mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
# Motivation
This PR intends to enable quantized fusion `qlinear+add` at Intel GPU backend.
At backend level, we register the op via schema `TORCH_SELECTIVE_NAME("onednn::qlinear_pointwise.binary")` and `TORCH_SELECTIVE_NAME("onednn::qlinear_pointwise.binary_tensor")` which is the one already defined in `x86InductorQuantzer`
At Inductor level, we have small modification at `torch/_inductor/fx_passes/quantization.py` to allow signed int8 data type(s8) during op lowering. As for the pattern matching, we greatly reuse the code existing at x86InductorQuantizer.
# UT verification
```bash
python test/inductor/test_mkldnn_pattern_matcher.py -v \
-k test_qlinear_add_xpu
```
# Runtime Verification
```bash
onednn_verbose,primitive,exec,gpu:0,matmul,jit:gemm:any,undef,src_s8::blocked:ab::f0 wei_s8::blocked:ab::f0 bia_f32::blocked:ab::f0_mask2 dst_f32::blocked:ab::f0,attr-scratchpad:user attr-scales:src0:0:f32+dst:0:f32+wei:2:f32 attr-zero-points:src0:0:s32 attr-post-ops:eltwise_linear:1:0.654408+sum:0.00511256+eltwise_relu,,4x4:4x4,0.0319824
```
The verbose is collected from UT. We can see the attribute ` attr-post-ops:eltwise_linear:1:0.654408+sum:0.00511256+eltwise_relu`, the post add and ReLU is successfully fused on GEMM computation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135337
Approved by: https://github.com/EikanWang, https://github.com/guangyey, https://github.com/liangan1, https://github.com/jerryzh168
ghstack dependencies: #133307, #135189
Co-authored-by: guangyey <guangye.yu@intel.com>
|
||
|---|---|---|
| .. | ||
| nn | ||
| ns | ||
| pruning | ||
| quantization | ||
| __init__.py | ||