pytorch/test/distributed/pipelining/test_schedule.py
PyTorch MergeBot b5fdbc1a9f Revert "[pipelining] [BE] Move pipeline_order validation to schedules.py (#129369)"
This reverts commit ec789a3c9d.

Reverted https://github.com/pytorch/pytorch/pull/129369 on behalf of https://github.com/clee2000 due to broke test/distributed/pipelining/test_schedule.py::ScheduleTest::test_non_symmetric_stage_ids_ScheduleClass0 on distributed cuda https://github.com/pytorch/pytorch/actions/runs/9766039400/job/26959115773 ec789a3c9d.  You can see the error on the PR, but Dr. CI classified it wrong ([comment](https://github.com/pytorch/pytorch/pull/129369#issuecomment-2204568418))
2024-07-02 22:30:53 +00:00

858 lines
31 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates
# Owner(s): ["oncall: distributed"]
import copy
import logging
import os
import sys
import tempfile
import unittest
from typing import Dict, List, Optional, Tuple
from model_registry import ModelWithKwargs, MultiMLP
from schedule_registry import ScheduleUnbalanced, ScheduleVShaped, ScheduleWithW
import torch
import torch.distributed as dist
from torch.distributed.pipelining import (
pipeline,
PipelineStage,
Schedule1F1B,
ScheduleFlexibleInterleaved1F1B,
ScheduleGPipe,
ScheduleInterleaved1F1B,
ScheduleLoopedBFS,
)
from torch.distributed.pipelining.schedules import _Action, _ComputationType
from torch.distributed.pipelining.stage import _PipelineStageBase
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_distributed import (
MultiProcContinousTest,
requires_nccl,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skip_but_pass_in_sandcastle_if,
)
logger = logging.getLogger(__name__)
d_hid = 512
batch_size = 256
torch.manual_seed(0)
class MockPipelineStage(_PipelineStageBase):
def __init__(self, *args, **kwargs):
# Mock the necessary attributes
self.num_stages = kwargs.get("num_stages", 1)
self.group_size = kwargs.get("group_size", 1)
self.group_rank = kwargs.get("group_rank", 0)
self.group = kwargs.get("group", None)
self.stage_index_to_group_rank = kwargs.get("stage_index_to_group_rank", None)
def _create_grad_recv_info(self, *args, **kwargs):
return None
def _prepare_forward_infra(self, n_microbatches):
pass
def _prepare_backward_infra(self, n_microbatches):
pass
class ScheduleTest(MultiProcContinousTest):
@classmethod
def backend_str(cls) -> str:
# Testing with NCCL backend
return "nccl"
@classmethod
def setUpClass(cls):
"""
Class-scope test fixture. Run once for entire test class, before any test starts.
Set up the device.
"""
super().setUpClass()
dev_id = cls.rank % torch.cuda.device_count()
cls.device = torch.device(f"cuda:{dev_id}")
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
@parametrize("ScheduleClass", [ScheduleGPipe, Schedule1F1B])
def test_multi_iter(self, ScheduleClass):
mod = MultiMLP(d_hid, n_layers=self.world_size)
mod.to(self.device)
x = torch.randn(batch_size, d_hid, device=self.device)
target = torch.randn(batch_size, d_hid, device=self.device)
loss_fn = torch.nn.MSELoss(reduction="sum")
chunks = 4
x_mb = x.chunk(chunks)[0]
# Create a pipeline
split_spec = mod.split_spec if hasattr(mod, "split_spec") else None
pipe = pipeline(
mod,
mb_args=(x_mb,),
split_spec=split_spec,
)
stage = pipe.build_stage(
self.rank,
self.device,
)
# Attach to a schedule
schedule = ScheduleClass(stage, chunks, loss_fn=loss_fn)
# Run
for _ in range(20):
if self.rank == 0:
schedule.step(x)
elif self.rank == self.world_size - 1:
losses = []
out = schedule.step(target=target, losses=losses)
else:
schedule.step()
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
@parametrize("ScheduleClass", [ScheduleGPipe, Schedule1F1B])
def test_kwargs_with_tracer(self, ScheduleClass):
mod = ModelWithKwargs(d_hid)
mod.to(self.device)
x = torch.randn(batch_size, d_hid, device=self.device)
y = torch.randn(batch_size, d_hid, device=self.device)
target = torch.randn(batch_size, d_hid, device=self.device)
loss_fn = torch.nn.MSELoss(reduction="sum")
chunks = 4
x_mb = x.chunk(chunks)[0]
y_mb = y.chunk(chunks)[0]
pipe = pipeline(
mod,
mb_args=(x_mb,),
mb_kwargs={"y": y_mb},
)
stage = pipe.build_stage(
self.rank,
self.device,
)
# Attach to a schedule
schedule = ScheduleClass(stage, chunks, loss_fn=loss_fn)
# Run
if self.rank == 0:
schedule.step(x, y=y)
elif self.rank == self.world_size - 1:
losses = []
out = schedule.step(target=target, losses=losses)
else:
schedule.step()
dist.barrier()
# Last rank checks result
if self.rank == self.world_size - 1:
ref_out = mod(x, y=y)
ref_loss = loss_fn(ref_out, target)
pipe_loss = sum(losses)
torch.testing.assert_close(out, ref_out, rtol=1e-2, atol=5e-3)
torch.testing.assert_close(pipe_loss, ref_loss)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
@parametrize("ScheduleClass", [ScheduleGPipe, Schedule1F1B])
@parametrize("ModelClass", [MultiMLP])
def test_grad_with_tracer(self, ScheduleClass, ModelClass):
mod = ModelClass(d_hid)
mod.to(self.device)
ref_mod = copy.deepcopy(mod)
x = torch.randn(batch_size, d_hid, device=self.device)
with torch.no_grad():
y = ref_mod(x)
# Add a small perturbation
target = y + torch.randn(batch_size, d_hid, device=self.device)
loss_fn = torch.nn.MSELoss(reduction="sum")
# Run reference
for _ in range(2):
ref_mod.zero_grad()
ref_out = ref_mod(x)
ref_loss = loss_fn(ref_out, target)
ref_loss.backward()
# Create a pipeline
chunks = 4
x_mb = x.chunk(chunks)[0]
split_spec = mod.split_spec if hasattr(mod, "split_spec") else None
pipe = pipeline(
mod,
mb_args=(x_mb,),
split_spec=split_spec,
)
stage = pipe.build_stage(
self.rank,
self.device,
)
# Attach to a schedule
schedule = ScheduleClass(stage, chunks, loss_fn=loss_fn)
# Run
stage_module = pipe.get_stage_module(self.rank)
for _ in range(2):
# Zero gradients
stage_module.zero_grad()
if self.rank == 0:
schedule.step(x)
elif self.rank == self.world_size - 1:
losses = []
out = schedule.step(target=target, losses=losses)
else:
schedule.step()
dist.barrier()
# Last rank checks result
if self.rank == self.world_size - 1:
# Check output
torch.testing.assert_close(out, ref_out)
# Check loss
# Since the reduction used in the loss function above is "sum", we use
# "sum" here to reduce microbatch losses into a single value too.
pipe_loss = sum(losses)
torch.testing.assert_close(pipe_loss, ref_loss)
# Every rank checks gradients
for name, p in stage_module.named_parameters():
ref_p = ref_mod.get_parameter(name)
try:
torch.testing.assert_close(p.grad, ref_p.grad, rtol=1e-5, atol=4e-5)
except AssertionError:
print(f"Gradient test failed for {name}: {p.grad} vs {ref_p.grad}")
raise
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
@parametrize("ScheduleClass", [ScheduleGPipe, Schedule1F1B])
def test_grad_with_manual(self, ScheduleClass):
full_mod = MultiMLP(d_hid, n_layers=self.world_size)
full_mod.to(self.device)
ref_mod = copy.deepcopy(full_mod)
x = torch.randn(batch_size, d_hid, device=self.device)
with torch.no_grad():
y = ref_mod(x)
# Add a small perturbation
target = y + torch.randn(batch_size, d_hid, device=self.device)
loss_fn = torch.nn.MSELoss(reduction="sum")
# Run reference
for _ in range(2):
ref_mod.zero_grad()
ref_out = ref_mod(x)
ref_loss = loss_fn(ref_out, target)
ref_loss.backward()
# Get a submodule, e.g. `layers.0` or `layers.1`
submod_name = f"layers.{self.rank}"
stage_module = full_mod.get_submodule(submod_name)
chunks = 4
# Create a pipeline stage to wrap that submodule
stage = PipelineStage(
stage_module,
self.rank,
self.world_size,
self.device,
input_args=x.chunk(chunks)[0],
)
# Attach to a schedule
schedule = ScheduleClass(stage, chunks, loss_fn=loss_fn)
# Run
for _ in range(2):
# Zero gradients
stage_module.zero_grad()
if self.rank == 0:
schedule.step(x)
elif self.rank == self.world_size - 1:
losses = []
out = schedule.step(target=target, losses=losses)
else:
schedule.step()
dist.barrier()
# Last rank checks result
if self.rank == self.world_size - 1:
# Check output
torch.testing.assert_close(out, ref_out)
# Check loss
# Since the reduction used in the loss function above is "sum", we use
# "sum" here to reduce microbatch losses into a single value too.
pipe_loss = sum(losses)
torch.testing.assert_close(pipe_loss, ref_loss)
# Every rank checks gradients
ref_submod = ref_mod.get_submodule(submod_name)
for name, p in stage_module.named_parameters():
ref_p = ref_submod.get_parameter(name)
try:
torch.testing.assert_close(p.grad, ref_p.grad, rtol=1e-5, atol=4e-5)
except AssertionError:
print(f"Gradient test failed for {name}: {p.grad} vs {ref_p.grad}")
raise
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
@parametrize("ScheduleClass", [ScheduleInterleaved1F1B, ScheduleLoopedBFS])
def test_grad_with_manual_interleaved(self, ScheduleClass):
stages_per_rank = 2
n_stages = stages_per_rank * self.world_size
full_mod = MultiMLP(d_hid, n_layers=n_stages)
full_mod.to(self.device)
ref_mod = copy.deepcopy(full_mod)
x = torch.randn(batch_size, d_hid, device=self.device)
with torch.no_grad():
y = ref_mod(x)
# Add a small perturbation
target = y + torch.randn(batch_size, d_hid, device=self.device)
loss_fn = torch.nn.MSELoss(reduction="sum")
# Run reference
for _ in range(2):
ref_mod.zero_grad()
ref_out = ref_mod(x)
ref_loss = loss_fn(ref_out, target)
ref_loss.backward()
# Get a submodule, e.g. `layers.0` or `layers.1`
stage_indices = [
self.rank + i * self.world_size for i in range(stages_per_rank)
]
print(f"Rank {self.rank} stages: {stage_indices}")
submod_names = [f"layers.{i}" for i in stage_indices]
stage_modules = [
full_mod.get_submodule(submod_name) for submod_name in submod_names
]
# Create a pipeline stage to wrap that submodule
chunks = 8
input_args = x.chunk(chunks)[0]
stages = [
PipelineStage(
stage_module,
stage_idx,
n_stages,
self.device,
input_args=input_args,
)
for stage_module, stage_idx in zip(stage_modules, stage_indices)
]
# Attach to a schedule
schedule = ScheduleClass(stages, chunks, loss_fn=loss_fn)
# Run
for _ in range(2):
# Zero gradients
for stage_module in stage_modules:
stage_module.zero_grad()
if self.rank == 0:
schedule.step(x)
elif self.rank == self.world_size - 1:
losses = []
out = schedule.step(target=target, losses=losses)
else:
schedule.step()
dist.barrier()
# Last rank checks result
if self.rank == self.world_size - 1:
# Check output
torch.testing.assert_close(out, ref_out)
# Check loss
# Since the reduction used in the loss function above is "sum", we use
# "sum" here to reduce microbatch losses into a single value too.
pipe_loss = sum(losses)
torch.testing.assert_close(pipe_loss, ref_loss)
# Every rank checks gradients
for stage_module, submod_name in zip(stage_modules, submod_names):
# Get corresponding submodule from reference model
ref_submod = ref_mod.get_submodule(submod_name)
# Check gradients per parameter
for name, p in stage_module.named_parameters():
ref_p = ref_submod.get_parameter(name)
try:
torch.testing.assert_close(p.grad, ref_p.grad, rtol=1e-5, atol=4e-5)
except AssertionError:
print(f"Gradient test failed for {name}: {p.grad} vs {ref_p.grad}")
raise
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
@parametrize("ScheduleClass", [ScheduleVShaped, ScheduleUnbalanced])
def test_non_symmetric_stage_ids(self, ScheduleClass):
n_stages = ScheduleClass.n_stages
full_mod = MultiMLP(d_hid, n_layers=n_stages)
full_mod.to(self.device)
ref_mod = copy.deepcopy(full_mod)
x = torch.randn(batch_size, d_hid, device=self.device)
with torch.no_grad():
y = ref_mod(x)
# Add a small perturbation
target = y + torch.randn(batch_size, d_hid, device=self.device)
loss_fn = torch.nn.MSELoss(reduction="sum")
# Run reference
for _ in range(2):
ref_mod.zero_grad()
ref_out = ref_mod(x)
ref_loss = loss_fn(ref_out, target)
ref_loss.backward()
# Create a pipeline stage to wrap that submodule
chunks = 1
input_args = x.chunk(chunks)[0]
rank_stages = ScheduleClass.rank_stages
stage_indices = rank_stages[self.rank]
print(f"Rank {self.rank} stages: {stage_indices}")
submod_names = [f"layers.{i}" for i in stage_indices]
stage_modules = [
full_mod.get_submodule(submod_name) for submod_name in submod_names
]
stages = [
PipelineStage(
stage_module,
stage_idx,
n_stages,
self.device,
input_args=input_args,
)
for stage_module, stage_idx in zip(stage_modules, rank_stages[self.rank])
]
# Attach to a schedule
stage_index_to_group_rank = {
value: key for key, values in rank_stages.items() for value in values
}
schedule = ScheduleClass(
stages, chunks, stage_index_to_group_rank, loss_fn=loss_fn
)
# Run
# TODO how to better specify .step() when first and last stage are on rank 0...
for _ in range(2):
# Zero gradients
for stage_module in stage_modules:
stage_module.zero_grad()
if self.rank == 0:
losses = []
out = schedule.step(x, target=target, losses=losses)
else:
schedule.step()
dist.barrier()
# Last rank checks result
if self.rank == 0:
# Check output
torch.testing.assert_close(out, ref_out)
# Check loss
# Since the reduction used in the loss function above is "sum", we use
# "sum" here to reduce microbatch losses into a single value too.
pipe_loss = sum(losses)
torch.testing.assert_close(pipe_loss, ref_loss)
# Every rank checks gradients
for stage_module, submod_name in zip(stage_modules, submod_names):
# Get corresponding submodule from reference model
ref_submod = ref_mod.get_submodule(submod_name)
# Check gradients per parameter
for name, p in stage_module.named_parameters():
ref_p = ref_submod.get_parameter(name)
try:
torch.testing.assert_close(p.grad, ref_p.grad, rtol=1e-5, atol=4e-5)
except AssertionError:
print(f"Gradient test failed for {name}: {p.grad} vs {ref_p.grad}")
raise
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
@parametrize("ScheduleClass", [ScheduleWithW])
def test_schedule_with_weight_update(self, ScheduleClass):
stages_per_rank = 2
n_stages = stages_per_rank * self.world_size
full_mod = MultiMLP(d_hid, n_layers=n_stages)
full_mod.to(self.device)
ref_mod = copy.deepcopy(full_mod)
x = torch.randn(batch_size, d_hid, device=self.device)
with torch.no_grad():
y = ref_mod(x)
# Add a small perturbation
target = y + torch.randn(batch_size, d_hid, device=self.device)
loss_fn = torch.nn.MSELoss(reduction="sum")
# Run reference
for _ in range(2):
ref_mod.zero_grad()
ref_out = ref_mod(x)
ref_loss = loss_fn(ref_out, target)
ref_loss.backward()
# Get a submodule, e.g. `layers.0` or `layers.1`
stage_indices = [
self.rank + i * self.world_size for i in range(stages_per_rank)
]
print(f"Rank {self.rank} stages: {stage_indices}")
submod_names = [f"layers.{i}" for i in stage_indices]
stage_modules = [
full_mod.get_submodule(submod_name) for submod_name in submod_names
]
class CustomState:
def __init__(self):
self.i = 0
def dw_builder(self):
"""This simulates a function attached to a model with a custom backward.
Each call to builder gives a new dw_runner that has some updated state to compute the latest dw.
"""
def dw_runner():
# This inner function would be called by PipelineStage during `backward_weight_one_chunk`
print(f"dw called {self.i}th time")
self.i += 1
return dw_runner
cs = CustomState()
# Create a pipeline stage to wrap that submodule
chunks = 2
input_args = x.chunk(chunks)[0]
stages = [
PipelineStage(
stage_module,
stage_idx,
n_stages,
self.device,
input_args=input_args,
dw_builder=cs.dw_builder,
)
for stage_module, stage_idx in zip(stage_modules, stage_indices)
]
# Attach to a schedule
schedule = ScheduleClass(stages, chunks, loss_fn=loss_fn)
# Run
for _ in range(2):
# Zero gradients
for stage_module in stage_modules:
stage_module.zero_grad()
if self.rank == 0:
schedule.step(x)
elif self.rank == self.world_size - 1:
losses = []
out = schedule.step(target=target, losses=losses)
else:
schedule.step()
dist.barrier()
# Last rank checks result
if self.rank == self.world_size - 1:
# Check output
torch.testing.assert_close(out, ref_out)
# Check loss
# Since the reduction used in the loss function above is "sum", we use
# "sum" here to reduce microbatch losses into a single value too.
pipe_loss = sum(losses)
torch.testing.assert_close(pipe_loss, ref_loss)
# Every rank checks gradients
for stage_module, submod_name in zip(stage_modules, submod_names):
# Get corresponding submodule from reference model
ref_submod = ref_mod.get_submodule(submod_name)
# Check gradients per parameter
for name, p in stage_module.named_parameters():
ref_p = ref_submod.get_parameter(name)
try:
torch.testing.assert_close(p.grad, ref_p.grad, rtol=1e-5, atol=4e-5)
except AssertionError:
print(f"Gradient test failed for {name}: {p.grad} vs {ref_p.grad}")
raise
instantiate_parametrized_tests(ScheduleTest)
def format_pipeline_order(pipeline_order: Dict[int, List[Optional[_Action]]]):
import itertools
# Calculate the maximum number of steps across all ranks
num_steps = max(len(actions) for actions in pipeline_order.values())
step_labels = [
"Step " + str(i).zfill(len(str(num_steps - 1))) for i in range(num_steps)
]
# Sorting the dictionary by keys and retrieving values in that order
rank_actions = [
pipeline_order.get(key, [""] * num_steps) for key in sorted(pipeline_order)
]
# Transpose the list of lists (rows to columns)
transposed_actions = list(itertools.zip_longest(*rank_actions, fillvalue=""))
# Generate column labels for ranks
num_ranks = len(pipeline_order)
rank_labels = ["Rank " + str(i) for i in range(num_ranks)]
# Calculate the maximum length of each column, considering labels
max_lengths = [
max(len(str(item)) if item is not None else 0 for item in col)
for col in zip(step_labels, *transposed_actions)
]
# Format the header row with rank labels
header_row = " " * (len(step_labels[0]) + 2) + " ".join(
f"{label:<{max_lengths[i]}}" for i, label in enumerate(rank_labels)
)
# Format each row with its corresponding label
formatted_rows = [
f"{label}: "
+ " ".join(f"{str(item):<{max_lengths[i]}}" for i, item in enumerate(row))
for label, row in zip(step_labels, transposed_actions)
]
# Join the rows into a single string
formatted_table = (
"=========== ALL_RANK_ACTIONS ===========\n"
+ header_row
+ "\n"
+ "\n".join(formatted_rows)
+ "\n"
)
return formatted_table
class TestSchedulePlan(unittest.TestCase):
def _validate_pipeline_order(
self,
pipeline_order: Dict[int, List[Optional[_Action]]],
num_microbatches: int,
num_stages: int,
):
"""
pipeline_order[rank] = [(computation_type, microbatch_index, stage_index), ...]
Validating that the pipeline order follows the rules:
1. Forward action for a microbatch must be before the Backward action for that microbatch
2. Recv for a microbatch must be before the send for that microbatch
3. Microbatch index is handled in sequential order for each stage
4. A later stage cannot operate on a microbatch before any of the previous stages have operated on it
5. Same microbatch cannot be handled in the same time step across ranks
"""
# microbatch_index: (current computation type, current stage)
error_msg = []
microbatch_process_info: Dict[int, Tuple(_ComputationType, int)] = {}
max_timestep = max(len(rank_list) for rank_list in pipeline_order.values())
for timestep in range(max_timestep):
error_msg = []
current_timestep_actions = []
for rank in range(len(pipeline_order)):
action = (
pipeline_order[rank][timestep]
if timestep < len(pipeline_order[rank])
else None
)
if action is not None:
current_timestep_actions.append(action)
# TODO: enable this
# if len(current_timestep_actions) == 0:
# error_msg.append(
# "All actions were None, there is an unnecessary gap in the schedule"
# )
# Ensure that no microbatch is operated on twice in current_timestep_actions
unique_microbatch_indices = {
action[1] for action in current_timestep_actions
}
if len(unique_microbatch_indices) != len(current_timestep_actions):
error_msg.append(
"Duplicate microbatch index found in current_timestep_actions"
)
# Add additional checks for other rules here...
for action in current_timestep_actions:
computation_type, mb_index, stage_index = action
if mb_index >= num_microbatches:
error_msg.append(f"Microbatch index {mb_index} out of range")
# first microbatch
if mb_index not in microbatch_process_info:
if computation_type != _ComputationType.FORWARD or stage_index != 0:
error_msg.append(f"Incorrect start for microbatch {mb_index}")
microbatch_process_info[mb_index] = (computation_type, stage_index)
else:
# if the microbatch is included, check that the current stage is right after prev
prev_computation, prev_stage = microbatch_process_info[mb_index]
if prev_computation == _ComputationType.FORWARD:
if prev_stage == num_stages - 1:
expected_stage = num_stages - 1
expected_computation = _ComputationType.BACKWARD
else:
expected_stage = prev_stage + 1
expected_computation = _ComputationType.FORWARD
elif prev_computation == _ComputationType.BACKWARD:
if prev_stage == 0:
error_msg.append(
f"[{mb_index=}] already finished backward computation"
)
expected_stage = None
expected_computation = None
else:
expected_stage = prev_stage - 1
expected_computation = _ComputationType.BACKWARD
else:
raise ValueError(
f"Computation type {prev_computation} not supported"
)
if expected_computation is not None:
if expected_computation != computation_type:
error_msg.append(
f"[{mb_index=}] {expected_computation=} VS. actual {computation_type=}"
)
if expected_stage != stage_index:
error_msg.append(
f"[{mb_index=}] {expected_stage=} VS. actual {stage_index=}"
)
microbatch_process_info[mb_index] = (
expected_computation,
expected_stage,
)
if len(error_msg) != 0:
self.fail(f"Error at timestep {timestep}: " + ",".join(error_msg))
@parametrize(
"ScheduleClass",
[ScheduleFlexibleInterleaved1F1B, ScheduleInterleaved1F1B, ScheduleLoopedBFS],
)
def test_pipeline_order(self, ScheduleClass):
# Define a list of test cases with varying num_local_stages, num_microbatches, and group_size
# These should succeed since num_microbatches % group_size == 0
test_cases = [
# small number of stages
(2, 2, 2),
(2, 4, 4),
(2, 8, 2),
(2, 8, 4),
(2, 8, 8),
(4, 4, 4),
(4, 8, 4),
(4, 8, 8),
# large microbatches
(4, 16, 4),
(4, 32, 4),
(4, 64, 4),
# large groups
(4, 16, 16),
(4, 32, 32),
(4, 128, 64),
# odd num pipeline stages
(3, 2, 2),
(3, 8, 2),
(3, 12, 4),
# odd group_sizes
(4, 6, 3),
(4, 10, 5),
# n_mb non divisible by group_size
(2, 3, 4),
(2, 4, 4),
(2, 10, 4),
(2, 15, 4),
]
for num_local_stages, num_microbatches, group_size in test_cases:
with self.subTest(
num_local_stages=num_local_stages,
num_microbatches=num_microbatches,
group_size=group_size,
):
only_run_in_flex_pp = num_microbatches % group_size != 0
if only_run_in_flex_pp and not isinstance(
ScheduleClass, ScheduleFlexibleInterleaved1F1B
):
continue
print(f"{num_local_stages=} {num_microbatches=} {group_size=}")
num_stages = num_local_stages * group_size
stages = [
MockPipelineStage(group_size=group_size, num_stages=num_stages)
for i in range(num_local_stages)
]
schedule = ScheduleClass(stages, num_microbatches)
# print(format_pipeline_order(schedule.pipeline_order))
self._validate_pipeline_order(
schedule.pipeline_order, num_microbatches, num_stages
)
instantiate_parametrized_tests(TestSchedulePlan)
if __name__ == "__main__":
# Run only the TestSchedulePlan tests (single process)
loader = unittest.TestLoader()
suite = loader.loadTestsFromTestCase(TestSchedulePlan)
runner = unittest.TextTestRunner()
runner.run(suite)
# Check if GPU and NCCL are available
if not (
dist.is_available()
and dist.is_nccl_available()
and torch.cuda.device_count() > 1
):
print(
"c10d NCCL not available or not enough GPUs, skipping tests",
file=sys.stderr,
)
sys.exit(0)
rank = int(os.getenv("RANK", -1))
world_size = int(os.getenv("WORLD_SIZE", 2))
if rank != -1:
# Launched with torchrun or other multi-proc launchers. Directly run the test.
ScheduleTest.run_rank(rank, world_size)
else:
# Launched as a single process. Spawn subprocess to run the tests.
# Also need a rendezvous file for `init_process_group` purpose.
rdvz_file = tempfile.NamedTemporaryFile(delete=False).name
torch.multiprocessing.spawn(
ScheduleTest.run_rank,
nprocs=world_size,
args=(world_size, rdvz_file),
)