mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/15899 Add PyTorchPredictorContainer to support multiple jit script modules Reviewed By: pritamdamania87 Differential Revision: D13596139 fbshipit-source-id: 3ce0bdf2f4dbba7aa1d20e824d03e5ac98f5d887
290 lines
10 KiB
C++
290 lines
10 KiB
C++
#include <google/protobuf/util/json_util.h>
|
|
#include <google/protobuf/util/type_resolver_util.h>
|
|
|
|
#include <torch/csrc/jit/assertions.h>
|
|
#include <torch/csrc/jit/import.h>
|
|
#include <torch/csrc/jit/import_method.h>
|
|
#include <torch/csrc/jit/ir.h>
|
|
#include <torch/csrc/jit/operator.h>
|
|
#include <torch/csrc/utils/functional.h>
|
|
|
|
#include "caffe2/core/common.h"
|
|
#include "caffe2/core/types.h"
|
|
#include "caffe2/proto/caffe2_pb.h"
|
|
#include "caffe2/proto/torch_pb.h"
|
|
#include "caffe2/serialize/file_adapter.h"
|
|
#include "caffe2/serialize/inline_container.h"
|
|
#include "caffe2/serialize/istream_adapter.h"
|
|
|
|
#include <ATen/ATen.h>
|
|
|
|
#include <fstream>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
using caffe2::serialize::ReadAdapterInterface;
|
|
using caffe2::serialize::IStreamAdapter;
|
|
using caffe2::serialize::FileAdapter;
|
|
|
|
namespace {
|
|
|
|
// this is a deserializer class which loads script modules from pt files. the
|
|
// content of the file is written using PyTorchStreamWriter, for details please
|
|
// check caffe2/serialize/inline_container.h. all the records except the last
|
|
// one are tensor data, and the last record is a serialized ModelProto, defined
|
|
// in caffe2/proto/torch.proto. ModelProto contains all the metadata of the
|
|
// model, and it is serialized as json.
|
|
class ScriptModuleDeserializer final {
|
|
public:
|
|
ScriptModuleDeserializer(const std::string& filename);
|
|
ScriptModuleDeserializer(std::istream* is);
|
|
explicit ScriptModuleDeserializer(std::unique_ptr<ReadAdapterInterface> rai);
|
|
void deserialize(
|
|
ModuleLookup module_lookup,
|
|
c10::optional<at::Device> device);
|
|
|
|
private:
|
|
at::Tensor loadTensor(
|
|
const torch::TensorDef& tensor_proto,
|
|
std::unordered_map<std::string, at::Storage>& storageMap);
|
|
|
|
void convertModule(const torch::ModuleDef& module_def);
|
|
|
|
void loadTensorTable(torch::ModelDef* model_def);
|
|
|
|
caffe2::serialize::PyTorchStreamReader reader_;
|
|
// this is a hack to make sure the script module created in C++ is the
|
|
// same as created in Python
|
|
ModuleLookup moduleLookup_;
|
|
c10::optional<at::Device> device_;
|
|
std::vector<std::string> moduleStack_;
|
|
|
|
std::vector<at::Tensor> tensor_table_;
|
|
};
|
|
|
|
ScriptModuleDeserializer::ScriptModuleDeserializer(const std::string& filename)
|
|
: reader_(filename.c_str()) {
|
|
// TODO appropriate support for mmap, right now still use stream reader
|
|
}
|
|
|
|
ScriptModuleDeserializer::ScriptModuleDeserializer(std::istream* is)
|
|
: reader_(is) {}
|
|
|
|
ScriptModuleDeserializer::ScriptModuleDeserializer(std::unique_ptr<ReadAdapterInterface> rai)
|
|
: reader_(std::move(rai)) {}
|
|
|
|
void ScriptModuleDeserializer::deserialize(
|
|
ModuleLookup module_lookup,
|
|
c10::optional<at::Device> device) {
|
|
torch::ModelDef model_def;
|
|
at::DataPtr data_ptr;
|
|
size_t data_size;
|
|
std::tie(data_ptr, data_size) = reader_.getRecord("model.json");
|
|
// NB: cannot use JsonStringToMessage, since fbcode's protobuf is too old
|
|
// be consistent with JsonStringToMessage
|
|
std::string url_prefix = "type.googleapis.com";
|
|
std::unique_ptr<::google::protobuf::util::TypeResolver> resolver(
|
|
::google::protobuf::util::NewTypeResolverForDescriptorPool(
|
|
url_prefix, model_def.GetDescriptor()->file()->pool()));
|
|
std::string json_string = std::string(
|
|
static_cast<char*>(data_ptr.get()),
|
|
static_cast<char*>(data_ptr.get()) + data_size);
|
|
std::string binary_string;
|
|
auto convert_result = ::google::protobuf::util::JsonToBinaryString(
|
|
resolver.get(),
|
|
url_prefix + "/" + model_def.GetDescriptor()->full_name(),
|
|
json_string,
|
|
&binary_string);
|
|
if (!convert_result.ok()) {
|
|
std::stringstream ss;
|
|
ss << convert_result;
|
|
AT_ERROR(ss.str());
|
|
}
|
|
AT_ASSERTM(
|
|
model_def.ParseFromString(binary_string),
|
|
"JSON transcoder produced invalid protobuf output.");
|
|
moduleLookup_ = module_lookup;
|
|
device_ = device;
|
|
|
|
const auto& module_def = model_def.main_module();
|
|
loadTensorTable(&model_def);
|
|
// TODO: this can be simplified when C++/Python interop lands,
|
|
// and the submodules would be created as the same in either C++ or Python
|
|
convertModule(module_def);
|
|
}
|
|
|
|
void ScriptModuleDeserializer::loadTensorTable(torch::ModelDef* model_def) {
|
|
std::unordered_map<std::string, at::Storage> storageMap;
|
|
for (const torch::TensorDef& tensor : model_def->tensors()) {
|
|
tensor_table_.emplace_back(loadTensor(tensor, storageMap));
|
|
}
|
|
}
|
|
|
|
at::Tensor ScriptModuleDeserializer::loadTensor(
|
|
const torch::TensorDef& tensor_proto,
|
|
std::unordered_map<std::string, at::Storage>& storageMap) {
|
|
std::vector<int64_t> dims(
|
|
tensor_proto.dims().begin(), tensor_proto.dims().end());
|
|
std::vector<int64_t> strides(
|
|
tensor_proto.strides().begin(), tensor_proto.strides().end());
|
|
auto type = at::typeMetaToScalarType(
|
|
caffe2::DataTypeToTypeMeta(tensor_proto.data_type()));
|
|
const std::string& record_key = tensor_proto.data().key();
|
|
AT_ASSERT(tensor_proto.has_device() && !tensor_proto.device().empty());
|
|
at::Device device(tensor_proto.device());
|
|
if (device_.has_value()) {
|
|
// override the device, if user provides map_location
|
|
device = device_.value();
|
|
}
|
|
|
|
auto storage_it = storageMap.find(record_key);
|
|
if (storage_it == storageMap.end()) {
|
|
at::DataPtr storage_ptr;
|
|
uint64_t record_size;
|
|
std::tie(storage_ptr, record_size) = reader_.getRecord(record_key);
|
|
auto cpu_storage = at::Storage(
|
|
at::CPU(type).typeMeta(),
|
|
std::move(storage_ptr),
|
|
record_size / at::CPU(type).typeMeta().itemsize(),
|
|
nullptr); // NB: we didn't set any allocator for the tensor
|
|
if (device.type() == at::DeviceType::CPU) {
|
|
storage_it =
|
|
storageMap.insert(std::make_pair(record_key, cpu_storage)).first;
|
|
} else if (device.type() == at::DeviceType::CUDA) {
|
|
at::Tensor cpu_tensor =
|
|
at::empty({0}, at::CPU(type).options())
|
|
.set_(cpu_storage, tensor_proto.offset(), dims, strides);
|
|
at::Storage cuda_storage =
|
|
cpu_tensor.to(device, cpu_tensor.scalar_type()).storage();
|
|
storage_it =
|
|
storageMap.insert(std::make_pair(record_key, cuda_storage)).first;
|
|
} else {
|
|
AT_ERROR(
|
|
"supported devices include CPU and CUDA, however got ",
|
|
at::DeviceTypeName(device.type(), false));
|
|
}
|
|
}
|
|
if (storage_it->second.device().type() != device.type() ||
|
|
(device.has_index() &&
|
|
storage_it->second.device().index() != device.index())) {
|
|
std::stringstream oss;
|
|
oss << "storage previously was specified with device "
|
|
<< storage_it->second.device() << "but now is specified with device "
|
|
<< device << std::endl;
|
|
AT_ERROR(oss.str());
|
|
}
|
|
|
|
at::Tensor result;
|
|
if (device.type() == at::DeviceType::CPU) {
|
|
result =
|
|
at::empty({0}, at::CPU(type).options())
|
|
.set_(storage_it->second, tensor_proto.offset(), dims, strides);
|
|
} else if (device.type() == at::DeviceType::CUDA) {
|
|
result =
|
|
at::empty({0}, at::CUDA(type).options())
|
|
.set_(storage_it->second, tensor_proto.offset(), dims, strides);
|
|
}
|
|
AT_ASSERT(result.defined());
|
|
|
|
result = autograd::make_variable(result, tensor_proto.requires_grad());
|
|
|
|
return result;
|
|
}
|
|
|
|
void ScriptModuleDeserializer::convertModule(
|
|
const torch::ModuleDef& module_def) {
|
|
std::shared_ptr<script::Module> module = moduleLookup_(moduleStack_);
|
|
module->set_optimized(module_def.optimize());
|
|
for (int i = 0; i < module_def.submodules_size(); ++i) {
|
|
const torch::ModuleDef& sub_def = module_def.submodules(i);
|
|
moduleStack_.emplace_back(sub_def.name());
|
|
convertModule(sub_def);
|
|
moduleStack_.pop_back();
|
|
}
|
|
for (int i = 0; i < module_def.parameters_size(); ++i) {
|
|
const torch::ParameterDef& param_def = module_def.parameters(i);
|
|
at::Tensor tensor = tensor_table_.at(param_def.tensor_id());
|
|
module->register_parameter(param_def.name(), tensor, param_def.is_buffer());
|
|
}
|
|
if (module_def.has_torchscript_arena()) {
|
|
at::DataPtr data;
|
|
size_t size;
|
|
std::tie(data, size) =
|
|
reader_.getRecord(module_def.torchscript_arena().key());
|
|
std::string data_str(static_cast<const char*>(data.get()), size);
|
|
import_methods(module, data_str, tensor_table_);
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
void import_ir_module(
|
|
ModuleLookup module_lookup,
|
|
std::istream& in,
|
|
c10::optional<at::Device> device) {
|
|
ScriptModuleDeserializer deserializer(&in);
|
|
deserializer.deserialize(module_lookup, device);
|
|
}
|
|
|
|
void import_ir_module(
|
|
ModuleLookup module_lookup,
|
|
const std::string& filename,
|
|
c10::optional<at::Device> device) {
|
|
ScriptModuleDeserializer deserializer(filename);
|
|
deserializer.deserialize(module_lookup, device);
|
|
}
|
|
|
|
void import_ir_module(
|
|
ModuleLookup module_lookup,
|
|
std::unique_ptr<ReadAdapterInterface> rai,
|
|
c10::optional<at::Device> device) {
|
|
ScriptModuleDeserializer deserializer(std::move(rai));
|
|
deserializer.deserialize(module_lookup, device);
|
|
}
|
|
|
|
std::shared_ptr<script::Module> load(
|
|
std::istream& in,
|
|
c10::optional<at::Device> device) {
|
|
std::unique_ptr<IStreamAdapter> rai =
|
|
caffe2::make_unique<IStreamAdapter>(&in);
|
|
auto module = load(std::move(rai), device);
|
|
return module;
|
|
}
|
|
|
|
std::shared_ptr<script::Module> load(
|
|
const std::string& filename,
|
|
c10::optional<at::Device> device) {
|
|
std::unique_ptr<FileAdapter> rai = caffe2::make_unique<FileAdapter>(filename);
|
|
auto module = load(std::move(rai), device);
|
|
return module;
|
|
}
|
|
|
|
std::shared_ptr<script::Module> load(
|
|
std::unique_ptr<ReadAdapterInterface> rai,
|
|
c10::optional<c10::Device> device) {
|
|
auto module = std::make_shared<script::Module>();
|
|
|
|
auto module_lookup = [&](const std::vector<std::string>& qualified_name) {
|
|
std::shared_ptr<script::Module> curr = module;
|
|
for (const auto& name : qualified_name) {
|
|
if (curr->find_module(name) == nullptr) {
|
|
curr->register_module(name, std::make_shared<script::Module>());
|
|
}
|
|
curr = curr->get_module(name);
|
|
}
|
|
return curr;
|
|
};
|
|
|
|
ScriptModuleDeserializer deserializer(std::move(rai));
|
|
deserializer.deserialize(module_lookup, device);
|
|
|
|
return module;
|
|
}
|
|
|
|
} // namespace jit
|
|
} // namespace torch
|