mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
This reverts commitec789a3c9d. Reverted https://github.com/pytorch/pytorch/pull/129369 on behalf of https://github.com/clee2000 due to broke test/distributed/pipelining/test_schedule.py::ScheduleTest::test_non_symmetric_stage_ids_ScheduleClass0 on distributed cuda https://github.com/pytorch/pytorch/actions/runs/9766039400/job/26959115773ec789a3c9d. You can see the error on the PR, but Dr. CI classified it wrong ([comment](https://github.com/pytorch/pytorch/pull/129369#issuecomment-2204568418))
858 lines
31 KiB
Python
858 lines
31 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates
|
|
# Owner(s): ["oncall: distributed"]
|
|
import copy
|
|
import logging
|
|
import os
|
|
import sys
|
|
import tempfile
|
|
import unittest
|
|
from typing import Dict, List, Optional, Tuple
|
|
|
|
from model_registry import ModelWithKwargs, MultiMLP
|
|
from schedule_registry import ScheduleUnbalanced, ScheduleVShaped, ScheduleWithW
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
from torch.distributed.pipelining import (
|
|
pipeline,
|
|
PipelineStage,
|
|
Schedule1F1B,
|
|
ScheduleFlexibleInterleaved1F1B,
|
|
ScheduleGPipe,
|
|
ScheduleInterleaved1F1B,
|
|
ScheduleLoopedBFS,
|
|
)
|
|
from torch.distributed.pipelining.schedules import _Action, _ComputationType
|
|
from torch.distributed.pipelining.stage import _PipelineStageBase
|
|
from torch.testing._internal.common_cuda import TEST_MULTIGPU
|
|
from torch.testing._internal.common_distributed import (
|
|
MultiProcContinousTest,
|
|
requires_nccl,
|
|
)
|
|
from torch.testing._internal.common_utils import (
|
|
instantiate_parametrized_tests,
|
|
parametrize,
|
|
skip_but_pass_in_sandcastle_if,
|
|
)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
d_hid = 512
|
|
batch_size = 256
|
|
|
|
torch.manual_seed(0)
|
|
|
|
|
|
class MockPipelineStage(_PipelineStageBase):
|
|
def __init__(self, *args, **kwargs):
|
|
# Mock the necessary attributes
|
|
self.num_stages = kwargs.get("num_stages", 1)
|
|
self.group_size = kwargs.get("group_size", 1)
|
|
self.group_rank = kwargs.get("group_rank", 0)
|
|
self.group = kwargs.get("group", None)
|
|
self.stage_index_to_group_rank = kwargs.get("stage_index_to_group_rank", None)
|
|
|
|
def _create_grad_recv_info(self, *args, **kwargs):
|
|
return None
|
|
|
|
def _prepare_forward_infra(self, n_microbatches):
|
|
pass
|
|
|
|
def _prepare_backward_infra(self, n_microbatches):
|
|
pass
|
|
|
|
|
|
class ScheduleTest(MultiProcContinousTest):
|
|
@classmethod
|
|
def backend_str(cls) -> str:
|
|
# Testing with NCCL backend
|
|
return "nccl"
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
"""
|
|
Class-scope test fixture. Run once for entire test class, before any test starts.
|
|
Set up the device.
|
|
"""
|
|
super().setUpClass()
|
|
dev_id = cls.rank % torch.cuda.device_count()
|
|
cls.device = torch.device(f"cuda:{dev_id}")
|
|
|
|
@requires_nccl()
|
|
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
|
|
@parametrize("ScheduleClass", [ScheduleGPipe, Schedule1F1B])
|
|
def test_multi_iter(self, ScheduleClass):
|
|
mod = MultiMLP(d_hid, n_layers=self.world_size)
|
|
mod.to(self.device)
|
|
|
|
x = torch.randn(batch_size, d_hid, device=self.device)
|
|
target = torch.randn(batch_size, d_hid, device=self.device)
|
|
loss_fn = torch.nn.MSELoss(reduction="sum")
|
|
|
|
chunks = 4
|
|
x_mb = x.chunk(chunks)[0]
|
|
|
|
# Create a pipeline
|
|
split_spec = mod.split_spec if hasattr(mod, "split_spec") else None
|
|
pipe = pipeline(
|
|
mod,
|
|
mb_args=(x_mb,),
|
|
split_spec=split_spec,
|
|
)
|
|
|
|
stage = pipe.build_stage(
|
|
self.rank,
|
|
self.device,
|
|
)
|
|
|
|
# Attach to a schedule
|
|
schedule = ScheduleClass(stage, chunks, loss_fn=loss_fn)
|
|
|
|
# Run
|
|
for _ in range(20):
|
|
if self.rank == 0:
|
|
schedule.step(x)
|
|
elif self.rank == self.world_size - 1:
|
|
losses = []
|
|
out = schedule.step(target=target, losses=losses)
|
|
else:
|
|
schedule.step()
|
|
|
|
@requires_nccl()
|
|
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
|
|
@parametrize("ScheduleClass", [ScheduleGPipe, Schedule1F1B])
|
|
def test_kwargs_with_tracer(self, ScheduleClass):
|
|
mod = ModelWithKwargs(d_hid)
|
|
mod.to(self.device)
|
|
|
|
x = torch.randn(batch_size, d_hid, device=self.device)
|
|
y = torch.randn(batch_size, d_hid, device=self.device)
|
|
target = torch.randn(batch_size, d_hid, device=self.device)
|
|
loss_fn = torch.nn.MSELoss(reduction="sum")
|
|
|
|
chunks = 4
|
|
x_mb = x.chunk(chunks)[0]
|
|
y_mb = y.chunk(chunks)[0]
|
|
|
|
pipe = pipeline(
|
|
mod,
|
|
mb_args=(x_mb,),
|
|
mb_kwargs={"y": y_mb},
|
|
)
|
|
|
|
stage = pipe.build_stage(
|
|
self.rank,
|
|
self.device,
|
|
)
|
|
|
|
# Attach to a schedule
|
|
schedule = ScheduleClass(stage, chunks, loss_fn=loss_fn)
|
|
|
|
# Run
|
|
if self.rank == 0:
|
|
schedule.step(x, y=y)
|
|
elif self.rank == self.world_size - 1:
|
|
losses = []
|
|
out = schedule.step(target=target, losses=losses)
|
|
else:
|
|
schedule.step()
|
|
|
|
dist.barrier()
|
|
|
|
# Last rank checks result
|
|
if self.rank == self.world_size - 1:
|
|
ref_out = mod(x, y=y)
|
|
ref_loss = loss_fn(ref_out, target)
|
|
pipe_loss = sum(losses)
|
|
torch.testing.assert_close(out, ref_out, rtol=1e-2, atol=5e-3)
|
|
torch.testing.assert_close(pipe_loss, ref_loss)
|
|
|
|
@requires_nccl()
|
|
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
|
|
@parametrize("ScheduleClass", [ScheduleGPipe, Schedule1F1B])
|
|
@parametrize("ModelClass", [MultiMLP])
|
|
def test_grad_with_tracer(self, ScheduleClass, ModelClass):
|
|
mod = ModelClass(d_hid)
|
|
mod.to(self.device)
|
|
|
|
ref_mod = copy.deepcopy(mod)
|
|
x = torch.randn(batch_size, d_hid, device=self.device)
|
|
with torch.no_grad():
|
|
y = ref_mod(x)
|
|
# Add a small perturbation
|
|
target = y + torch.randn(batch_size, d_hid, device=self.device)
|
|
|
|
loss_fn = torch.nn.MSELoss(reduction="sum")
|
|
|
|
# Run reference
|
|
for _ in range(2):
|
|
ref_mod.zero_grad()
|
|
ref_out = ref_mod(x)
|
|
ref_loss = loss_fn(ref_out, target)
|
|
ref_loss.backward()
|
|
|
|
# Create a pipeline
|
|
chunks = 4
|
|
x_mb = x.chunk(chunks)[0]
|
|
split_spec = mod.split_spec if hasattr(mod, "split_spec") else None
|
|
pipe = pipeline(
|
|
mod,
|
|
mb_args=(x_mb,),
|
|
split_spec=split_spec,
|
|
)
|
|
|
|
stage = pipe.build_stage(
|
|
self.rank,
|
|
self.device,
|
|
)
|
|
|
|
# Attach to a schedule
|
|
schedule = ScheduleClass(stage, chunks, loss_fn=loss_fn)
|
|
|
|
# Run
|
|
stage_module = pipe.get_stage_module(self.rank)
|
|
for _ in range(2):
|
|
# Zero gradients
|
|
stage_module.zero_grad()
|
|
if self.rank == 0:
|
|
schedule.step(x)
|
|
elif self.rank == self.world_size - 1:
|
|
losses = []
|
|
out = schedule.step(target=target, losses=losses)
|
|
else:
|
|
schedule.step()
|
|
|
|
dist.barrier()
|
|
|
|
# Last rank checks result
|
|
if self.rank == self.world_size - 1:
|
|
# Check output
|
|
torch.testing.assert_close(out, ref_out)
|
|
# Check loss
|
|
# Since the reduction used in the loss function above is "sum", we use
|
|
# "sum" here to reduce microbatch losses into a single value too.
|
|
pipe_loss = sum(losses)
|
|
torch.testing.assert_close(pipe_loss, ref_loss)
|
|
|
|
# Every rank checks gradients
|
|
for name, p in stage_module.named_parameters():
|
|
ref_p = ref_mod.get_parameter(name)
|
|
try:
|
|
torch.testing.assert_close(p.grad, ref_p.grad, rtol=1e-5, atol=4e-5)
|
|
except AssertionError:
|
|
print(f"Gradient test failed for {name}: {p.grad} vs {ref_p.grad}")
|
|
raise
|
|
|
|
@requires_nccl()
|
|
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
|
|
@parametrize("ScheduleClass", [ScheduleGPipe, Schedule1F1B])
|
|
def test_grad_with_manual(self, ScheduleClass):
|
|
full_mod = MultiMLP(d_hid, n_layers=self.world_size)
|
|
full_mod.to(self.device)
|
|
|
|
ref_mod = copy.deepcopy(full_mod)
|
|
x = torch.randn(batch_size, d_hid, device=self.device)
|
|
with torch.no_grad():
|
|
y = ref_mod(x)
|
|
# Add a small perturbation
|
|
target = y + torch.randn(batch_size, d_hid, device=self.device)
|
|
|
|
loss_fn = torch.nn.MSELoss(reduction="sum")
|
|
|
|
# Run reference
|
|
for _ in range(2):
|
|
ref_mod.zero_grad()
|
|
ref_out = ref_mod(x)
|
|
ref_loss = loss_fn(ref_out, target)
|
|
ref_loss.backward()
|
|
|
|
# Get a submodule, e.g. `layers.0` or `layers.1`
|
|
submod_name = f"layers.{self.rank}"
|
|
stage_module = full_mod.get_submodule(submod_name)
|
|
chunks = 4
|
|
# Create a pipeline stage to wrap that submodule
|
|
stage = PipelineStage(
|
|
stage_module,
|
|
self.rank,
|
|
self.world_size,
|
|
self.device,
|
|
input_args=x.chunk(chunks)[0],
|
|
)
|
|
|
|
# Attach to a schedule
|
|
schedule = ScheduleClass(stage, chunks, loss_fn=loss_fn)
|
|
|
|
# Run
|
|
for _ in range(2):
|
|
# Zero gradients
|
|
stage_module.zero_grad()
|
|
if self.rank == 0:
|
|
schedule.step(x)
|
|
elif self.rank == self.world_size - 1:
|
|
losses = []
|
|
out = schedule.step(target=target, losses=losses)
|
|
else:
|
|
schedule.step()
|
|
|
|
dist.barrier()
|
|
|
|
# Last rank checks result
|
|
if self.rank == self.world_size - 1:
|
|
# Check output
|
|
torch.testing.assert_close(out, ref_out)
|
|
# Check loss
|
|
# Since the reduction used in the loss function above is "sum", we use
|
|
# "sum" here to reduce microbatch losses into a single value too.
|
|
pipe_loss = sum(losses)
|
|
torch.testing.assert_close(pipe_loss, ref_loss)
|
|
|
|
# Every rank checks gradients
|
|
ref_submod = ref_mod.get_submodule(submod_name)
|
|
for name, p in stage_module.named_parameters():
|
|
ref_p = ref_submod.get_parameter(name)
|
|
try:
|
|
torch.testing.assert_close(p.grad, ref_p.grad, rtol=1e-5, atol=4e-5)
|
|
except AssertionError:
|
|
print(f"Gradient test failed for {name}: {p.grad} vs {ref_p.grad}")
|
|
raise
|
|
|
|
@requires_nccl()
|
|
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
|
|
@parametrize("ScheduleClass", [ScheduleInterleaved1F1B, ScheduleLoopedBFS])
|
|
def test_grad_with_manual_interleaved(self, ScheduleClass):
|
|
stages_per_rank = 2
|
|
n_stages = stages_per_rank * self.world_size
|
|
full_mod = MultiMLP(d_hid, n_layers=n_stages)
|
|
full_mod.to(self.device)
|
|
|
|
ref_mod = copy.deepcopy(full_mod)
|
|
x = torch.randn(batch_size, d_hid, device=self.device)
|
|
with torch.no_grad():
|
|
y = ref_mod(x)
|
|
# Add a small perturbation
|
|
target = y + torch.randn(batch_size, d_hid, device=self.device)
|
|
|
|
loss_fn = torch.nn.MSELoss(reduction="sum")
|
|
|
|
# Run reference
|
|
for _ in range(2):
|
|
ref_mod.zero_grad()
|
|
ref_out = ref_mod(x)
|
|
ref_loss = loss_fn(ref_out, target)
|
|
ref_loss.backward()
|
|
|
|
# Get a submodule, e.g. `layers.0` or `layers.1`
|
|
stage_indices = [
|
|
self.rank + i * self.world_size for i in range(stages_per_rank)
|
|
]
|
|
print(f"Rank {self.rank} stages: {stage_indices}")
|
|
submod_names = [f"layers.{i}" for i in stage_indices]
|
|
stage_modules = [
|
|
full_mod.get_submodule(submod_name) for submod_name in submod_names
|
|
]
|
|
# Create a pipeline stage to wrap that submodule
|
|
chunks = 8
|
|
input_args = x.chunk(chunks)[0]
|
|
stages = [
|
|
PipelineStage(
|
|
stage_module,
|
|
stage_idx,
|
|
n_stages,
|
|
self.device,
|
|
input_args=input_args,
|
|
)
|
|
for stage_module, stage_idx in zip(stage_modules, stage_indices)
|
|
]
|
|
|
|
# Attach to a schedule
|
|
schedule = ScheduleClass(stages, chunks, loss_fn=loss_fn)
|
|
|
|
# Run
|
|
for _ in range(2):
|
|
# Zero gradients
|
|
for stage_module in stage_modules:
|
|
stage_module.zero_grad()
|
|
if self.rank == 0:
|
|
schedule.step(x)
|
|
elif self.rank == self.world_size - 1:
|
|
losses = []
|
|
out = schedule.step(target=target, losses=losses)
|
|
else:
|
|
schedule.step()
|
|
|
|
dist.barrier()
|
|
|
|
# Last rank checks result
|
|
if self.rank == self.world_size - 1:
|
|
# Check output
|
|
torch.testing.assert_close(out, ref_out)
|
|
# Check loss
|
|
# Since the reduction used in the loss function above is "sum", we use
|
|
# "sum" here to reduce microbatch losses into a single value too.
|
|
pipe_loss = sum(losses)
|
|
torch.testing.assert_close(pipe_loss, ref_loss)
|
|
|
|
# Every rank checks gradients
|
|
for stage_module, submod_name in zip(stage_modules, submod_names):
|
|
# Get corresponding submodule from reference model
|
|
ref_submod = ref_mod.get_submodule(submod_name)
|
|
# Check gradients per parameter
|
|
for name, p in stage_module.named_parameters():
|
|
ref_p = ref_submod.get_parameter(name)
|
|
try:
|
|
torch.testing.assert_close(p.grad, ref_p.grad, rtol=1e-5, atol=4e-5)
|
|
except AssertionError:
|
|
print(f"Gradient test failed for {name}: {p.grad} vs {ref_p.grad}")
|
|
raise
|
|
|
|
@requires_nccl()
|
|
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
|
|
@parametrize("ScheduleClass", [ScheduleVShaped, ScheduleUnbalanced])
|
|
def test_non_symmetric_stage_ids(self, ScheduleClass):
|
|
n_stages = ScheduleClass.n_stages
|
|
full_mod = MultiMLP(d_hid, n_layers=n_stages)
|
|
full_mod.to(self.device)
|
|
|
|
ref_mod = copy.deepcopy(full_mod)
|
|
x = torch.randn(batch_size, d_hid, device=self.device)
|
|
with torch.no_grad():
|
|
y = ref_mod(x)
|
|
# Add a small perturbation
|
|
target = y + torch.randn(batch_size, d_hid, device=self.device)
|
|
|
|
loss_fn = torch.nn.MSELoss(reduction="sum")
|
|
|
|
# Run reference
|
|
for _ in range(2):
|
|
ref_mod.zero_grad()
|
|
ref_out = ref_mod(x)
|
|
ref_loss = loss_fn(ref_out, target)
|
|
ref_loss.backward()
|
|
|
|
# Create a pipeline stage to wrap that submodule
|
|
chunks = 1
|
|
input_args = x.chunk(chunks)[0]
|
|
rank_stages = ScheduleClass.rank_stages
|
|
stage_indices = rank_stages[self.rank]
|
|
print(f"Rank {self.rank} stages: {stage_indices}")
|
|
submod_names = [f"layers.{i}" for i in stage_indices]
|
|
stage_modules = [
|
|
full_mod.get_submodule(submod_name) for submod_name in submod_names
|
|
]
|
|
stages = [
|
|
PipelineStage(
|
|
stage_module,
|
|
stage_idx,
|
|
n_stages,
|
|
self.device,
|
|
input_args=input_args,
|
|
)
|
|
for stage_module, stage_idx in zip(stage_modules, rank_stages[self.rank])
|
|
]
|
|
|
|
# Attach to a schedule
|
|
stage_index_to_group_rank = {
|
|
value: key for key, values in rank_stages.items() for value in values
|
|
}
|
|
schedule = ScheduleClass(
|
|
stages, chunks, stage_index_to_group_rank, loss_fn=loss_fn
|
|
)
|
|
|
|
# Run
|
|
# TODO how to better specify .step() when first and last stage are on rank 0...
|
|
for _ in range(2):
|
|
# Zero gradients
|
|
for stage_module in stage_modules:
|
|
stage_module.zero_grad()
|
|
if self.rank == 0:
|
|
losses = []
|
|
out = schedule.step(x, target=target, losses=losses)
|
|
else:
|
|
schedule.step()
|
|
|
|
dist.barrier()
|
|
|
|
# Last rank checks result
|
|
if self.rank == 0:
|
|
# Check output
|
|
torch.testing.assert_close(out, ref_out)
|
|
# Check loss
|
|
# Since the reduction used in the loss function above is "sum", we use
|
|
# "sum" here to reduce microbatch losses into a single value too.
|
|
pipe_loss = sum(losses)
|
|
torch.testing.assert_close(pipe_loss, ref_loss)
|
|
|
|
# Every rank checks gradients
|
|
for stage_module, submod_name in zip(stage_modules, submod_names):
|
|
# Get corresponding submodule from reference model
|
|
ref_submod = ref_mod.get_submodule(submod_name)
|
|
# Check gradients per parameter
|
|
for name, p in stage_module.named_parameters():
|
|
ref_p = ref_submod.get_parameter(name)
|
|
try:
|
|
torch.testing.assert_close(p.grad, ref_p.grad, rtol=1e-5, atol=4e-5)
|
|
except AssertionError:
|
|
print(f"Gradient test failed for {name}: {p.grad} vs {ref_p.grad}")
|
|
raise
|
|
|
|
@requires_nccl()
|
|
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
|
|
@parametrize("ScheduleClass", [ScheduleWithW])
|
|
def test_schedule_with_weight_update(self, ScheduleClass):
|
|
stages_per_rank = 2
|
|
n_stages = stages_per_rank * self.world_size
|
|
full_mod = MultiMLP(d_hid, n_layers=n_stages)
|
|
full_mod.to(self.device)
|
|
|
|
ref_mod = copy.deepcopy(full_mod)
|
|
x = torch.randn(batch_size, d_hid, device=self.device)
|
|
with torch.no_grad():
|
|
y = ref_mod(x)
|
|
# Add a small perturbation
|
|
target = y + torch.randn(batch_size, d_hid, device=self.device)
|
|
|
|
loss_fn = torch.nn.MSELoss(reduction="sum")
|
|
|
|
# Run reference
|
|
for _ in range(2):
|
|
ref_mod.zero_grad()
|
|
ref_out = ref_mod(x)
|
|
ref_loss = loss_fn(ref_out, target)
|
|
ref_loss.backward()
|
|
|
|
# Get a submodule, e.g. `layers.0` or `layers.1`
|
|
stage_indices = [
|
|
self.rank + i * self.world_size for i in range(stages_per_rank)
|
|
]
|
|
print(f"Rank {self.rank} stages: {stage_indices}")
|
|
submod_names = [f"layers.{i}" for i in stage_indices]
|
|
stage_modules = [
|
|
full_mod.get_submodule(submod_name) for submod_name in submod_names
|
|
]
|
|
|
|
class CustomState:
|
|
def __init__(self):
|
|
self.i = 0
|
|
|
|
def dw_builder(self):
|
|
"""This simulates a function attached to a model with a custom backward.
|
|
Each call to builder gives a new dw_runner that has some updated state to compute the latest dw.
|
|
"""
|
|
|
|
def dw_runner():
|
|
# This inner function would be called by PipelineStage during `backward_weight_one_chunk`
|
|
print(f"dw called {self.i}th time")
|
|
self.i += 1
|
|
|
|
return dw_runner
|
|
|
|
cs = CustomState()
|
|
|
|
# Create a pipeline stage to wrap that submodule
|
|
chunks = 2
|
|
input_args = x.chunk(chunks)[0]
|
|
stages = [
|
|
PipelineStage(
|
|
stage_module,
|
|
stage_idx,
|
|
n_stages,
|
|
self.device,
|
|
input_args=input_args,
|
|
dw_builder=cs.dw_builder,
|
|
)
|
|
for stage_module, stage_idx in zip(stage_modules, stage_indices)
|
|
]
|
|
|
|
# Attach to a schedule
|
|
schedule = ScheduleClass(stages, chunks, loss_fn=loss_fn)
|
|
|
|
# Run
|
|
for _ in range(2):
|
|
# Zero gradients
|
|
for stage_module in stage_modules:
|
|
stage_module.zero_grad()
|
|
if self.rank == 0:
|
|
schedule.step(x)
|
|
elif self.rank == self.world_size - 1:
|
|
losses = []
|
|
out = schedule.step(target=target, losses=losses)
|
|
else:
|
|
schedule.step()
|
|
|
|
dist.barrier()
|
|
|
|
# Last rank checks result
|
|
if self.rank == self.world_size - 1:
|
|
# Check output
|
|
torch.testing.assert_close(out, ref_out)
|
|
# Check loss
|
|
# Since the reduction used in the loss function above is "sum", we use
|
|
# "sum" here to reduce microbatch losses into a single value too.
|
|
pipe_loss = sum(losses)
|
|
torch.testing.assert_close(pipe_loss, ref_loss)
|
|
|
|
# Every rank checks gradients
|
|
for stage_module, submod_name in zip(stage_modules, submod_names):
|
|
# Get corresponding submodule from reference model
|
|
ref_submod = ref_mod.get_submodule(submod_name)
|
|
# Check gradients per parameter
|
|
for name, p in stage_module.named_parameters():
|
|
ref_p = ref_submod.get_parameter(name)
|
|
try:
|
|
torch.testing.assert_close(p.grad, ref_p.grad, rtol=1e-5, atol=4e-5)
|
|
except AssertionError:
|
|
print(f"Gradient test failed for {name}: {p.grad} vs {ref_p.grad}")
|
|
raise
|
|
|
|
|
|
instantiate_parametrized_tests(ScheduleTest)
|
|
|
|
|
|
def format_pipeline_order(pipeline_order: Dict[int, List[Optional[_Action]]]):
|
|
import itertools
|
|
|
|
# Calculate the maximum number of steps across all ranks
|
|
num_steps = max(len(actions) for actions in pipeline_order.values())
|
|
step_labels = [
|
|
"Step " + str(i).zfill(len(str(num_steps - 1))) for i in range(num_steps)
|
|
]
|
|
# Sorting the dictionary by keys and retrieving values in that order
|
|
rank_actions = [
|
|
pipeline_order.get(key, [""] * num_steps) for key in sorted(pipeline_order)
|
|
]
|
|
# Transpose the list of lists (rows to columns)
|
|
transposed_actions = list(itertools.zip_longest(*rank_actions, fillvalue=""))
|
|
# Generate column labels for ranks
|
|
num_ranks = len(pipeline_order)
|
|
rank_labels = ["Rank " + str(i) for i in range(num_ranks)]
|
|
# Calculate the maximum length of each column, considering labels
|
|
max_lengths = [
|
|
max(len(str(item)) if item is not None else 0 for item in col)
|
|
for col in zip(step_labels, *transposed_actions)
|
|
]
|
|
# Format the header row with rank labels
|
|
header_row = " " * (len(step_labels[0]) + 2) + " ".join(
|
|
f"{label:<{max_lengths[i]}}" for i, label in enumerate(rank_labels)
|
|
)
|
|
# Format each row with its corresponding label
|
|
formatted_rows = [
|
|
f"{label}: "
|
|
+ " ".join(f"{str(item):<{max_lengths[i]}}" for i, item in enumerate(row))
|
|
for label, row in zip(step_labels, transposed_actions)
|
|
]
|
|
# Join the rows into a single string
|
|
formatted_table = (
|
|
"=========== ALL_RANK_ACTIONS ===========\n"
|
|
+ header_row
|
|
+ "\n"
|
|
+ "\n".join(formatted_rows)
|
|
+ "\n"
|
|
)
|
|
return formatted_table
|
|
|
|
|
|
class TestSchedulePlan(unittest.TestCase):
|
|
def _validate_pipeline_order(
|
|
self,
|
|
pipeline_order: Dict[int, List[Optional[_Action]]],
|
|
num_microbatches: int,
|
|
num_stages: int,
|
|
):
|
|
"""
|
|
pipeline_order[rank] = [(computation_type, microbatch_index, stage_index), ...]
|
|
|
|
Validating that the pipeline order follows the rules:
|
|
1. Forward action for a microbatch must be before the Backward action for that microbatch
|
|
2. Recv for a microbatch must be before the send for that microbatch
|
|
3. Microbatch index is handled in sequential order for each stage
|
|
4. A later stage cannot operate on a microbatch before any of the previous stages have operated on it
|
|
5. Same microbatch cannot be handled in the same time step across ranks
|
|
"""
|
|
# microbatch_index: (current computation type, current stage)
|
|
error_msg = []
|
|
microbatch_process_info: Dict[int, Tuple(_ComputationType, int)] = {}
|
|
max_timestep = max(len(rank_list) for rank_list in pipeline_order.values())
|
|
for timestep in range(max_timestep):
|
|
error_msg = []
|
|
current_timestep_actions = []
|
|
for rank in range(len(pipeline_order)):
|
|
action = (
|
|
pipeline_order[rank][timestep]
|
|
if timestep < len(pipeline_order[rank])
|
|
else None
|
|
)
|
|
if action is not None:
|
|
current_timestep_actions.append(action)
|
|
|
|
# TODO: enable this
|
|
# if len(current_timestep_actions) == 0:
|
|
# error_msg.append(
|
|
# "All actions were None, there is an unnecessary gap in the schedule"
|
|
# )
|
|
|
|
# Ensure that no microbatch is operated on twice in current_timestep_actions
|
|
unique_microbatch_indices = {
|
|
action[1] for action in current_timestep_actions
|
|
}
|
|
if len(unique_microbatch_indices) != len(current_timestep_actions):
|
|
error_msg.append(
|
|
"Duplicate microbatch index found in current_timestep_actions"
|
|
)
|
|
|
|
# Add additional checks for other rules here...
|
|
for action in current_timestep_actions:
|
|
computation_type, mb_index, stage_index = action
|
|
|
|
if mb_index >= num_microbatches:
|
|
error_msg.append(f"Microbatch index {mb_index} out of range")
|
|
|
|
# first microbatch
|
|
if mb_index not in microbatch_process_info:
|
|
if computation_type != _ComputationType.FORWARD or stage_index != 0:
|
|
error_msg.append(f"Incorrect start for microbatch {mb_index}")
|
|
microbatch_process_info[mb_index] = (computation_type, stage_index)
|
|
else:
|
|
# if the microbatch is included, check that the current stage is right after prev
|
|
prev_computation, prev_stage = microbatch_process_info[mb_index]
|
|
if prev_computation == _ComputationType.FORWARD:
|
|
if prev_stage == num_stages - 1:
|
|
expected_stage = num_stages - 1
|
|
expected_computation = _ComputationType.BACKWARD
|
|
else:
|
|
expected_stage = prev_stage + 1
|
|
expected_computation = _ComputationType.FORWARD
|
|
elif prev_computation == _ComputationType.BACKWARD:
|
|
if prev_stage == 0:
|
|
error_msg.append(
|
|
f"[{mb_index=}] already finished backward computation"
|
|
)
|
|
expected_stage = None
|
|
expected_computation = None
|
|
else:
|
|
expected_stage = prev_stage - 1
|
|
expected_computation = _ComputationType.BACKWARD
|
|
else:
|
|
raise ValueError(
|
|
f"Computation type {prev_computation} not supported"
|
|
)
|
|
|
|
if expected_computation is not None:
|
|
if expected_computation != computation_type:
|
|
error_msg.append(
|
|
f"[{mb_index=}] {expected_computation=} VS. actual {computation_type=}"
|
|
)
|
|
|
|
if expected_stage != stage_index:
|
|
error_msg.append(
|
|
f"[{mb_index=}] {expected_stage=} VS. actual {stage_index=}"
|
|
)
|
|
|
|
microbatch_process_info[mb_index] = (
|
|
expected_computation,
|
|
expected_stage,
|
|
)
|
|
|
|
if len(error_msg) != 0:
|
|
self.fail(f"Error at timestep {timestep}: " + ",".join(error_msg))
|
|
|
|
@parametrize(
|
|
"ScheduleClass",
|
|
[ScheduleFlexibleInterleaved1F1B, ScheduleInterleaved1F1B, ScheduleLoopedBFS],
|
|
)
|
|
def test_pipeline_order(self, ScheduleClass):
|
|
# Define a list of test cases with varying num_local_stages, num_microbatches, and group_size
|
|
# These should succeed since num_microbatches % group_size == 0
|
|
test_cases = [
|
|
# small number of stages
|
|
(2, 2, 2),
|
|
(2, 4, 4),
|
|
(2, 8, 2),
|
|
(2, 8, 4),
|
|
(2, 8, 8),
|
|
(4, 4, 4),
|
|
(4, 8, 4),
|
|
(4, 8, 8),
|
|
# large microbatches
|
|
(4, 16, 4),
|
|
(4, 32, 4),
|
|
(4, 64, 4),
|
|
# large groups
|
|
(4, 16, 16),
|
|
(4, 32, 32),
|
|
(4, 128, 64),
|
|
# odd num pipeline stages
|
|
(3, 2, 2),
|
|
(3, 8, 2),
|
|
(3, 12, 4),
|
|
# odd group_sizes
|
|
(4, 6, 3),
|
|
(4, 10, 5),
|
|
# n_mb non divisible by group_size
|
|
(2, 3, 4),
|
|
(2, 4, 4),
|
|
(2, 10, 4),
|
|
(2, 15, 4),
|
|
]
|
|
for num_local_stages, num_microbatches, group_size in test_cases:
|
|
with self.subTest(
|
|
num_local_stages=num_local_stages,
|
|
num_microbatches=num_microbatches,
|
|
group_size=group_size,
|
|
):
|
|
only_run_in_flex_pp = num_microbatches % group_size != 0
|
|
if only_run_in_flex_pp and not isinstance(
|
|
ScheduleClass, ScheduleFlexibleInterleaved1F1B
|
|
):
|
|
continue
|
|
|
|
print(f"{num_local_stages=} {num_microbatches=} {group_size=}")
|
|
num_stages = num_local_stages * group_size
|
|
stages = [
|
|
MockPipelineStage(group_size=group_size, num_stages=num_stages)
|
|
for i in range(num_local_stages)
|
|
]
|
|
|
|
schedule = ScheduleClass(stages, num_microbatches)
|
|
# print(format_pipeline_order(schedule.pipeline_order))
|
|
self._validate_pipeline_order(
|
|
schedule.pipeline_order, num_microbatches, num_stages
|
|
)
|
|
|
|
|
|
instantiate_parametrized_tests(TestSchedulePlan)
|
|
|
|
if __name__ == "__main__":
|
|
# Run only the TestSchedulePlan tests (single process)
|
|
loader = unittest.TestLoader()
|
|
suite = loader.loadTestsFromTestCase(TestSchedulePlan)
|
|
runner = unittest.TextTestRunner()
|
|
runner.run(suite)
|
|
|
|
# Check if GPU and NCCL are available
|
|
if not (
|
|
dist.is_available()
|
|
and dist.is_nccl_available()
|
|
and torch.cuda.device_count() > 1
|
|
):
|
|
print(
|
|
"c10d NCCL not available or not enough GPUs, skipping tests",
|
|
file=sys.stderr,
|
|
)
|
|
sys.exit(0)
|
|
|
|
rank = int(os.getenv("RANK", -1))
|
|
world_size = int(os.getenv("WORLD_SIZE", 2))
|
|
|
|
if rank != -1:
|
|
# Launched with torchrun or other multi-proc launchers. Directly run the test.
|
|
ScheduleTest.run_rank(rank, world_size)
|
|
else:
|
|
# Launched as a single process. Spawn subprocess to run the tests.
|
|
# Also need a rendezvous file for `init_process_group` purpose.
|
|
rdvz_file = tempfile.NamedTemporaryFile(delete=False).name
|
|
torch.multiprocessing.spawn(
|
|
ScheduleTest.run_rank,
|
|
nprocs=world_size,
|
|
args=(world_size, rdvz_file),
|
|
)
|