pytorch/torch/distributed/fsdp/_common_utils.py
Andrew Gu b3d49c2fb8 [FSDP][1/N] fully_shard state dict (#90767)
Co-authored with @rohan-varma.

**Overview**
This adds preliminary `state_dict()` support for `fully_shard`.
- The only explicit branching between composable and wrapper code paths happens in the state dict hook registration, which is inevitable.
- We introduce a `_comm_module_prefix` to match the FQNs between the two code paths. This is needed since for composable, the FQNs are prefixed from the local FSDP root, whereas for state dict purposes, we want them to be prefixed from the comm. module. Thus, we need this `_comm_module_prefix` to be stripped during state dict.
    - In my understanding, the alternative to not use the `prefix` argument in `state_dict()` does not support the case when `fully_shard` is applied to a submodule (i.e. not the global root module) since we still need _part_ of `prefix` then.

**Follow-Ups**
- We can retire the `functools.partial` usage once @fegin's PR lands.
- We should add more thorough testing (e.g. sharded state dict, save and load together etc.).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90767
Approved by: https://github.com/rohan-varma, https://github.com/fegin
2022-12-13 20:05:40 +00:00

230 lines
7.7 KiB
Python

"""
This file includes private common utilities for FSDP.
"""
import traceback
from enum import auto, Enum
from typing import Any, Callable, Dict, List, no_type_check, Set, Union
import torch
import torch.distributed.fsdp.flat_param as flat_param_file
import torch.nn as nn
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
_CHECKPOINT_PREFIX,
)
FSDP_WRAPPED_MODULE = "_fsdp_wrapped_module"
FSDP_PREFIX = FSDP_WRAPPED_MODULE + "."
FSDP_FLATTENED = "_fsdp_flattened"
# We leverage Python's dynamic attribute definition to unify the state
# management for the wrapper and non-wrapper approaches. The `Any` represents
# the `_State` object in _composable/contract.py, but we do not import it to
# avoid circular imports.
_FSDPState = Union[nn.Module, Any]
class TrainingState(Enum):
"""
An enum that indicates the state of a ``FullyShardedDataParallel` instance.
"""
IDLE = auto()
FORWARD_BACKWARD = auto()
SUMMON_FULL_PARAMS = auto()
class HandleTrainingState(Enum):
"""
An enum that indicates the state of a ``FlatParamHandle`.
"""
IDLE = auto()
FORWARD = auto()
BACKWARD_PRE = auto()
BACKWARD_POST = auto()
SUMMON_FULL_PARAMS = auto()
def _is_composable(state: _FSDPState):
# TODO: This is a temporary hack for differentiate between code paths.
return not isinstance(state, nn.Module)
@no_type_check
def _all_handles(state: _FSDPState) -> List:
return (
state._handles
if _is_composable(state)
else state._fsdp_handles(state) # `FullyShardedDataParallel`
)
@no_type_check
def _module_handles(state: _FSDPState, module: nn.Module) -> List:
"""
Given a module and returns the flat handles that map to this module. If the
module is FullyShardedDataParallel, the module._handles will be returned.
"""
if _is_composable(state):
assert (
module in state._comm_module_to_handles
), f"Expects a `comm_module` but got {module} on rank {state.rank}"
return state._comm_module_to_handles[module][:]
else:
return module._handles[:]
@no_type_check
def _has_fsdp_params(state: _FSDPState, module: nn.Module) -> bool:
"""Given a module and returns if this module has parameters sharded by FSDP."""
return len(_module_handles(state, module)) > 0
def clean_tensor_name(tensor_name: str) -> str:
"""
Cleans the parameter or buffer name by removing any module wrapper
prefixes.
"""
tensor_name = tensor_name.replace(FSDP_PREFIX, "")
# TODO: Explicitly replacing the checkpoint wrapper prefix is not ideal as
# it couples `CheckpointWrapper` and FSDP and also does not scale for more
# module wrappers.
tensor_name = tensor_name.replace(_CHECKPOINT_PREFIX, "")
return tensor_name
def _set_fsdp_flattened(tensor: torch.Tensor) -> None:
"""
Sets an attribute on ``tensor`` to mark it as flattened by FSDP. This is to
avoid re-flattening it during nested construction.
"""
setattr(tensor, FSDP_FLATTENED, True)
def _is_fsdp_flattened(tensor: torch.Tensor) -> bool:
"""Returns if ``tensor`` has been marked as flattened by FSDP."""
return getattr(tensor, FSDP_FLATTENED, False)
def _get_param_to_fqns(
model: torch.nn.Module,
dedup_shared_params: bool = True,
) -> Dict[nn.Parameter, List[str]]:
"""
Constructs a mapping from parameter to a list of its FQNs. Each normal
parameter maps to a singleton list containing its FQN, while each
``FlatParameter`` maps to a list of its original parameter FQNs, which may
have length greater than one. All FQNs are prefixed starting from
``model``.
Args:
model (torch.nn.Module): Root module (which may or may not be a
:class:`FullyShardedDataParallel` instance).
dedup_shared_params (bool): For shared parameters, if ``True``, only
includes the FQNs corresponding to the first encounter of the
shared parameter in the module traversal; if ``False``, then
includes the FQNs across all encounters. (Default: ``True``)
"""
def module_fn(module, prefix, param_to_fqns):
for param_name, param in module.named_parameters(recurse=False):
local_fqns = (
param._fqns
if type(param) is flat_param_file.FlatParameter
else [param_name]
) # prefixed from `module`
global_fqns = [
clean_tensor_name(prefix + name) for name in local_fqns
] # prefixed from the top level `model` (i.e. including `prefix`)
is_shared_param = param in param_to_fqns
if not is_shared_param:
param_to_fqns[param] = global_fqns
elif not dedup_shared_params:
param_to_fqns[param].extend(global_fqns)
def return_fn(param_to_fqns):
return param_to_fqns
param_to_unflat_param_names: Dict[torch.nn.Parameter, List[str]] = {}
return _apply_to_modules(
model,
module_fn,
return_fn,
param_to_unflat_param_names,
)
def _apply_to_modules(
root_module: torch.nn.Module,
module_fn: Callable,
return_fn: Callable,
*args,
**kwargs,
):
"""
Performs a pre-order traversal of the modules in the hierarchy rooted at
``root_module``, applying ``module_fn`` at each module and finally
returning a value using ``return_fn``. The traversal constructs the full
module prefix name (e.g. "module.submodule." just like in model state dict)
and makes that available to ``module_fn``.
"""
def f(module: torch.nn.Module, prefix: str, *args, **kwargs):
# Call the module function before recursing over children (pre-order)
module_fn(module, prefix, *args, **kwargs)
for submodule_name, submodule in module.named_children():
if submodule is not None:
new_prefix = prefix + submodule_name + "."
f(submodule, new_prefix, *args, **kwargs)
f(root_module, "", *args, **kwargs)
return return_fn(*args, **kwargs)
@no_type_check
def _assert_in_training_states(
state: _FSDPState,
training_states: List[TrainingState],
) -> None:
"""Asserts that FSDP is in the states ``_training_states``."""
# Raise a `ValueError` instead of using `assert` to ensure that these
# logical assertions run even if `assert`s are disabled
if state.training_state not in training_states:
msg = (
f"expected to be in states {training_states} but current state is "
f"{state.training_state}"
)
# Print the error on rank 0 in case this is called in the backward pass
if state.rank == 0:
if isinstance(state, nn.Module):
print(f"Asserting FSDP instance is: {state}")
print(f"ERROR: {msg}")
traceback.print_stack()
raise ValueError(msg)
def _get_root_modules(modules: Set[nn.Module]) -> Set[nn.Module]:
"""
Returns:
Set[nn.Module]: The subset of ``modules`` that are root modules (i.e.
parent-less) with respect to the modules in the set itself. In other
words, these are the modules in ``modules`` that are not the child of
any other module in ``modules``.
"""
root_modules: Set[nn.Module] = set()
module_to_submodules = {module: set(module.modules()) for module in modules}
for candidate_module in modules:
is_root_module = True
for module, submodules in module_to_submodules.items():
is_child_module = (
candidate_module is not module and candidate_module in submodules
)
if is_child_module:
is_root_module = False
break
if is_root_module:
root_modules.add(candidate_module)
return root_modules