pytorch/torch/_C/_functorch.pyi
Xuehai Pan 56935684c3 Use Generic TypeAlias (PEP 585) and Union Type (PEP 604) in .pyi stub files (#129419)
------

- [Generic TypeAlias (PEP 585)](https://peps.python.org/pep-0585): e.g. `typing.List[T] -> list[T]`, `typing.Dict[KT, VT] -> dict[KT, VT]`, `typing.Type[T] -> type[T]`.
- [Union Type (PEP 604)](https://peps.python.org/pep-0604): e.g. `Union[X, Y] -> X | Y`, `Optional[X] -> X | None`, `Optional[Union[X, Y]] -> X | Y | None`.

Note that in `.pyi` stub files, we do not need `from __future__ import annotations`. So this PR does not violate issue #117449:

- #117449

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129419
Approved by: https://github.com/ezyang
ghstack dependencies: #129375, #129376
2024-06-29 09:23:39 +00:00

84 lines
3.2 KiB
Python

# mypy: allow-untyped-defs
from enum import Enum
from torch import Tensor
# Defined in torch/csrc/functorch/init.cpp
def _set_dynamic_layer_keys_included(included: bool) -> None: ...
def get_unwrapped(tensor: Tensor) -> Tensor: ...
def is_batchedtensor(tensor: Tensor) -> bool: ...
def is_functionaltensor(tensor: Tensor) -> bool: ...
def is_functorch_wrapped_tensor(tensor: Tensor) -> bool: ...
def is_gradtrackingtensor(tensor: Tensor) -> bool: ...
def is_legacy_batchedtensor(tensor: Tensor) -> bool: ...
def maybe_get_bdim(tensor: Tensor) -> int: ...
def maybe_get_level(tensor: Tensor) -> int: ...
def maybe_current_level() -> int | None: ...
def unwrap_if_dead(tensor: Tensor) -> Tensor: ...
def _unwrap_for_grad(tensor: Tensor, level: int) -> Tensor: ...
def _wrap_for_grad(tensor: Tensor, level: int) -> Tensor: ...
def _unwrap_batched(tensor: Tensor, level: int) -> tuple[Tensor, int | None]: ...
def current_level() -> int: ...
def count_jvp_interpreters() -> int: ...
def _add_batch_dim(tensor: Tensor, bdim: int, level: int) -> Tensor: ...
def set_single_level_autograd_function_allowed(allowed: bool) -> None: ...
def get_single_level_autograd_function_allowed() -> bool: ...
def _unwrap_functional_tensor(tensor: Tensor, reapply_views: bool) -> Tensor: ...
def _wrap_functional_tensor(tensor: Tensor, level: int) -> Tensor: ...
def _vmap_increment_nesting(batch_size: int, randomness: str) -> int: ...
def _vmap_decrement_nesting() -> int: ...
def _grad_increment_nesting() -> int: ...
def _grad_decrement_nesting() -> int: ...
def _jvp_increment_nesting() -> int: ...
def _jvp_decrement_nesting() -> int: ...
# Defined in aten/src/ATen/functorch/Interpreter.h
class TransformType(Enum):
Torch: TransformType = ...
Vmap: TransformType = ...
Grad: TransformType = ...
Jvp: TransformType = ...
Functionalize: TransformType = ...
class RandomnessType(Enum):
Error: TransformType = ...
Same: TransformType = ...
Different: TransformType = ...
class CInterpreter:
def key(self) -> TransformType: ...
def level(self) -> int: ...
class CGradInterpreterPtr:
def __init__(self, interpreter: CInterpreter) -> None: ...
def lift(self, Tensor) -> Tensor: ...
def prevGradMode(self) -> bool: ...
class CJvpInterpreterPtr:
def __init__(self, interpreter: CInterpreter) -> None: ...
def lift(self, Tensor) -> Tensor: ...
def prevFwdGradMode(self) -> bool: ...
class CFunctionalizeInterpreterPtr:
def __init__(self, interpreter: CInterpreter) -> None: ...
def key(self) -> TransformType: ...
def level(self) -> int: ...
def functionalizeAddBackViews(self) -> bool: ...
class CVmapInterpreterPtr:
def __init__(self, interpreter: CInterpreter) -> None: ...
def key(self) -> TransformType: ...
def level(self) -> int: ...
def batchSize(self) -> int: ...
def randomness(self) -> RandomnessType: ...
class DynamicLayer: ...
def get_dynamic_layer_stack_depth() -> int: ...
def get_interpreter_stack() -> list[CInterpreter]: ...
def peek_interpreter_stack() -> CInterpreter: ...
def pop_dynamic_layer_stack() -> DynamicLayer: ...
def pop_dynamic_layer_stack_and_undo_to_depth(int) -> None: ...
def push_dynamic_layer_stack(dl: DynamicLayer) -> int: ...