mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
### Description This PR is to enable TF32 as fp32 internal precision for matmul/linear/conv in `mkldnn backend`. Since we have refined fp32 precision API in https://github.com/pytorch/pytorch/pull/125888, we can easily extend the API to support TF32 for `mkldnn backend`. ``` torch.backends.mkldnn.matmul.fp32_precision = 'tf32' torch.backends.mkldnn.conv.fp32_precision = "tf32" ``` Related kernel update and UTs update are done. And the wrapper `bf32_on_and _off` is updated to `reduced_f32_on_and_off`, and it can run tests 3 times, one is reduced_f32 OFF, the other two are reduced_f32 ON (including `bf32 ON` and `tf32 ON`). Pull Request resolved: https://github.com/pytorch/pytorch/pull/157520 Approved by: https://github.com/mingfeima, https://github.com/jansel
110 lines
3.9 KiB
ReStructuredText
110 lines
3.9 KiB
ReStructuredText
.. meta::
|
|
:description: A guide to torch.backends.mkldnn, a PyTorch backend to run MKLDNN operations
|
|
:keywords: optimize PyTorch, MKLDNN
|
|
|
|
.. _mkldnn_backend:
|
|
|
|
MKLDNN backend
|
|
---------------------------------------------------
|
|
|
|
MKLDNN is an open-source cross-platform performance library of basic building blocks
|
|
for deep learning applications.
|
|
|
|
.. code:: python
|
|
|
|
# The flag below controls whether enable MKLDNN backend in Pytorch.
|
|
torch.backends.mkldnn.enabled = True
|
|
|
|
Users can disable MKLDNN backend by:
|
|
|
|
.. code:: python
|
|
|
|
torch.backends.mkldnn.enabled = False
|
|
|
|
.. _bf16_on_mkldnn:
|
|
|
|
Bfloat16 (BF16) on MKLDNN backend
|
|
---------------------------------------------------
|
|
|
|
Starting in PyTorch 2.9, there is a set of APIs to control the internal computation precision
|
|
for `float32` operators.
|
|
|
|
.. code:: python
|
|
|
|
# The flag below controls the internal computation precision for mkldnn matmul. Default ieee is float32.
|
|
torch.backends.mkldnn.matmul.fp32_precision = "ieee"
|
|
|
|
# The flag below controls the internal computation precision for mkldnn conv. Default ieee is float32.
|
|
torch.backends.mkldnn.conv.fp32_precision = "ieee"
|
|
|
|
# The flag below controls the internal computation precision for mkldnn rnn. Default ieee is float32.
|
|
torch.backends.mkldnn.rnn.fp32_precision = "ieee"
|
|
|
|
Note that besides matmuls and convolutions themselves, functions and nn modules that internally uses
|
|
matmuls or convolutions are also affected. These include :class:`torch.nn.Linear`, :class:`torch.nn._ConvNd`, :func:`torch.cdist`,
|
|
:func:`torch.tensordot`, :func:`torch.nn.functional.affine_grid` and :func:`torch.nn.functional.grid_sample`,
|
|
:class:`torch.nn.AdaptiveLogSoftmaxWithLoss`, :class:`torch.nn.GRU` and :class:`torch.nn.LSTM`.
|
|
|
|
To get an idea of the precision and speed, see the example code and benchmark data (on SPR) below:
|
|
|
|
.. code:: python
|
|
|
|
torch.manual_seed(0)
|
|
a_full = torch.randn(10240, 10240, dtype=torch.double)
|
|
b_full = torch.randn(10240, 10240, dtype=torch.double)
|
|
ab_full = a_full @ b_full
|
|
mean = ab_full.abs().mean() # 80.7451
|
|
|
|
a = a_full.float()
|
|
b = b_full.float()
|
|
|
|
# Do matmul at BF16 mode.
|
|
torch.backends.mkldnn.matmul.fp32_precision = 'bf16'
|
|
ab_bf16 = a @ b # expected speedup with BF16 dot-product acceleration
|
|
error = (ab_bf16 - ab_full).abs().max() # 1.3704
|
|
relative_error = error / mean # 0.0170
|
|
print(error, relative_error)
|
|
|
|
# Do matmul at TF32 mode.
|
|
torch.backends.mkldnn.matmul.fp32_precision = 'tf32'
|
|
ab_tf32 = a @ b # expected speedup with TF32 dot-product acceleration
|
|
error = (ab_tf32 - ab_full).abs().max() # 0.0004
|
|
relative_error = error / mean # 0.00000552
|
|
print(error, relative_error)
|
|
|
|
# Do matmul FP32 mode.
|
|
torch.backends.mkldnn.matmul.fp32_precision = 'ieee'
|
|
ab_fp32 = a @ b
|
|
error = (ab_fp32 - ab_full).abs().max() # 0.0003
|
|
relative_error = error / mean # 0.00000317
|
|
print(error, relative_error)
|
|
|
|
From the above example, we can see that with BF16, the speed is ~7x faster on SPR, and that
|
|
relative error compared to double precision is approximately 2 orders of magnitude larger.
|
|
If full FP32 precision is needed, users can disable BF16 by:
|
|
|
|
.. code:: python
|
|
|
|
torch.backends.mkldnn.matmul.fp32_precision = 'ieee'
|
|
torch.backends.mkldnn.conv.fp32_precision = 'ieee'
|
|
torch.backends.mkldnn.rnn.fp32_precision = 'ieee'
|
|
|
|
To toggle the BF16 flags off in C++, you can do
|
|
|
|
.. code:: C++
|
|
|
|
at::globalContext().setFloat32Precision("ieee", "mkldnn", "matmul");
|
|
at::globalContext().setFloat32Precision("ieee", "mkldnn", "conv");
|
|
at::globalContext().setFloat32Precision("ieee", "mkldnn", "rnn");
|
|
|
|
We can override a generic setting for a specific operator or backend if the fp32_precision is set to `ieee`.
|
|
|
|
.. code:: python
|
|
|
|
torch.backends.fp32_precision = "bf16"
|
|
torch.backends.mkldnn.fp32_precision = "ieee"
|
|
torch.backends.mkldnn.matmul.fp32_precision = "ieee"
|
|
|
|
For such case, both `torch.backends.mkldnn.fp32_precision` and `torch.backends.mkldnn.matmul.fp32_precision`
|
|
is overridden to bf16.
|