mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: This PR contains the initial version of Vulkan (GPU) Backend integration. The primary target environment is Android, but the desktop build is also supported. ## CMake Introducing three cmake options: USE_VULKAN: The main switch, if it is off, all other options do not affect. USE_VULKAN_WRAPPER: ON - Vulkan will be used loading it at runtime as "libvulkan.so" using libdl, every function call is wrapped in vulkan_wrapper.h. OFF - linking with libvulkan.so directly USE_VULKAN_SHADERC_RUNTIME: ON - Shader compilation library will be linked, and shaders will be compiled runtime. OFF - Shaders will be precompiled and shader compilation library is not included. ## Codegen if `USE_VULKAN_SHADERC_RUNTIME` is ON: Shaders precompilation () starts in cmake/VulkanCodegen.cmake, which calls `aten/src/ATen/native/vulkan/gen_glsl.py` or `aten/src/ATen/native/vulkan/gen_spv.py` to include shaders source or SPIR-V bytecode inside binary as uint32_t array in spv.h,spv.cpp. if `USE_VULKAN_SHADERC_RUNTIME` is OFF: The source of shaders is included as `glsl.h`,`glsl.cpp`. All codegen results happen in the build directory. ## Build dependencies cmake/Dependencies.cmake If the target platform is Android - vulkan library, headers, Vulkan wrapper will be used from ANDROID_NDK. Desktop build requires the VULKAN_SDK environment variable, and all vulkan dependencies will be used from it. (Desktop build was tested only on Linux). ## Pytorch integration: Adding 'Vulkan" as new Backend, DispatchKey, DeviceType. We are using Strided layout without supporting strides at the moment, but we plan to support them in the future. Using OpaqueTensorImpl where OpaqueHandle is copyable VulkanTensor, more details in comments in `aten/src/ATen/native/vulkan/Vulkan.h` Main code location: `aten/src/ATen/native/vulkan` `aten/src/ATen/native/vulkan/VulkanAten.cpp` - connection link between ATen and Vulkan api (Vulkan.h) that converts at::Tensor to VulkanTensor. `aten/src/ATen/native/Vulkan/Vulkan.h` - Vulkan API that contains VulkanTensor representation and functions to work with it. Plan to expose it for clients to be able to write their own Vulkan Ops. `aten/src/ATen/native/vulkan/VulkanOps.cpp` - Vulkan Operations Implementations that uses Vulkan.h API ## GLSL shaders Located in `aten/src/ATen/native/vulkan/glsl` as *.glsl files. All shaders use Vulkan specialized constants for workgroup sizes with ids 1, 2, 3 ## Supported operations Code point: conv2d no-groups conv2d depthwise addmm upsample nearest 2d clamp hardtanh ## Testing `aten/src/ATen/test/vulkan_test.cpp` - contains tests for copy from CPU to Vulkan and back all supported operations Desktop builds supported, and testing can be done on a desktop that has Vulkan supported GPU or with installed software implementation of Vulkan, like https://github.com/google/swiftshader ## Vulkan execution The initial implementation is trivial and waits every operator's execution. Pull Request resolved: https://github.com/pytorch/pytorch/pull/36491 Differential Revision: D21696709 Pulled By: IvanKobzarev fbshipit-source-id: da3e5a770b1a1995e9465d7e81963e7de56217fa
658 lines
23 KiB
C++
658 lines
23 KiB
C++
#pragma once
|
|
|
|
#include <c10/core/DefaultDtype.h>
|
|
#include <c10/core/Backend.h>
|
|
#include <c10/core/Layout.h>
|
|
#include <c10/core/ScalarType.h>
|
|
#include <c10/core/Device.h>
|
|
#include <c10/core/MemoryFormat.h>
|
|
#include <c10/core/DispatchKeySet.h>
|
|
|
|
#include <c10/util/Optional.h>
|
|
#include <c10/util/C++17.h>
|
|
#include <c10/macros/Macros.h>
|
|
|
|
#include <cstddef>
|
|
#include <iosfwd>
|
|
#include <utility>
|
|
|
|
namespace c10 {
|
|
/// A class to encapsulate construction axes of an Tensor. TensorOptions was
|
|
/// designed to support the Python style API for specifying construction options
|
|
/// on factory functions, e.g.,
|
|
///
|
|
/// torch.zeros(2, 3, dtype=torch.int32)
|
|
///
|
|
/// Because C++ doesn't natively support keyword arguments, there must be
|
|
/// another way of specifying keyword-like arguments. TensorOptions is a
|
|
/// builder class which can be used to construct this "dictionary" of keyword
|
|
/// arguments: functions which support TensorOptions conventionally take this
|
|
/// argument optionally as their last argument.
|
|
///
|
|
/// WARNING: In PyTorch, there are `torch::` variants of factory functions,
|
|
/// e.g., torch::zeros for at::zeros. These return Variables (while the
|
|
/// stock ATen functions return plain Tensors). If you mix these functions
|
|
/// up, you WILL BE SAD.
|
|
///
|
|
/// Rather than use the constructor of this class directly, you should prefer to
|
|
/// use the constructor functions, and then chain setter methods on top of them.
|
|
///
|
|
/// at::device(at::kCUDA).dtype(kInt)
|
|
/// at::dtype(at::kInt)
|
|
///
|
|
/// Additionally, anywhere a TensorOptions is expected, you can directly
|
|
/// pass at::kCUDA / at::kInt, and it will implicitly convert to a TensorOptions.
|
|
///
|
|
/// Here are some recommended ways to create a 2x2 tensor of zeros
|
|
/// with certain properties. These all *implicitly* make use of
|
|
/// TensorOptions, even if they don't mention the class explicitly:
|
|
///
|
|
/// at::zeros({2,2}, at::kCUDA);
|
|
/// at::zeros({2,2}, at::kLong);
|
|
/// at::zeros({2,2}, at::device(at::kCUDA).dtype(at::kLong()));
|
|
/// at::zeros({2,2}, at::device({at::kCUDA, 1})); // place on device 1
|
|
/// at::zeros({2,2}, at::requires_grad());
|
|
///
|
|
|
|
/// NOTE [ TensorOptions Constructors ]
|
|
///
|
|
/// TensorOptions is like a dictionary with entries from the set:
|
|
/// {requires_grad, device, dtype, layout}, where each entry may be
|
|
/// unspecified (i.e., is optional). It is used to specify the properties of
|
|
/// tensors in many places both in C++ internal and API, e.g., tensor factory
|
|
/// methods like `at::empty({10}, options)`, tensor conversions like
|
|
/// `tensor.to(...)`, etc.
|
|
///
|
|
/// To provide a simple API that is consistent with Python, where one can do
|
|
/// `torch.empty(sizes, X)` with `X` being a `torch.device`, `torch.dtype`, or a
|
|
/// `torch.layout`, we want TensorOptions to be implicitly convertible from
|
|
/// `ScalarType dtype`, `Layout layout` and `Device device`. Therefore, we have
|
|
/// three implicit constructors from each of these three types.
|
|
///
|
|
/// This is sufficient for `ScalarType` and `Layout` as they are simple Enum
|
|
/// classes. However, `Device` is an ordinary class with implicit constructors
|
|
/// `Device(DeviceType, DeviceIndex = -1)` and `Device(std::string)` to be
|
|
/// consistent with Python API, where strings are treated as equivalent with a
|
|
/// `torch.device` object (e.g., "cuda:1" can be passed to everywhere a
|
|
/// `torch.device("cuda:1")` is accepted). To support the syntax
|
|
/// `at::empty({10}, {kCUDA, 1})` and `tensor.to(kCUDA)`, we need to make sure
|
|
/// that `TensorOptions` is implicitly constructible with any argments that a
|
|
/// `Device` can constructed from. So we have,
|
|
///
|
|
/// /* implicit */ TensorOptions(T&& device) : TensorOptions() {
|
|
/// this->set_device(device);
|
|
/// }
|
|
///
|
|
/// template <typename... Args,
|
|
/// typename = std::enable_if_t<std::is_constructible<Device, Args&&...>::value>>
|
|
/// /* implicit */ TensorOptions(Args&&... args)
|
|
/// : TensorOptions(Device(std::forward<Args>(args)...)) {}
|
|
///
|
|
///
|
|
/// But this will be problematic. Consider this: `TensorOptions({kCUDA, 1})`.
|
|
/// Compiler will compain about ambiguity between the copy constructor and the
|
|
/// `Device` constructor because `{kCUDA, 1}` can be converted to both a
|
|
/// `TensorOption` and a `Device`.
|
|
///
|
|
/// To get around this, we templatize the `Device` constructor. Since overload
|
|
/// resolution is done before template resolution, our problem is solved.
|
|
|
|
|
|
struct C10_API TensorOptions {
|
|
TensorOptions()
|
|
: requires_grad_(false)
|
|
, pinned_memory_(false)
|
|
, has_device_(false)
|
|
, has_dtype_(false)
|
|
, has_layout_(false)
|
|
, has_requires_grad_(false)
|
|
, has_pinned_memory_(false)
|
|
, has_memory_format_(false)
|
|
{}
|
|
|
|
/// Constructs a `TensorOptions` object with the given layout.
|
|
/* implicit */ TensorOptions(Layout layout) : TensorOptions() {
|
|
this->set_layout(layout);
|
|
}
|
|
|
|
/// Constructs a `TensorOptions` object with the given device.
|
|
/// See NOTE [ TensorOptions Constructors ] on why this is templatized.
|
|
template<typename T,
|
|
typename = std::enable_if_t<std::is_same<std::decay_t<T>, Device>::value>>
|
|
/* implicit */ TensorOptions(T&& device) : TensorOptions() {
|
|
this->set_device(std::forward<T>(device));
|
|
}
|
|
|
|
/// Constructs a `TensorOptions` object from arguments allowed in `Device`
|
|
/// constructors.
|
|
///
|
|
/// See NOTE [ TensorOptions Constructors ].
|
|
///
|
|
/// NB: Ideally we only allow implicit constructors here. But there is no easy
|
|
/// way to detect them. So we have this one that allows explicit
|
|
/// constructors too.
|
|
template <typename... Args,
|
|
typename = std::enable_if_t<std::is_constructible<Device, Args&&...>::value>>
|
|
/* implicit */ TensorOptions(Args&&... args)
|
|
: TensorOptions(Device(std::forward<Args>(args)...)) {}
|
|
|
|
/// Constructs a `TensorOptions` object with the given dtype.
|
|
/* implicit */ TensorOptions(caffe2::TypeMeta dtype) : TensorOptions() {
|
|
this->set_dtype(dtype);
|
|
}
|
|
|
|
/// legacy constructor to support ScalarType
|
|
/* implicit */ TensorOptions(ScalarType dtype) : TensorOptions() {
|
|
this->set_dtype(dtype);
|
|
}
|
|
|
|
/// Constructs a `TensorOptions` object with the given memory format.
|
|
/* implicit */ TensorOptions(MemoryFormat memory_format) : TensorOptions() {
|
|
set_memory_format(memory_format);
|
|
}
|
|
|
|
/// Return a copy of `TensorOptions` with `device` set to the given one, or
|
|
/// cleared if `device` is `nullopt`.
|
|
C10_NODISCARD TensorOptions device(c10::optional<Device> device) const noexcept {
|
|
TensorOptions r = *this;
|
|
r.set_device(device);
|
|
return r;
|
|
}
|
|
|
|
/// Return a copy of `TensorOptions` with `device` set to the given one.
|
|
/// (This overload ensures that variadic template c10::optional constructor
|
|
/// for Device work correctly.)
|
|
template<typename ... Args>
|
|
C10_NODISCARD TensorOptions device(Args&&... args) const noexcept {
|
|
return device(c10::optional<Device>(c10::in_place, std::forward<Args>(args)...));
|
|
}
|
|
|
|
/// Return a copy of `TensorOptions`, but with device set to CUDA, and the
|
|
/// device index set to the given one.
|
|
///
|
|
/// TODO: This function encourages bad behavior (assuming CUDA is
|
|
/// the only device that matters). Get rid of it / rename it.
|
|
C10_NODISCARD TensorOptions device_index(int16_t device_index) const noexcept {
|
|
return device(Device::Type::CUDA, device_index);
|
|
}
|
|
|
|
/// Return a copy of `TensorOptions` with `dtype` set to the given one.
|
|
C10_NODISCARD TensorOptions dtype(c10::optional<caffe2::TypeMeta> dtype) const noexcept {
|
|
TensorOptions r = *this;
|
|
r.set_dtype(dtype);
|
|
return r;
|
|
}
|
|
|
|
// legacy function to support ScalarType
|
|
C10_NODISCARD TensorOptions dtype(c10::optional<ScalarType> dtype) const noexcept {
|
|
TensorOptions r = *this;
|
|
r.set_dtype(dtype);
|
|
return r;
|
|
}
|
|
|
|
// Since dtype is taken...
|
|
template <typename T>
|
|
TensorOptions& dtype() {
|
|
dtype_ = caffe2::TypeMeta::Make<T>();
|
|
has_dtype_ = true;
|
|
return *this;
|
|
}
|
|
|
|
/// Sets the layout of the `TensorOptions`.
|
|
C10_NODISCARD TensorOptions layout(c10::optional<Layout> layout) const noexcept {
|
|
TensorOptions r = *this;
|
|
r.set_layout(layout);
|
|
return r;
|
|
}
|
|
|
|
/// Sets the `requires_grad` property of the `TensorOptions`.
|
|
C10_NODISCARD TensorOptions requires_grad(c10::optional<bool> requires_grad) const noexcept {
|
|
TensorOptions r = *this;
|
|
r.set_requires_grad(requires_grad);
|
|
return r;
|
|
}
|
|
|
|
/// Sets the `pinned_memory` property on the `TensorOptions`.
|
|
C10_NODISCARD TensorOptions pinned_memory(c10::optional<bool> pinned_memory) const noexcept {
|
|
TensorOptions r = *this;
|
|
r.set_pinned_memory(pinned_memory);
|
|
return r;
|
|
}
|
|
|
|
/// Sets the `memory_format` property on `TensorOptions`.
|
|
C10_NODISCARD TensorOptions memory_format(c10::optional<MemoryFormat> memory_format) const noexcept {
|
|
TensorOptions r = *this;
|
|
r.set_memory_format(memory_format);
|
|
return r;
|
|
}
|
|
|
|
/// Returns the device of the `TensorOptions`.
|
|
Device device() const noexcept {
|
|
return has_device_ ? device_ : Device(kCPU);
|
|
}
|
|
|
|
/// Returns whether the device is specified.
|
|
bool has_device() const noexcept {
|
|
return has_device_;
|
|
}
|
|
|
|
/// Returns the device of the `TensorOptions`, or `c10::nullopt` if
|
|
/// device is not specified.
|
|
c10::optional<Device> device_opt() const noexcept {
|
|
return has_device_ ? c10::make_optional(device_) : c10::nullopt;
|
|
}
|
|
|
|
/// Returns the device index of the `TensorOptions`.
|
|
int32_t device_index() const noexcept {
|
|
return device().index();
|
|
}
|
|
|
|
/// Returns the dtype of the `TensorOptions`.
|
|
caffe2::TypeMeta dtype() const noexcept {
|
|
return has_dtype_ ? dtype_ : get_default_dtype();
|
|
}
|
|
|
|
/// Returns whether the dtype is specified.
|
|
bool has_dtype() const noexcept {
|
|
return has_dtype_;
|
|
}
|
|
|
|
/// Returns the dtype of the `TensorOptions`, or `c10::nullopt` if
|
|
/// device is not specified.
|
|
c10::optional<caffe2::TypeMeta> dtype_opt() const noexcept {
|
|
return has_dtype_ ? c10::make_optional(dtype_) : c10::nullopt;
|
|
}
|
|
|
|
/// Returns the layout of the `TensorOptions`.
|
|
Layout layout() const noexcept {
|
|
return has_layout_ ? layout_ : kStrided;
|
|
}
|
|
|
|
/// Returns whether the layout is specified.
|
|
bool has_layout() const noexcept {
|
|
return has_layout_;
|
|
}
|
|
|
|
/// Returns the layout of the `TensorOptions`, or `c10::nullopt` if
|
|
/// layout is not specified.
|
|
c10::optional<Layout> layout_opt() const noexcept {
|
|
return has_layout_ ? c10::make_optional(layout_) : c10::nullopt;
|
|
}
|
|
|
|
/// Returns the `requires_grad` property of the `TensorOptions`.
|
|
bool requires_grad() const noexcept {
|
|
return has_requires_grad_ ? requires_grad_ : false;
|
|
}
|
|
|
|
/// Returns whether the `requires_grad` is specified.
|
|
bool has_requires_grad() const noexcept {
|
|
return has_requires_grad_;
|
|
}
|
|
|
|
/// Returns the `requires_grad` property of the `TensorOptions`, or
|
|
/// `c10::nullopt` if `requires_grad` is not specified.
|
|
c10::optional<bool> requires_grad_opt() const noexcept {
|
|
return has_requires_grad_ ? c10::make_optional(requires_grad_)
|
|
: c10::nullopt;
|
|
}
|
|
|
|
/// Returns the `pinned_memory` property of the `TensorOptions`.
|
|
bool pinned_memory() const noexcept {
|
|
return has_pinned_memory_ ? pinned_memory_ : false;
|
|
}
|
|
|
|
/// Returns whether the `pinned_memory` is specified.
|
|
bool has_pinned_memory() const noexcept {
|
|
return has_pinned_memory_;
|
|
}
|
|
|
|
/// Returns if the layout is sparse
|
|
bool is_sparse() const {
|
|
return layout_ == c10::Layout::Sparse;
|
|
}
|
|
|
|
// For compatibility with legacy tensor.type() comparisons
|
|
bool type_equal(const TensorOptions& other) const {
|
|
return backend() == other.backend() && typeMetaToScalarType(dtype_) == typeMetaToScalarType(other.dtype());
|
|
}
|
|
|
|
/// Returns the `pinned_memory` property of the `TensorOptions`, or
|
|
/// `c10::nullopt` if `pinned_memory` is not specified.
|
|
c10::optional<bool> pinned_memory_opt() const noexcept {
|
|
return has_pinned_memory_ ? c10::make_optional(pinned_memory_) : c10::nullopt;
|
|
}
|
|
|
|
/// Returns whether the `memory_layout` is specified
|
|
bool has_memory_format() const noexcept {
|
|
return has_memory_format_;
|
|
}
|
|
|
|
// NB: memory_format() getter is PURPOSELY not defined, as the default
|
|
// behavior of memory_format varies from function to function.
|
|
|
|
/// Returns the `memory_layout` property of `TensorOptions, or
|
|
/// `c10::nullopt` if `memory_format` is not specified.
|
|
c10::optional<MemoryFormat> memory_format_opt() const noexcept {
|
|
return has_memory_format_ ? c10::make_optional(memory_format_) : c10::nullopt;
|
|
}
|
|
|
|
// Resolves the ATen backend specified by the current construction axes.
|
|
// TODO: Deprecate this
|
|
Backend backend() const noexcept {
|
|
return at::dispatchKeyToBackend(computeDispatchKey());
|
|
}
|
|
|
|
/// Return the right-biased merge of two TensorOptions. This has the
|
|
/// effect of overwriting settings from self with specified options
|
|
/// of options.
|
|
///
|
|
/// NB: This merging operation does NOT respect device merges.
|
|
/// For example, if you device({kCUDA, 1}).merge_in(kCUDA)
|
|
/// you will get kCUDA in the end! Functions like Tensor.new_empty
|
|
/// ensure the right device is selected anyway by way of a
|
|
/// device guard.
|
|
///
|
|
TensorOptions merge_in(TensorOptions options) const noexcept {
|
|
TensorOptions r = options;
|
|
if (!r.has_device()) r.set_device(device_opt());
|
|
if (!r.has_dtype()) r.set_dtype(dtype_opt());
|
|
if (!r.has_layout()) r.set_layout(layout_opt());
|
|
// NB: requires grad is right biased; not a logical AND/OR!
|
|
if (!r.has_requires_grad()) r.set_requires_grad(requires_grad_opt());
|
|
if (!r.has_pinned_memory()) r.set_pinned_memory(pinned_memory_opt());
|
|
if (!r.has_memory_format()) r.set_memory_format(memory_format_opt());
|
|
return r;
|
|
}
|
|
|
|
// Resolves the tensor type set specified by the current construction axes.
|
|
DispatchKeySet key_set() const noexcept {
|
|
return DispatchKeySet(computeDispatchKey());
|
|
}
|
|
|
|
inline DispatchKey computeDispatchKey() const {
|
|
switch (layout()) {
|
|
case Layout::Strided:
|
|
switch (device().type()) {
|
|
case DeviceType::CPU: {
|
|
auto dtype_tmp = typeMetaToScalarType(dtype());
|
|
if (isQIntType(dtype_tmp)) {
|
|
return DispatchKey::QuantizedCPU;
|
|
}
|
|
return DispatchKey::CPU;
|
|
}
|
|
case DeviceType::CUDA: {
|
|
auto dtype_tmp = typeMetaToScalarType(dtype());
|
|
if (isQIntType(dtype_tmp)) {
|
|
return DispatchKey::QuantizedCUDA;
|
|
}
|
|
return DispatchKey::CUDA;
|
|
}
|
|
case DeviceType::MKLDNN:
|
|
return DispatchKey::MKLDNN;
|
|
case DeviceType::OPENGL:
|
|
return DispatchKey::OpenGL;
|
|
case DeviceType::OPENCL:
|
|
return DispatchKey::OpenCL;
|
|
case DeviceType::IDEEP:
|
|
return DispatchKey::IDEEP;
|
|
case DeviceType::HIP:
|
|
return DispatchKey::HIP;
|
|
case DeviceType::MSNPU:
|
|
return DispatchKey::MSNPU;
|
|
case DeviceType::XLA:
|
|
return DispatchKey::XLA;
|
|
case DeviceType::Vulkan:
|
|
return DispatchKey::Vulkan;
|
|
default:
|
|
AT_ERROR("Unsupported device type for dense layout: ", device().type());
|
|
}
|
|
case Layout::Sparse:
|
|
switch (device().type()) {
|
|
case DeviceType::CPU:
|
|
return DispatchKey::SparseCPU;
|
|
case DeviceType::CUDA:
|
|
return DispatchKey::SparseCUDA;
|
|
case DeviceType::HIP:
|
|
return DispatchKey::SparseHIP;
|
|
default:
|
|
AT_ERROR("Unsupported device type for sparse layout: ", device().type());
|
|
}
|
|
case Layout::Mkldnn:
|
|
switch (device().type()) {
|
|
case DeviceType::CPU:
|
|
return DispatchKey::MkldnnCPU;
|
|
default:
|
|
AT_ERROR("Unsupported device type for mkldnn layout: ", device().type());
|
|
}
|
|
default:
|
|
AT_ERROR("Unsupported layout: ", layout());
|
|
}
|
|
}
|
|
|
|
private:
|
|
|
|
// These methods are currently private because I'm not sure if it's wise
|
|
// to actually publish them. They are methods because I need them in
|
|
// the constructor and the functional API implementation.
|
|
//
|
|
// If you really, really need it, you can make these public, but check if you
|
|
// couldn't just do what you need with the functional API. Similarly, these
|
|
// methods are not chainable, because if you wanted chaining, you probably
|
|
// want to use the functional API instead. (It's probably OK to make
|
|
// these chainable, because these functions are all explicitly annotated
|
|
// with a ref-qualifier, the trailing &, that makes them illegal to call
|
|
// on temporaries.)
|
|
|
|
/// Mutably set the device of `TensorOptions`.
|
|
void set_device(c10::optional<Device> device) & noexcept {
|
|
if (device) {
|
|
device_ = *device;
|
|
has_device_ = true;
|
|
} else {
|
|
has_device_ = false;
|
|
}
|
|
}
|
|
|
|
/// Mutably set the dtype of `TensorOptions`.
|
|
void set_dtype(c10::optional<caffe2::TypeMeta> dtype) & noexcept {
|
|
if (dtype) {
|
|
dtype_ = *dtype;
|
|
has_dtype_ = true;
|
|
} else {
|
|
has_dtype_ = false;
|
|
}
|
|
}
|
|
|
|
// legacy function to support ScalarType
|
|
void set_dtype(c10::optional<ScalarType> dtype) & noexcept {
|
|
if (dtype) {
|
|
dtype_ = scalarTypeToTypeMeta(*dtype);
|
|
has_dtype_ = true;
|
|
} else {
|
|
has_dtype_ = false;
|
|
}
|
|
}
|
|
|
|
/// Mutably set the layout of `TensorOptions`.
|
|
void set_layout(c10::optional<Layout> layout) & noexcept {
|
|
if (layout) {
|
|
layout_ = *layout;
|
|
has_layout_ = true;
|
|
} else {
|
|
has_layout_ = false;
|
|
}
|
|
}
|
|
|
|
/// Mutably set the `requires_grad` property of `TensorOptions`.
|
|
void set_requires_grad(c10::optional<bool> requires_grad) & noexcept {
|
|
if (requires_grad) {
|
|
requires_grad_ = *requires_grad;
|
|
has_requires_grad_ = true;
|
|
} else {
|
|
has_requires_grad_ = false;
|
|
}
|
|
}
|
|
|
|
/// Mutably set the `pinned_memory` property of `TensorOptions`.
|
|
void set_pinned_memory(c10::optional<bool> pinned_memory) & noexcept {
|
|
if (pinned_memory) {
|
|
pinned_memory_ = *pinned_memory;
|
|
has_pinned_memory_ = true;
|
|
} else {
|
|
has_pinned_memory_ = false;
|
|
}
|
|
}
|
|
|
|
/// Mutably set the `memory_Format` property of `TensorOptions`.
|
|
void set_memory_format(c10::optional<MemoryFormat> memory_format) & noexcept {
|
|
if (memory_format) {
|
|
memory_format_ = *memory_format;
|
|
has_memory_format_ = true;
|
|
} else {
|
|
has_memory_format_ = false;
|
|
}
|
|
}
|
|
|
|
// WARNING: If you edit TensorOptions to add more options, you
|
|
// may need to adjust the implementation of Tensor::options.
|
|
// The criteria for whether or not Tensor::options must be adjusted
|
|
// is whether or not the new option you added should preserved
|
|
// by functions such as empty_like(); if it should be preserved,
|
|
// you must adjust options().
|
|
//
|
|
// TODO: MemoryFormat is not implemented in this way
|
|
|
|
// NB: We didn't use c10::optional here, because then we can't pack
|
|
// the has_***_ boolean fields.
|
|
|
|
caffe2::TypeMeta dtype_ = caffe2::TypeMeta::Make<float>(); // 64-bit
|
|
Device device_ = at::kCPU; // 32-bit
|
|
Layout layout_ = at::kStrided; // 8-bit
|
|
MemoryFormat memory_format_ = MemoryFormat::Contiguous; // 8-bit
|
|
|
|
// Bitmask required here to get this to fit inside 32 bits (or even 64 bits,
|
|
// for that matter)
|
|
|
|
bool requires_grad_ : 1;
|
|
bool pinned_memory_ : 1;
|
|
|
|
|
|
bool has_device_ : 1;
|
|
bool has_dtype_ : 1;
|
|
bool has_layout_ : 1;
|
|
bool has_requires_grad_ : 1;
|
|
bool has_pinned_memory_ : 1;
|
|
bool has_memory_format_ : 1;
|
|
};
|
|
|
|
// We should aspire to fit in one machine-size word; but a size greater than two
|
|
// words is too much. (We are doing terribly on 32-bit archs, where we require
|
|
// three machine size words to store tensor options. Eek!)
|
|
static_assert( sizeof(TensorOptions) <= sizeof(int64_t) * 2,
|
|
"TensorOptions must fit in 128-bits" );
|
|
|
|
/// Convenience function that returns a `TensorOptions` object with the `dtype`
|
|
/// set to the given one.
|
|
inline TensorOptions dtype(caffe2::TypeMeta dtype) {
|
|
return TensorOptions().dtype(dtype);
|
|
}
|
|
|
|
// legacy function to support ScalarType
|
|
inline TensorOptions dtype(ScalarType dtype) {
|
|
return TensorOptions().dtype(scalarTypeToTypeMeta(dtype));
|
|
}
|
|
|
|
/// Convenience function that returns a `TensorOptions` object with the `layout`
|
|
/// set to the given one.
|
|
inline TensorOptions layout(Layout layout) {
|
|
return TensorOptions().layout(layout);
|
|
}
|
|
|
|
/// Convenience function that returns a `TensorOptions` object with the `device`
|
|
/// set to the given one.
|
|
inline TensorOptions device(Device device) {
|
|
return TensorOptions().device(std::move(device));
|
|
}
|
|
|
|
/// Convenience function that returns a `TensorOptions` object with the
|
|
/// `device` set to CUDA and the `device_index` set to the given one.
|
|
inline TensorOptions device_index(int16_t device_index) {
|
|
return TensorOptions().device_index(device_index);
|
|
}
|
|
|
|
/// Convenience function that returns a `TensorOptions` object with the
|
|
/// `requires_grad` set to the given one.
|
|
inline TensorOptions requires_grad(bool requires_grad = true) {
|
|
return TensorOptions().requires_grad(requires_grad);
|
|
}
|
|
|
|
/// Convenience function that returns a `TensorOptions` object with the
|
|
/// `memory_format` set to the given one.
|
|
inline TensorOptions memory_format(MemoryFormat memory_format) {
|
|
return TensorOptions().memory_format(memory_format);
|
|
}
|
|
|
|
C10_API std::ostream& operator<<(
|
|
std::ostream& stream,
|
|
const TensorOptions& options);
|
|
|
|
template <typename T>
|
|
inline TensorOptions dtype() {
|
|
return dtype(caffe2::TypeMeta::Make<T>());
|
|
}
|
|
|
|
inline std::string toString(const TensorOptions options) {
|
|
std::ostringstream stream;
|
|
stream << options;
|
|
return stream.str();
|
|
}
|
|
|
|
// This is intended to be a centralized location by which we can determine
|
|
// what an appropriate DispatchKey for a tensor is.
|
|
//
|
|
// This takes a TensorOptions, rather than just a DeviceType and Layout, because
|
|
// we reserve the right to change dispatch based on *any* aspect of
|
|
// TensorOptions. WARNING: If you do this, you need to fix the calls
|
|
// to computeDispatchKey in caffe2/tensor.h
|
|
inline DispatchKey computeDispatchKey(TensorOptions options) {
|
|
return options.computeDispatchKey();
|
|
}
|
|
|
|
inline DeviceType computeDeviceType(DispatchKey tid) {
|
|
if (tid == DispatchKey::CPU) {
|
|
return DeviceType::CPU;
|
|
} else if (tid == DispatchKey::CUDA) {
|
|
return DeviceType::CUDA;
|
|
} else if (tid == DispatchKey::HIP) {
|
|
return DeviceType::HIP;
|
|
} else if (tid == DispatchKey::MKLDNN) {
|
|
return DeviceType::MKLDNN;
|
|
} else if (tid == DispatchKey::OpenGL) {
|
|
return DeviceType::IDEEP;
|
|
} else if (tid == DispatchKey::OpenCL) {
|
|
return DeviceType::OPENCL;
|
|
} else if (tid == DispatchKey::IDEEP) {
|
|
return DeviceType::IDEEP;
|
|
} else if (tid == DispatchKey::HIP) {
|
|
return DeviceType::HIP;
|
|
} else if (tid == DispatchKey::MSNPU) {
|
|
return DeviceType::MSNPU;
|
|
} else if (tid == DispatchKey::XLA) {
|
|
return DeviceType::XLA;
|
|
} else if (tid == DispatchKey::SparseCPU) {
|
|
return DeviceType::CPU;
|
|
} else if (tid == DispatchKey::SparseCUDA) {
|
|
return DeviceType::CUDA;
|
|
} else if (tid == DispatchKey::SparseHIP) {
|
|
return DeviceType::HIP;
|
|
} else if (tid == DispatchKey::MkldnnCPU) {
|
|
return DeviceType::CPU;
|
|
} else if (tid == DispatchKey::Vulkan) {
|
|
return DeviceType::Vulkan;
|
|
} else {
|
|
AT_ASSERTM(false, "Unknown DispatchKey: ", tid);
|
|
}
|
|
}
|
|
|
|
} // namespace c10
|