pytorch/test/cpp/api
Will Feng b37c235d86 C++/Python API parity for Conv{1,2,3}d layers, and add F::conv{1,2,3}d functionals (#28917)
Summary:
This PR changes the implementation of C++ Conv{1,2,3}d layers to exactly match the Python version, and add F::conv{1,2,3}d functionals. For more thorough testing, I will rely on the parity test mechanism which uses values from `common_nn.py` to generate the inputs and options that we are interested in testing.

This PR is BC-breaking in the following way:

In `Conv{1,2,3}dOptions`:
- `with_bias` is renamed to `bias`.
- `input_channels` is renamed to `in_channels`.
- `output_channels` is renamed to `out_channels`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28917

Differential Revision: D18471526

Pulled By: yf225

fbshipit-source-id: 7a33f60654ad93cc2e043245e7ff9e0ef9da15b3
2019-11-13 12:53:31 -08:00
..
any.cpp Separate libtorch tests from libtorch build. (#26927) 2019-10-02 08:04:52 -07:00
autograd.cpp Fix bugs in torch::tensor constructor (#28523) 2019-10-31 12:53:06 -07:00
CMakeLists.txt Use torch::variant for enums in C++ API 2019-10-16 22:40:57 -07:00
dataloader.cpp Fix bugs in torch::tensor constructor (#28523) 2019-10-31 12:53:06 -07:00
enum.cpp Use c10::variant-based enums for F::grid_sample 2019-11-12 16:05:26 -08:00
expanding-array.cpp Change C++ API test files to only include torch/torch.h (#27067) 2019-10-10 09:46:29 -07:00
functional.cpp C++/Python API parity for Conv{1,2,3}d layers, and add F::conv{1,2,3}d functionals (#28917) 2019-11-13 12:53:31 -08:00
init_baseline.h Kaiming Initialization (#14718) 2019-02-15 14:58:22 -08:00
init_baseline.py Kaiming Initialization (#14718) 2019-02-15 14:58:22 -08:00
init.cpp Use c10::variant-based enums for Nonlinearity and FanMode 2019-10-18 17:48:34 -07:00
integration.cpp Change C++ API test files to only include torch/torch.h (#27067) 2019-10-10 09:46:29 -07:00
jit.cpp Remove attempToRecoverType (#26767) 2019-10-16 11:07:13 -07:00
memory.cpp Hide c10::optional and nullopt in torch namespace (#12927) 2018-10-26 00:08:04 -07:00
misc.cpp Change C++ API test files to only include torch/torch.h (#27067) 2019-10-10 09:46:29 -07:00
module.cpp Allow passing undefined Tensor to Module::register_parameter (#27948) 2019-10-15 10:10:42 -07:00
modulelist.cpp C++/Python API parity for Conv{1,2,3}d layers, and add F::conv{1,2,3}d functionals (#28917) 2019-11-13 12:53:31 -08:00
modules.cpp C++/Python API parity for Conv{1,2,3}d layers, and add F::conv{1,2,3}d functionals (#28917) 2019-11-13 12:53:31 -08:00
nn_utils.cpp Add C++ API clip_grad_value_ for nn:utils (#28736) 2019-10-31 19:11:54 -07:00
optim_baseline.h Use torch:: instead of at:: in all C++ APIs (#13523) 2018-11-06 14:32:25 -08:00
optim_baseline.py Use torch:: instead of at:: in all C++ APIs (#13523) 2018-11-06 14:32:25 -08:00
optim.cpp Re-organize C++ API torch::nn folder structure (#26262) 2019-09-17 10:07:29 -07:00
ordered_dict.cpp Change C++ API test files to only include torch/torch.h (#27067) 2019-10-10 09:46:29 -07:00
parallel.cpp Fix bugs in torch::tensor constructor (#28523) 2019-10-31 12:53:06 -07:00
README.md Rewrite C++ API tests in gtest (#11953) 2018-09-21 21:28:16 -07:00
rnn.cpp Change C++ API test files to only include torch/torch.h (#27067) 2019-10-10 09:46:29 -07:00
sequential.cpp C++/Python API parity for Conv{1,2,3}d layers, and add F::conv{1,2,3}d functionals (#28917) 2019-11-13 12:53:31 -08:00
serialize.cpp Implement more of of the nn.Module API (#28828) 2019-11-06 22:58:25 -08:00
static.cpp Re-organize C++ API torch::nn folder structure (#26262) 2019-09-17 10:07:29 -07:00
support.h Add TORCH_WARN_ONCE, and use it in Tensor.data<T>() (#25207) 2019-08-27 21:42:44 -07:00
tensor_cuda.cpp Deprecate tensor.data<T>(), and codemod tensor.data<T>() to tensor.data_ptr<T>() (#24886) 2019-08-21 20:11:24 -07:00
tensor_options_cuda.cpp Rename getNonVariableDeprecatedTypeProperties to getDeprecatedTypeProperties (#29203) 2019-11-13 07:43:32 -08:00
tensor_options.cpp Rename getNonVariableDeprecatedTypeProperties to getDeprecatedTypeProperties (#29203) 2019-11-13 07:43:32 -08:00
tensor.cpp move type inference for arange into c++ (#27629) 2019-11-11 11:26:21 -08:00
torch_include.cpp Relax set_num_threads restriction in parallel native case (#27947) 2019-10-16 21:53:36 -07:00

C++ Frontend Tests

In this folder live the tests for PyTorch's C++ Frontend. They use the GoogleTest test framework.

CUDA Tests

To make a test runnable only on platforms with CUDA, you should suffix your test with _CUDA, e.g.

TEST(MyTestSuite, MyTestCase_CUDA) { }

To make it runnable only on platforms with at least two CUDA machines, suffix it with _MultiCUDA instead of _CUDA, e.g.

TEST(MyTestSuite, MyTestCase_MultiCUDA) { }

There is logic in main.cpp that detects the availability and number of CUDA devices and supplies the appropriate negative filters to GoogleTest.

Integration Tests

Integration tests use the MNIST dataset. You must download it by running the following command from the PyTorch root folder:

$ python tools/download_mnist.py -d test/cpp/api/mnist

The required paths will be referenced as test/cpp/api/mnist/... in the test code, so you must run the integration tests from the PyTorch root folder.