/init.h"
#ifdef USE_CUDNN
#include "cudnn.h"
#endif
#ifdef USE_C10D
#include "torch/csrc/distributed/c10d/c10d.h"
#endif
#define WITH_NUMPY_IMPORT_ARRAY
#include "torch/csrc/utils/numpy_stub.h"
namespace py = pybind11;
PyObject* module;
THPGenerator *THPDefaultGenerator = NULL;
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
static PyObject * THPModule_initNames(PyObject *self, PyObject *arg)
{
static std::vector<std::string> names;
THPObjectPtr types(PySequence_Fast(arg, "expected a sequence"));
if (!types) return NULL;
int num_classes = PySequence_Fast_GET_SIZE(types.get());
names.reserve(names.size() + num_classes);
for (int i = 0; i < num_classes; i++) {
PyObject* obj = PySequence_Fast_GET_ITEM(types.get(), i);
THPUtils_assert(PyType_Check(obj), "expected a PyTypeObject");
PyTypeObject* type = (PyTypeObject*)obj;
THPObjectPtr module_name(PyObject_GetAttrString(obj, "__module__"));
if (!module_name) return NULL;
THPUtils_assert(THPUtils_checkString(module_name.get()),
"expected __module__ to be a string");
std::string name = THPUtils_unpackString(module_name.get());
names.push_back(name + "." + type->tp_name);
type->tp_name = names.back().c_str();
}
Py_RETURN_NONE;
}
//
// Callback for python part. Used for additional initialization of python classes
static PyObject * THPModule_initExtension(PyObject *_unused, PyObject *shm_manager_path)
{
HANDLE_TH_ERRORS
if (!THPUtils_checkString(shm_manager_path)) {
THPUtils_setError("initialization error - expected bytes/string object as shm_manager_path!");
return NULL;
}
torch::utils::initializeLayouts();
torch::utils::initializeDtypes();
torch::tensor::initialize_python_bindings();
std::string path = THPUtils_unpackString(shm_manager_path);
libshm_init(path.c_str());
auto module = THPObjectPtr(PyImport_ImportModule("torch"));
if (!module) throw python_error();
THPDoubleStorage_postInit(module);
THPFloatStorage_postInit(module);
THPHalfStorage_postInit(module);
THPLongStorage_postInit(module);
THPIntStorage_postInit(module);
THPShortStorage_postInit(module);
THPCharStorage_postInit(module);
THPByteStorage_postInit(module);
THPAutograd_initFunctions();
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
// The idea behind these two functions is to make it easy to test if we are
// built with ASAN: they're designed not to crash if ASAN is not enabled, but
// to trigger ASAN if it is enabled. This lets us run a "canary" tests which
// checks if our build environment is misconfigured.
static PyObject * THPModule_crashIfCsrcASAN(PyObject *module, PyObject *arg) {
THPUtils_assert(THPUtils_checkLong(arg), "crash_if_csrc_asan expects an int, "
"but got %s", THPUtils_typename(arg));
volatile char x[3];
x[static_cast<int>(THPUtils_unpackLong(arg))] = 0;
return PyLong_FromLong(x[0]);
}
static PyObject * THPModule_crashIfATenASAN(PyObject *module, PyObject *arg) {
THPUtils_assert(THPUtils_checkLong(arg), "set_num_threads expects an int, "
"but got %s", THPUtils_typename(arg));
return PyLong_FromLong(at::_crash_if_asan(static_cast<int>(THPUtils_unpackLong(arg))));
}
static PyObject * THPModule_getNumThreads(PyObject *module)
{
return PyLong_FromLong(THGetNumThreads());
}
static PyObject * THPModule_setNumThreads(PyObject *module, PyObject *arg)
{
THPUtils_assert(THPUtils_checkLong(arg), "set_num_threads expects an int, "
"but got %s", THPUtils_typename(arg));
THSetNumThreads((int)THPUtils_unpackLong(arg));
at::set_num_threads((int)THPUtils_unpackLong(arg));
Py_RETURN_NONE;
}
PyObject * THPModule_setDefaultTensorType(PyObject *_unused, PyObject *type)
{
HANDLE_TH_ERRORS
torch::tensor::py_set_default_tensor_type(type);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject * THPModule_setDefaultDtype(PyObject *_unused, PyObject *dtype)
{
HANDLE_TH_ERRORS
torch::tensor::py_set_default_dtype(dtype);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject *THPModule_safeCall(PyObject *_unused, PyObject *args, PyObject *kwargs)
{
PyObject *result = NULL;
PyObject *args_slice = NULL;
PyThreadState *thread_state = PyThreadState_Get();
Py_ssize_t num_args = args ? PyTuple_Size(args) : 0;
THPUtils_assert(num_args > 0, "expected at least one argument");
try {
args_slice = PyTuple_GetSlice(args, 1, num_args);
result = PyObject_Call(PyTuple_GET_ITEM(args, 0), args_slice, kwargs);
} catch (std::exception &e) {
PyEval_RestoreThread(thread_state);
Py_DECREF(args_slice);
PyErr_SetString(THPException_FatalError, e.what());
Py_LeaveRecursiveCall();
}
Py_DECREF(args_slice);
return result;
}
PyObject *THPModule_addDocStr(PyObject *_unused, PyObject *args)
{
// adds a __doc__ string to a function, similar to numpy's arr_add_docstring
static std::vector<std::string> all_docs;
PyObject *obj;
PyObject *doc_obj;
if (!PyArg_ParseTuple(args, "OO", &obj, &doc_obj)) {
return NULL;
}
const char* doc_str = "<invalid string>";
if (THPUtils_checkString(doc_obj)) {
all_docs.push_back(THPUtils_unpackString(doc_obj));
doc_str = all_docs.back().c_str();
}
if (Py_TYPE(obj) == &PyCFunction_Type) {
PyCFunctionObject* f = (PyCFunctionObject *)obj;
if (f->m_ml->ml_doc) {
return PyErr_Format(PyExc_RuntimeError,
"function '%s' already has a docstring", f->m_ml->ml_name);
}
f->m_ml->ml_doc = doc_str;
} else if (strcmp(Py_TYPE(obj)->tp_name, "method_descriptor") == 0) {
PyMethodDescrObject* m = (PyMethodDescrObject *)obj;
if (m->d_method->ml_doc) {
return PyErr_Format(PyExc_RuntimeError,
"method '%s' already has a docstring", m->d_method->ml_name);
}
m->d_method->ml_doc = doc_str;
} else {
return PyErr_Format(PyExc_TypeError,
"don't know how to add docstring to type '%s'", Py_TYPE(obj)->tp_name);
}
Py_INCREF(obj);
return obj;
}
PyObject *THPModule_inferSize(PyObject *_unused, PyObject *args)
{
HANDLE_TH_ERRORS
Py_ssize_t num_args = args ? (Py_ssize_t) PyTuple_Size(args) : 0;
THPUtils_assert(num_args == 2, "expected exactly 2 arguments");
PyObject *arg1 = PyTuple_GET_ITEM(args, 0);
THPUtils_assert(THPSize_Check(arg1), "expected a torch.Size as argument 1");
PyObject *arg2 = PyTuple_GET_ITEM(args, 1);
THPUtils_assert(THPSize_Check(arg2), "expected a torch.Size as argument 2");
auto size1 = THPUtils_unpackLongs(arg1);
auto size2 = THPUtils_unpackLongs(arg2);
auto sizes = at::infer_size(size1, size2);
return THPSize_NewFromSizes(sizes.size(), sizes.data());
END_HANDLE_TH_ERRORS
}
static PyObject *THPModule_setBackcompatBroadcastWarn(PyObject *module, PyObject *arg) {
THPUtils_assert(PyBool_Check(arg), "set_backcompat_broadcast_warn expects a bool, "
"but got %s", THPUtils_typename(arg));
setBackCompatBroadcastWarn(arg == Py_True);
Py_RETURN_NONE;
}
static PyObject *THPModule_getBackcompatBroadcastWarn(PyObject *module)
{
if (getBackCompatBroadcastWarn()) Py_RETURN_TRUE;
else Py_RETURN_FALSE;
}
static PyObject *THPModule_setBackcompatKeepdimWarn(PyObject *module, PyObject *arg) {
THPUtils_assert(PyBool_Check(arg), "set_backcompat_keepdim_warn expects a bool, "
"but got %s", THPUtils_typename(arg));
setBackCompatKeepdimWarn(arg == Py_True);
Py_RETURN_NONE;
}
static PyObject *THPModule_getBackcompatKeepdimWarn(PyObject *module)
{
if (getBackCompatKeepdimWarn()) Py_RETURN_TRUE;
else Py_RETURN_FALSE;
}
PyObject *THPModule_hasDistributed(PyObject *_unused)
{
#ifdef USE_DISTRIBUTED
Py_RETURN_TRUE;
#else
Py_RETURN_FALSE;
#endif
}
PyObject *THPModule_toDLPack(PyObject *_unused, PyObject *data)
{
HANDLE_TH_ERRORS
THPUtils_assert(THPVariable_Check(data), "data must be a Tensor");
DLManagedTensor* dlMTensor = at::toDLPack(THPVariable_UnpackData(data));
return PyCapsule_New(dlMTensor, "dltensor", NULL);
END_HANDLE_TH_ERRORS
}
PyObject *THPModule_fromDLPack(PyObject *_unused, PyObject *data)
{
using namespace torch::autograd;
HANDLE_TH_ERRORS
DLManagedTensor * dlMTensor = (DLManagedTensor *)PyCapsule_GetPointer(data, "dltensor");
THPUtils_assert(dlMTensor, "from_dlpack received an invalid capsule. "
"Note that DLTensor capsules can be consumed only once, "
"so you might have already constructed a tensor from it once.")
// atensor steals the ownership of the underlying storage. It also passes a
// destructor function that will be called when the underlying storage goes
// out of scope. When the destructor is called, the dlMTensor is destructed too.
auto atensor = make_variable(at::fromDLPack(dlMTensor), false);
// It is possible that the call to at::fromDLPack is the very first
// call to create a Tensor in PyTorch. If so, then _lazy_init has
// not been called, and the attempt to call createPyObject will fail
// because cuda ATen types have not been registered in Python yet.
// so if we have a cuda tensor, then we need to make sure
// we have called _lazy_init here
if(atensor.is_cuda()) {
py::module::import("torch.cuda").attr("init")();
}
// Make sure this capsule will never be used again.
PyCapsule_SetName(data, "used_dltensor");
return THPVariable_Wrap(std::move(atensor));
END_HANDLE_TH_ERRORS
}
PyObject *THPModule_setUserEnabledCuDNN(PyObject *_unused, PyObject *arg)
{
THPUtils_assert(PyBool_Check(arg), "set_enabled_cudnn expects a bool, "
"but got %s", THPUtils_typename(arg));
at::globalContext().setUserEnabledCuDNN(arg == Py_True);
Py_RETURN_NONE;
}
PyObject *THPModule_userEnabledCuDNN(PyObject *_unused)
{
if (at::globalContext().userEnabledCuDNN()) Py_RETURN_TRUE;
else Py_RETURN_FALSE;
}
PyObject *THPModule_setDeterministicCuDNN(PyObject *_unused, PyObject *arg)
{
THPUtils_assert(PyBool_Check(arg), "set_deterministic_cudnn expects a bool, "
"but got %s", THPUtils_typename(arg));
at::globalContext().setDeterministicCuDNN(arg == Py_True);
Py_RETURN_NONE;
}
PyObject *THPModule_deterministicCuDNN(PyObject *_unused)
{
if (at::globalContext().deterministicCuDNN()) Py_RETURN_TRUE;
else Py_RETURN_FALSE;
}
PyObject *THPModule_setBenchmarkCuDNN(PyObject *_unused, PyObject *arg)
{
THPUtils_assert(PyBool_Check(arg), "set_benchmark_cudnn expects a bool, "
"but got %s", THPUtils_typename(arg));
at::globalContext().setBenchmarkCuDNN(arg == Py_True);
Py_RETURN_NONE;
}
PyObject *THPModule_benchmarkCuDNN(PyObject *_unused)
{
if (at::globalContext().benchmarkCuDNN()) Py_RETURN_TRUE;
else Py_RETURN_FALSE;
}
PyObject *THPModule_setFlushDenormal(PyObject *_unused, PyObject *arg) {
THPUtils_assert(PyBool_Check(arg), "flush_denormal expects a bool, "
"but got %s", THPUtils_typename(arg));
if (!at::globalContext().setFlushDenormal(arg == Py_True)) {
Py_RETURN_FALSE;
};
Py_RETURN_TRUE;
}
PyObject *THPModule_getDefaultDtype(PyObject *_unused, PyObject *arg) {
HANDLE_TH_ERRORS
auto& type = torch::tensor::get_default_tensor_type();
auto dtype = (PyObject*)torch::getDtype(type.scalarType());
Py_INCREF(dtype);
return dtype;
END_HANDLE_TH_ERRORS
}
PyObject *THPModule_isDefaultTypeCuda(PyObject *_unused, PyObject *arg) {
HANDLE_TH_ERRORS
if (torch::tensor::get_default_tensor_type().is_cuda()) {
Py_RETURN_TRUE;
}
Py_RETURN_FALSE;
END_HANDLE_TH_ERRORS
}
PyObject *THPModule_useZeroSizeDim(PyObject *_unused, PyObject *arg) {
HANDLE_TH_ERRORS
#ifdef USE_TH_SIZE_ZERO_DIM
Py_RETURN_TRUE;
#else
Py_RETURN_FALSE;
#endif
END_HANDLE_TH_ERRORS
}
static PyMethodDef TorchMethods[] = {
{"_initExtension", (PyCFunction)THPModule_initExtension, METH_O, NULL},
{"_autograd_init", (PyCFunction)THPAutograd_initExtension, METH_NOARGS, NULL},
{"_add_docstr", (PyCFunction)THPModule_addDocStr, METH_VARARGS, NULL},
{"_init_names", (PyCFunction)THPModule_initNames, METH_O, NULL},
{"_has_distributed",(PyCFunction)THPModule_hasDistributed, METH_NOARGS, NULL},
{"_safe_call", (PyCFunction)THPModule_safeCall, METH_VARARGS | METH_KEYWORDS, NULL},
{"_set_default_tensor_type", (PyCFunction)THPModule_setDefaultTensorType, METH_O, NULL},
{"_set_default_dtype", (PyCFunction)THPModule_setDefaultDtype, METH_O, NULL},
{"_infer_size", (PyCFunction)THPModule_inferSize, METH_VARARGS, NULL},
{"_crash_if_csrc_asan", (PyCFunction)THPModule_crashIfCsrcASAN, METH_O, NULL},
{"_crash_if_aten_asan", (PyCFunction)THPModule_crashIfATenASAN, METH_O, NULL},
{"_set_backcompat_broadcast_warn", (PyCFunction)THPModule_setBackcompatBroadcastWarn, METH_O, NULL},
{"_get_backcompat_broadcast_warn", (PyCFunction)THPModule_getBackcompatBroadcastWarn, METH_NOARGS, NULL},
{"_set_backcompat_keepdim_warn", (PyCFunction)THPModule_setBackcompatKeepdimWarn, METH_O, NULL},
{"_get_backcompat_keepdim_warn", (PyCFunction)THPModule_getBackcompatKeepdimWarn, METH_NOARGS, NULL},
{"get_num_threads", (PyCFunction)THPModule_getNumThreads, METH_NOARGS, NULL},
{"set_num_threads", (PyCFunction)THPModule_setNumThreads, METH_O, NULL},
{"_get_cudnn_enabled", (PyCFunction)THPModule_userEnabledCuDNN, METH_NOARGS, NULL},
{"_set_cudnn_enabled", (PyCFunction)THPModule_setUserEnabledCuDNN, METH_O, NULL},
{"_get_cudnn_benchmark", (PyCFunction)THPModule_benchmarkCuDNN, METH_NOARGS, NULL},
{"_set_cudnn_benchmark", (PyCFunction)THPModule_setBenchmarkCuDNN, METH_O, NULL},
{"_get_cudnn_deterministic", (PyCFunction)THPModule_deterministicCuDNN, METH_NOARGS, NULL},
{"_set_cudnn_deterministic", (PyCFunction)THPModule_setDeterministicCuDNN, METH_O, NULL},
{"_to_dlpack", (PyCFunction)THPModule_toDLPack, METH_O, NULL},
{"_from_dlpack", (PyCFunction)THPModule_fromDLPack, METH_O, NULL},
{"set_flush_denormal", (PyCFunction)THPModule_setFlushDenormal, METH_O, NULL},
{"get_default_dtype", (PyCFunction)THPModule_getDefaultDtype, METH_NOARGS, NULL},
{"_is_default_type_cuda", (PyCFunction)THPModule_isDefaultTypeCuda, METH_NOARGS, NULL},
{"_use_zero_size_dim", (PyCFunction)THPModule_useZeroSizeDim, METH_NOARGS, NULL},
{NULL, NULL, 0, NULL}
};
bool THCPDoubleStorage_init(PyObject *module);
bool THCPFloatStorage_init(PyObject *module);
bool THCPHalfStorage_init(PyObject *module);
bool THCPLongStorage_init(PyObject *module);
bool THCPIntStorage_init(PyObject *module);
bool THCPShortStorage_init(PyObject *module);
bool THCPCharStorage_init(PyObject *module);
bool THCPByteStorage_init(PyObject *module);
bool THCPStream_init(PyObject *module);
#ifdef USE_CUDA
PyMethodDef* THCPModule_methods();
namespace torch { namespace cuda {
void initModule(PyObject *module);
}} // namespace torch::cuda
#endif
namespace torch { namespace nn {
void init__THNN(PyObject*);
#ifdef USE_CUDA
void init__THCUNN(PyObject*);
#endif
}} // namespace torch::nn
bool THDPDoubleStorage_init(PyObject *module);
bool THDPFloatStorage_init(PyObject *module);
//bool THDPHalfStorage_init(PyObject *module);
bool THDPLongStorage_init(PyObject *module);
bool THDPIntStorage_init(PyObject *module);
bool THDPShortStorage_init(PyObject *module);
bool THDPCharStorage_init(PyObject *module);
bool THDPByteStorage_init(PyObject *module);
static std::vector<PyMethodDef> methods;
#ifdef USE_DISTRIBUTED
PyMethodDef* THDPModule_methods();
#endif
// TODO: Refactor this in some less manual way
#ifdef USE_CUDNN
static PyObject * THCUDNN_cudnn_version(PyObject *self, PyObject *args)
{
return PyLong_FromLong(CUDNN_VERSION);
}
static PyMethodDef _THCUDNN_methods[] = {
{"_cudnn_version", (PyCFunction)THCUDNN_cudnn_version, METH_VARARGS, NULL},
{NULL}
};
PyMethodDef* THCUDNN_methods() {
return _THCUDNN_methods;
}
#endif
static PyObject* initModule() {
HANDLE_TH_ERRORS
THInferNumThreads();
#define ASSERT_TRUE(cmd) if (!(cmd)) return NULL
THPUtils_addPyMethodDefs(methods, TorchMethods);
THPUtils_addPyMethodDefs(methods, DataLoaderMethods);
THPUtils_addPyMethodDefs(methods, torch::autograd::python_functions());
#ifdef USE_CUDA
THPUtils_addPyMethodDefs(methods, THCPModule_methods());
#endif
#ifdef USE_CUDNN
THPUtils_addPyMethodDefs(methods, THCUDNN_methods());
#endif
#ifdef USE_DISTRIBUTED
THPUtils_addPyMethodDefs(methods, THDPModule_methods());
#endif
#ifdef USE_C10D
THPUtils_addPyMethodDefs(methods, torch::distributed::c10d::python_functions());
#endif
#if PY_MAJOR_VERSION == 2
ASSERT_TRUE(module = Py_InitModule("torch._C", methods.data()));
#else
static struct PyModuleDef torchmodule = {
PyModuleDef_HEAD_INIT,
"torch._C",
NULL,
-1,
methods.data()
};
ASSERT_TRUE(module = PyModule_Create(&torchmodule));
#endif
ASSERT_TRUE(THPWrapper_init(module));
ASSERT_TRUE(THPGenerator_init(module));
ASSERT_TRUE(THPException_init(module));
THPSize_init(module);
THPDtype_init(module);
THPLayout_init(module);
THPDevice_init(module);
ASSERT_TRUE(THPVariable_initModule(module));
ASSERT_TRUE(THPFunction_initModule(module));
ASSERT_TRUE(THPEngine_initModule(module));
// NOTE: We need to be able to access OperatorExportTypes from ONNX for use in
// the export side of JIT, so this ONNX init needs to appear before the JIT
// init.
torch::onnx::initONNXBindings(module);
torch::jit::initJITBindings(module);
torch::autograd::initNNFunctions(module);
torch::autograd::init_legacy_variable(module);
#ifdef USE_CUDA
torch::cuda::initModule(module);
#endif
ASSERT_TRUE(THPDoubleStorage_init(module));
ASSERT_TRUE(THPFloatStorage_init(module));
ASSERT_TRUE(THPHalfStorage_init(module));
ASSERT_TRUE(THPLongStorage_init(module));
ASSERT_TRUE(THPIntStorage_init(module));
ASSERT_TRUE(THPShortStorage_init(module));
ASSERT_TRUE(THPCharStorage_init(module));
ASSERT_TRUE(THPByteStorage_init(module));
#ifdef USE_CUDA
// This will only initialise base classes and attach them to library namespace
// They won't be ready for real usage until importing cuda module, that will
// complete the process (but it defines Python classes before calling back into
// C, so these lines have to execute first)..
ASSERT_TRUE(THCPDoubleStorage_init(module));
ASSERT_TRUE(THCPFloatStorage_init(module));
ASSERT_TRUE(THCPHalfStorage_init(module));
ASSERT_TRUE(THCPLongStorage_init(module));
ASSERT_TRUE(THCPIntStorage_init(module));
ASSERT_TRUE(THCPShortStorage_init(module));
ASSERT_TRUE(THCPCharStorage_init(module));
ASSERT_TRUE(THCPByteStorage_init(module));
ASSERT_TRUE(THCPStream_init(module));
#endif
#ifdef USE_CUDNN
PyObject *has_cudnn = Py_True;
#else
PyObject *has_cudnn = Py_False;
#endif
Py_INCREF(has_cudnn);
ASSERT_TRUE(PyModule_AddObject(module, "has_cudnn", has_cudnn) == 0);
#ifdef USE_DISTRIBUTED_MW
// See comment on CUDA objects
ASSERT_TRUE(THDPDoubleStorage_init(module));
ASSERT_TRUE(THDPFloatStorage_init(module));
//ASSERT_TRUE(THDPHalfStorage_init(module));
ASSERT_TRUE(THDPLongStorage_init(module));
ASSERT_TRUE(THDPIntStorage_init(module));
ASSERT_TRUE(THDPShortStorage_init(module));
ASSERT_TRUE(THDPCharStorage_init(module));
ASSERT_TRUE(THDPByteStorage_init(module));
#endif
// force ATen to initialize because it handles
// setting up TH Errors so that they throw C++ exceptions
at::init();
ASSERT_TRUE(PyModule_AddObject(module, "has_mkl", at::hasMKL() ? Py_True : Py_False) == 0);
auto& defaultGenerator = at::globalContext().defaultGenerator(at::kCPU);
THPDefaultGenerator = (THPGenerator*)THPGenerator_NewWithGenerator(
defaultGenerator);
ASSERT_TRUE(PyModule_AddObject(module, "default_generator", (PyObject*)THPDefaultGenerator) == 0);
#ifdef USE_NUMPY
if (_import_array() < 0) return NULL;
#endif
torch::nn::init__THNN(module);
#ifdef USE_CUDA
torch::nn::init__THCUNN(module);
#endif
return module;
END_HANDLE_TH_ERRORS
}
// Checks that the _C shared library isn't initialized multiple times. This
// can happen if the same csrc files are compiled into multiple shared
// libraries.
inline void pytorch_duplicate_guard() {
static int initialized = 0;
if (initialized) {
fprintf(stderr, "pytorch: _C shared library re-initialized\n");
abort();
}
initialized = 1;
;}
struct call_duplicate_guard {
call_duplicate_guard() { pytorch_duplicate_guard(); }
};
static call_duplicate_guard _call_duplicate_guard;
#if PY_MAJOR_VERSION == 2
PyMODINIT_FUNC init_C()
#else
PyMODINIT_FUNC PyInit__C()
#endif
{
#if PY_MAJOR_VERSION == 2
initModule();
#else
return initModule();
#endif
}